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Seven symmetrically 3,3’-substituted diazocines were synthesized. Functional groups include alcohol, azide, amine and vinyl

groups, which are suitable for polymer synthesis. Upon irradiation at 385 and 530 nm the diazocines perform a reversible, pincer-

type movement switching the 3,3 -distance between 6.1 A (cis, stable isomer) and 8.2 A (trans, metastable isomer). Key reactions

in the synthesis are an oxidative C—C coupling of 2-nitrotoluenes (75-82% yield) and a reductive ring closure to form the

diazocines (56—60% yield). The cyclization of the dinitro compound to the azo compound was improved in yield and repro-

ducibility, by over-reduction to the hydrazine and reoxidation to the azo unit. In contrast to 3,3’- and 4,4’-diaminodiazocine, which

have been implemented in macromolecules for conformation switching, our compounds exhibit improved photophysical properties

(photostationary states, separation of absorption bands in the cis and trans configuration). Hence they are promising candidates as

molecular switches in photo and mechanoresponsive macromolecules and other smart materials.

Introduction

The field of photoresponsive materials is of growing interest
[1-3]. Several mechanophores such as azobenzene [4-8], diaryl-
ethene [9-13] and spiropyrans [14-18] have been investigated as
photoswitchable building blocks. Bridged azobenzenes also
known as diazocines exhibit excellent photochemical proper-
ties but applications are limited and suitably functionalized
compounds are rare [19-23]. In contrary to azobenzenes,
diazocines 1 are stable in their cis configuration. The bent cis

isomer is less prone to n—n stacking which is known to reduce

the switching efficiency (Figure la) [19,24]. The reverse
stability of the cis and trans isomers in azobenzenes and
diazocines should allow reciprocal applications in mechanore-
sponsive materials and in photopharmacology [25]. Another
advantage of diazocines over azobenzenes is their switchability
in the visible range (400 nm cis — trans, 530 nm trans — cis)
preventing deterioration of the material or tissue damage by UV
light [19]. Well separated absorption bands, high switching effi-
ciency and high quantum yields are further advantages
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Figure 1: (a) Isomerization of parent diazocine 1. Distances of carbon atoms para to the ethylene bridge were determined at the B3LYP/6-31g* level
of DFT [23]. (b) UV-vis spectra of parent diazocine 1 (left), 3,3-diaminodiazocine 2 (center) and 4,4’-diaminodiazocine 3 (right). Continuous lines:

100% cis and dashed lines: PSS (385 nm) at 298.15 K in acetonitrile.

regarding their application as switches in photoresponsive mate-
rials [19,24,26]. In contrast to spiropyrans which have been
frequently used as photoswitches in materials, diazocines are
stable over several thousand switching cycles under air
[19,24,26,27]. Notwithstanding their excellent properties, to
date only 3,3’- and 4,4’- functionalized diazocine 2 and 3 have
been implemented in polymers [19] and proteins [28]. Unfortu-
nately, similar to azobenzenes, aminosubstitution at the phenyl
rings reduces switching efficiency [29]. In contrast to the parent
system, separation of absorption bands of the cis and trans
isomer in 2 and 3 is poor. Upon irradiation of the correspond-
ing cis-configured compounds at 385 nm only 30% of the trans
isomer of 3,3’-diazocine 2 and 25% of the 4,4’-diazocine 3 are
formed (Figure 1b). Applications of diazocines 2 and 3 are
further hampered by the low yields of their synthesis [19,20].

To decouple the electronic influence of the functional groups
from the azo switching process and to improve yields of the azo
cyclization step, we separated the functional groups from the ar-

omatic system by one or two methylene groups and restricted

@ NO, O,N

Scheme 1: Key reactions in diazocine synthesis.

substitution to the position meta with respect to the azo group
(Figure 2) [19,20].

N=N

R = CH,OH 4a CH,CH,OH 4b
CHuN3 Sa CH,CH,N;  5b
CHoNH, 6a CH,CH,NH, 6b
CHCH; 7

Figure 2: Synthesized target diazocines 4—7 for applications in
responsive materials.

Results and Discussion

The synthesis of the targeted diazocines 4-7 is based on two
key reactions, an oxidative C—C coupling of nitrotoluenes and
the reductive ring closure of the dinitro compounds (Scheme 1).
We recently improved the yield of the C—C coupling through

el
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addition of bromine as an oxidizing agent [27]. The reaction
times thus are reduced to several minutes as compared to
several hours in previous procedures using oxygen and the
yields are increased from 65% to 95% in the parent system [30].

In a recent work we observed that the reduction of 2,2'-dini-
trodibenzyl is difficult to stop at the azo stage because further
reduction to the hydrazine is faster than the preceding cycliza-
tion reaction [27]. The hydrazine is quite stable towards reduc-
tion to the diamine, and can easily be reoxidized to the azo
compound using CuCl,/O,. The yields are higher and more
reproducible using the above reduction/reoxidation scheme.
Previously applied reducing agents include Ba(OH),/Zn [27],
glucose/NaOH [20], Pb/NEt3JHCOOH [22,23], or the
Baeyer—Mills reaction via Zn/NH4Cl [25]. We chose the
Ba(OH),/Zn method because it provided superior yields even at
larger scales. The syntheses of the functionalized diazocines
4-7 started with (4-methyl-3-nitrophenyl)methanol (8a) and
(4-methyl-3-nitrophenyl)ethanol (8b). In a first step the hydroxy
groups in 8a and 8b were protected as tert-butyl ethers
(Scheme 2) to prevent oxidation in the following oxidative C-C
coupling [31]. The tert-butyl ether was chosen as the protecting
group because it is stable towards the oxidizing conditions of
the C—C coupling reactions and the reducing conditions of the
azo cyclization. Moreover, the fert-butyl group can be conve-

- NO, Pt NO,
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niently removed under acidic conditions. As described in [27]
potassium butoxide is used as a non-nucleophilic base to
remove the a-toluene protons of 9a and 9b. By addition of
bromine as an oxidizing agent dimers 10a and 10b are formed,
most probably through radical intermediates. Then the dinitro
compounds 10a and 10b were reduced with Ba(OH),/Zn to the
hydrazine intermediates and subsequently oxidized with CuCl,
and air in a two-step reductive azo cyclization in a similar
manner as described in [27]. After deprotection with TiCly the
hydroxy-functionalized diazocines 4a and 4b were obtained
[32]. The hydroxy groups in 4a and 4b were successfully con-
verted into azides using 2-azido-1,3-dimethylimidazolinium
hexafluorophosphate (ADMP) and DBU [33]. The synthesis
was completed with a Staudinger reaction to obtain the amino-
functionalized diazocines 6a and 6b [34]. Additionally, the
diazocine 4b was converted into the divinyldiazocine 7.
Towards this end, the hydroxy groups were tosylated, followed
by elimination with potassium butoxide [35,36].

The photochemical and photophysical properties of compounds
4-7 were investigated by NMR and UV—vis spectroscopy and
the results are listed in Table 1. Photostationary states (PSS) as
well as half-lives (¢1/,) were determined in acetonitrile at 300 K
and 298.15 K, respectively. The (cis — trans) and (trans — cis)
isomerization were achieved by irradiation into the appropriate

=1 10a 82%

10b 75%
l ii)

t-BuOOt—Bu
n N=N n
l iv)

11a 56%
11b 60%

n=1
=2

n=1 4a 99%

HO OH =2 4b 90%
n N=N n

O O n=1 5a 81%

N3 B N3 =2 5b 79%
n N=N n

Scheme 2: Syntheses of the functionalized diazocines 4-7. Reaction conditions: i) Isobutylene, sulfuric acid, DCM; ii) -BuOK, Brp, THF; iii) Zn,
Ba(OH), H,O/EtOH, and CuCl,/O2, NaOH/MeOH; iv) Ti(Cl)4, DCM; v) ADMP, DBU, THF; vi) PPh3, H20O, THF; viii) TsCl, DMAP, TEA, DCM, and

t-BuOK, THF.
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Table 1: Photostationary states (300 K), absorption maxima and half-lives (298.15 K), determined by "H NMR and UV-vis spectroscopy in aceto-

nitrile.
molecule PSS (385 nm) PSS (530 nm)
[%] trans [%] cis
1 87 >99
2 30 >99
3 25 >99
4a 83 >99
4b 81 >99
5a 85 >99
5b 82 >99
6a 81 >99
6b 78 >99
7 74 >99
11a 82 >99
11b 81 >99

n—nt* bands at 385 and 530 nm. As a result of electronic decou-
pling the absorption bands are well separated and the photosta-
tionary states of diazocines 4-7 are considerably improved
compared to 3,3’- (2) and 4,4’-diaminodiazocine 3 (Figure 3).
The (cis — trans) isomerization of diazocines 4—7 was achieved
after 2 min of irradiation at 385 nm in yields of 74-85%. All
trans-diazocines were converted quantitatively to the cis-con-
figuration either by thermal relaxation or by irradiation at
530 nm. In general, the (trans — cis) isomerization can be
accomplished with wavelengths between 520 and 620 nm. The
half-lives (¢1/;) for the thermal relaxation (frans — cis) at
298.15 K of diazocines 4-7 in acetonitrile are between
10.2-16.7 h and thus are in the same order of magnitude as the
parent system 1 (15.3 h). In comparison, the 3,3’-diaminodi-
azocine 2 has a much longer half-life (¢;/;) of 24.5 h. The elec-
tronic decoupling of substituents in diazocines 4-7 has proven

HzNNHz
2

A
1.0

12! N=N 2

Amax (Cis) Amax (trans) t12 (UV) [h]
[nm] [nm] at 298.15 K
402 486 15.3
401 487 248
400 475 20
404 485 11.4
405 487 16.7
402 484 11.2
405 489 14.0
405 488 14.7
400 485 10.1
403 484 13.1
403 487 10.2
405 488 15.9

to retain the excellent photochemical properties in regard to
PSS and half-life (¢;/;) of the parent system 1.

Conclusion

Seven symmetrically substituted diazocines 4—7 were synthe-
sized and characterized. Oxidative C—C coupling and reductive
azo condensation proved to be reliable key steps in the synthe-
sis of these substituted diazocines. The photophysical proper-
ties of compounds 4-7 were investigated by NMR and UV-vis
experiments. The previously investigated 3,3’-diaminodi-
azocine 2 and 4,4’-diaminodiazocine 3 exhibited poor photosta-
tionary states (PSS (385 nm): 25-30% trans). The electronic
decoupling of the azobenzene unit and the oxygen and nitrogen
containing functional groups (OH, OR, N3, NH,) was achieved
by insertion of one or two CH; groups. Thereby, the switching
efficiencies were increased by about a factor of two (PSS
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Figure 3: UV-vis spectra of 3,3-diaminodiazocine 2 (left), 3,3’-di(aminomethyl)diazocine 6a (center), and 3,3’-di(aminoethyl)diazocine 6b (right).
Continuous lines: 100% cis and dashed lines: PSS (385 nm) at 298.15 K in acetonitrile.
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(385 nm): 74-85% trans), and thus are close to the parent
system 1 (87%). Moreover, the yields of the two synthetic key
steps, the oxidative C—C coupling and the azo cyclization have
been improved. Diazocines 4-7 are easily accessible and
valuable building blocks for the synthesis of photo- and
mechanoresponsive polymers such as polyurethanes, polyesters,
polyamides, polyureas and polyolefines.
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