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Inflammation plays a major role in the onset of cardiovascular disease (CVD). Interleukine-6 (IL-6) is a multifunctional cytokine
involved both in the beneficial acute inflammatory response and in the detrimental chronic low-grade systemic inflammation. Large
genetic human studies, using Mendelian randomization approaches, have clearly showed that IL-6 pathway is causally involved in
the onset ofmyocardial infarction.At the same time, IL-6 pathway is divided into two arms: classic signaling (effective in hepatocytes
and leukocytes) and trans-signaling (with ubiquitous activity). Trans-signaling is known to be inhibited by the circulating soluble
glycoprotein 130 (sgp130). In animal and in vitro models, trans-signaling inhibition with sgp130 antibody clearly shows a beneficial
effect on inflammatory disease and atherosclerosis. Conversely, epidemiological data report inconsistent results between sgp130
levels and CV risk factors as well as CV outcome. We have reviewed the literature to understand the role of sgp130 and to find the
evidence in favor of or against a possible clinical application of sgp130 treatment in the prevention of cardiovascular disease.

1. Introduction

Cardiovascular disease (CVD) is one of the leading causes
of morbidity and mortality all around the world. Over the
last decades, the role of inflammation in atherosclerosis has
been widely recognized and studied [1]. Identification of the
detailed pathways that link inflammation to atherosclerosis
and CVD provides an auspicious ground to find new possible
therapeutic targets. Since the last century, plasma C-reactive
protein (CRP) levels have attracted great attention, showing
robust results as a marker of systemic inflammation associ-
ated with cardiovascular risk [2]. We have recently reported
that also among elderly population low-grade systemic
inflammation, as identified by hsCRP levels, was associated
with increasedCV risk [3]. Conversely, while hsCRP is clearly
a reliable marker to identify subjects at higher CV risk,
it does not seem to be an effector of the inflammation-
driven atherogenesis. Genetic studies have addressed this
issue with the use of Mendelian randomization approach [4].

In this type of analysis, several authors have argued against
a causal association of CRP with coronary heart disease
due to the lack of consistency between the effect of CRP
genetic variants onCVDandCRP levels [4–6]. PlasmaCRP is
produced primarily in the liver, as a response to inflammatory
stimulation by cytokines, such as Interleukine-6 (IL-6). As
reported by different studies, IL-6 represents an upstream
inflammatory cytokine that seems to be responsible for
the chronic-inflammation-related atherogenesis [7, 8]. The
causal role of this pathway has been nicely shown in studies
involving the principles of Mendelian randomization [9, 10].

As shown in Figure 1, IL-6 pathway could be differentiated
into two axes, with different cell targets and divergent
downstream effects. In the classic pathway, IL-6 binds the
membrane-bound IL-6 receptor (IL-6R), located on the sur-
face of hepatocytes and some leukocytes, and activates the IL-
6 classic signaling transduction cascadewith the homodimer-
ization of the membrane-bound 𝛽-receptor glycoprotein 130
(gp130). In the “trans-signaling” axis, circulating IL-6 forms a
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Figure 1: IL-6 signal transduction via classic and trans-signaling. The upper part of the figure depicts IL-6 signaling in cells expressing the
membrane-bound receptor for IL-6 (IL-6R). In these cells (e.g., hepatocytes and several white blood cells), circulating IL-6 binds directly to
IL-6R that forms a signaling complex with the membrane-bound glycoprotein 130 (gp130); this pathway is known as classic signaling. The
bottom part depicts the IL-6 signaling in those cells that do not express the membrane-bound IL-6R. In these cells, membrane-bound gp130
(ubiquitously expressed) is activated by the circulating IL-6/sIL-6R complex (composed of IL-6 and the circulating soluble portion of IL-6R,
sIL-6R). This pathway, known as trans-signaling, could be inhibited by the circulating soluble portion of gp130 (sgp130), which, by means of
binding the circulating IL-6/sIL-6R complex, blocks the activation of the membrane-bound gp130. sgp130fc is a recombinant fusion protein
of soluble gp130 and human IgG1 Fc that blocks IL-6 trans-signaling mimicking sgp130 functions.

heterodimer with the soluble form of IL-6 receptor, IL-6/sIL-
6R, that could transduce a proinflammatory cascade in vir-
tually any cell types through direct binding with membrane-
bound gp130. The soluble form of the gp130 (sgp130) could
instead inhibit the latter axis, through specific binding with
the IL-6/sIL-6R heterodimer (interfering with its ability to
bind the membrane gp130). Recently, new basic and clinical
studies have highlighted the probable determinant role of
the IL-6 trans-signaling pathway in the inflammatory-driven
atherogenesis process. Our aim was to evaluate the current
“state of the art” providing a comprehensive review of the
relationship betweenCVDand IL-6 trans-signaling. Based on
this review, we further speculate on the possible use of drugs
targeting this pathway in the treatment of CVD.

2. IL-6 Classic and Trans-Signaling Effects

IL-6 is a cytokine with a multifactorial function and induces
both pro- and anti-inflammatory responses [11]. It appears to

have ubiquitous functions in several physiological and patho-
logical processes [11, 12]. IL-6 has two different pathways
for its induction of intracellular signaling: classic signaling
(active primarily in hepatocytes and lymphocytes) and trans-
signaling (with ubiquitous activity). The downstream effect
of these signaling axes shows divergent functions [12]. Con-
sistent data suggest that the classic signaling (through direct
binding ofmembrane-bound IL-6R) ismainly responsible for
the beneficial regenerative and antibacterial effects of IL-6
[13, 14], while the trans-signaling (through “IL-6/soluble- IL-
6R heterodimer” bound to membrane-bound gp130) seems
to account for the majority of the deleterious effect of IL-6
[15, 16]. While this simplistic view is nonexhaustive for the
complex pathway of IL-6, it gives a glimpse of the reason why
trans-signaling is considered so important. Furthermore,
since sgp130 (the soluble form of gp130) is known to inhibit
the IL-6/sIL-6R induced trans-signaling [17], it represents an
ideal pharmacological target for IL-6 signaling.
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Animal model and in vitro studies have reported the
beneficial effect, in several inflammatory and degenerative
disease models, of specific inhibition of trans-signaling with
an fc-dimerized version of sgp130 (sgp130fc) [18–23] (as
depicted in Figure 1). This process has been consistently
reported also in cardiometabolic disease. Kraakman and col-
leagues showed that specific inhibition of trans-signaling,
with sgp130fc protein, prevents the recruitment ofmacropha-
ges in adipose tissue induced by high fat diet (ATM recruit-
ment). On the contrary, in the same study, the complete
blockade of IL-6 (both classic and trans-signaling) exacer-
bates obesity/induced weight gain, liver steatosis, or insulin
resistance [24].

Schuett et al. have shown the protective effect of sgp130 in
an animal model of atherosclerosis. Treatment with sgp130fc
attenuates the atherosclerotic lesion progression in LDL−/−
mice by decreasing endothelial activation, smoothmuscle cell
infiltration, and monocyte recruitment [25]. Furthermore,
these authors assessed the therapeutic relevance of sgp130fc
in amodel of preexisting atherosclerosis, showing a reduction
of thoracoabdominal lipid deposition and of aortic root
lesion size with this treatment. In addition, Schuett et al. con-
firmed that sgp130fc did not influence hepatic effects of IL-
6 (suggesting preserved IL-6 classic signaling). This specific
and trans-signaling-targeted effect of the sgp130fc is of great
relevance since other studies have shown that overall IL-6 sig-
naling has also a beneficial cardiometabolic function, and
complete blockade of IL-6 could be counterproductive [26–
28].

3. Trans-Signaling and Cardiovascular
Disease in Human

3.1. Epidemiological Studies on sgp130 Levels. While animal
models provided consistent results for the beneficial conse-
quences of the sgp130fc-induced blockade of the IL-6 trans-
signaling, in human studies, the association of sgp130 lev-
els and cardiovascular disease appears less straightforward.
Indeed, while some studies reported an inverse association
between sgp130 levels and CVD, others reported null or
positive association.

Schuett et al. confirmed the translational relevance of the
beneficial effect of sgp130fc treatment showing that sgp130
levels were lower among 50 patients with coronary artery
disease (CAD) as compared to controls [25]. Furthermore,
among patients with CAD, sgp130 levels were inversely asso-
ciated with extension of disease. Anderson et al., in a similar
sample size, found that sgp130 had an inverse associationwith
previous myocardial infarction (MI), although there were no
differences between patients with acute MI and CAD. Inter-
estingly, sgp130 levels had a positive correlation with the peak
of troponin I [29]. In a much larger population-based case-
control study, involving 664 cases and 1062 controls, very
high levels of sgp130 were associated with a 30% reduction in
the incidence of myocardial infarction (OR: 0.7; 95% CI: 0.5–
0.9) [30].

On the contrary, different studies showed a negative
prognostic value of sgp130 among those patients with a

history ofMI [31] and in particular among subjects with heart
failure (HF) [32, 33]. Indeed, serum levels of sgp130 were
reported to be higher among patients suffering from chronic
heart failure [34, 35] and, most of all, as reported by Askevold
et al., to be associated with CV and total mortality in elderly
patients with HF of ischemic cause. In this study, subjects
with high levels of sgp130 (those in the 5th quintile versus all
the others) had a significant 38% increase in CV mortality, a
47% increase in all-cause mortality, and an 85% increase in
death from worsening of HF [32].

A possible explanation for these apparently counterintu-
itive results is that, in the context of chronic ischemic disease
and vascular remodeling, higher sgp130 levels are represen-
tative of a compensatory response to higher activation of the
IL-6 signaling, with increased gp130 expression. In support
of this hypothesis, Inta et al. reported that sgp130 levels corre-
lated with blood pressure and carotid intima-media thickness
in stroke patients and that these increased levels may reflect
the vascular remodeling response to arterial hypertension, as
suggested by the increased gp130 mRNA expression in the
aortic wall of spontaneous hypertensive rats [36]. Further-
more, we have recently found that also among community
dwelling elderly individuals there was a significant associa-
tion between sgp130 levels and metabolic syndrome; never-
theless, this association seemed to be mediated by insulin
resistance [37].

Thus, it is possible that in these groups of patients higher
sgp130 represents amarker of higher fragilitymore than being
a cause of adverse outcome.

3.2. Genetic Variants in IL-6R and gp130 and Cardiovascular
Disease. By using the principle of the Mendelian random-
ization, it is possible to address the issue of causality. The
general principle of these studies is that lifelong genetically
determined exposure to a marker of CV risk factor should
induce higher prevalence of CVD only if this risk factor is a
causal mediator of the disease.

In two independent large-scale human genetic studies, a
functional genetic variant (Asp358Ala) located in the gene
coding the IL-6R has been shown to be associated with lower
coronary heart disease (CHD) [9, 10]. This nonsynonymous
variant (358Ala), located in the cleavage site of IL-6R, confers
increased proteolytic conversion rates by ADAM proteases
(ADAM10 and ADAM17) [38], resulting in higher circulating
levels of soluble IL-6 receptor and lower downstream trans-
duction of IL-6 signals. As a consequence, carriers of the
alternative allele, those with lower risk of CHD, have a 2-fold
increase in the circulating levels of soluble IL-6R and reduced
downstream IL-6 signaling as demonstrated by the lower
levels of hsCRP and fibrinogen. A further consequence of
this functional variant is positive feedback with paradoxical
increase in IL-6 levels. Thus, from these studies, it is possible
to confirm the causal association between IL-6 signaling and
CHD but it is not possible to depict whether the reduced
transduction of the IL-6 signal involved only the classic
signaling (as suggested by the hsCRP and fibrinogen lower
levels) and/or the trans-signaling too.

Given the higher levels of IL-6 and sIL-6R associated with
the 358Ala variants, one would expect that trans-signaling
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should be increased as well. Conversely, the opposite scenario
is also possible; indeed, itmust be considered that the increase
in levels of the soluble IL-6R could potentiate the antagonistic
activity of sgp130 on IL-6 response [39]. Asmentioned also by
Scheller and Rose-John [40], the decoy receptor sgp130 has a
much higher concentration (≈200𝜇g/L) than soluble IL-6R
(≈50𝜇g/L) and IL-6 (≈2 ng/L) [12, 37]. Thus, it is probable
that among carriers of the alternative allele (with 358Ala)
the higher soluble IL-6R levels improve the buffer activity of
sgp130 with reduced ubiquitous IL-6 trans-signaling (as well
as the reduced classic signaling in hepatocytes and leukocytes
[41]).

3.3. gp130 Genetic Variants and Cardiovascular Disease. Fur-
ther evidence for the role of sgp130 in the onset of cardiovas-
cular disease has been reported in studies on genetic variants
located in the gene coding gp130 (IL6ST).

Lucthefeld et al., in a haplotype-based analysis, identified
that genetic variability in the IL6ST gene was associated
with CAD and MI in two independent populations [42].
Interestingly, in this study, a highly significant associationwas
detected with the atherosclerosis of the ostium of the coro-
nary arteries, which has an important clinical relevance for
the coronary flow.

Bernick et al. then analyzed one of the nonsynony-
mous single nucleotide polymorphisms studied in this paper
(Gly148Arg, rs3729960) [43]. This functional SNP is known
to change the stability of the glycoprotein and influence the
responsiveness to IL-6, as shown by the slightly reduced
transduction of the signals associated with the 148Arg allele
[43]. Most interestingly, this variant was associated with a
46% decreased risk of myocardial infarction, confirming the
previous report by Lucthefeld et al. Recently, Wonnerth et al.
have shown that carriers of the 148Arg allele had higher circu-
lating levels of soluble gp130 (sgp130); interestingly, they were
able to replicate these results in two different cohorts [44].
Even though this data suggests that the lower risk of MI in
148Arg carriers could be mediated by higher sgp130 circulat-
ing levels, this could not be proven at this point. Indeed, cells
transfectedwith the 148Arg allele showed lower activity of the
membrane-bound receptor, and furthermore this amino acid
change is located in the cytokine binding site; thus, it is not
possible to exclude an altered interaction with the IL-6/sIL-
6R heterodimer.

Finally, it is important to notice that this and other vari-
ants in the IL6ST gene have been associated with increased
prevalence of metabolic syndrome and higher BMI [44, 45].
These results confirmed the complexity of this pathway in the
onset of cardiometabolic disease; nevertheless, animal mod-
els suggest that only the complete blockade of IL-6 (both clas-
sic and trans-signaling) exacerbates obesity and insulin resist-
ance [24], while this effect was not present in specific inhibi-
tion of the trans-signaling.

4. Conclusion

Current IL-6 blockade treatments, used in specific inflamma-
tory diseases, such as rheumatoid arthritis, are nonspecific

(targeting both IL-6 classic and trans-signaling) and are asso-
ciated with increased infection and metabolic disturbances.
Development of new treatments (e.g., sgp130fc) aiming at
specific inhibition of IL-6 trans-signaling seems to be a
promising avenue also for the treatment and prevention of
cardiovascular disease. Nonetheless, given the complexity of
the IL-6 cascade, further studies to confirm this hypothesis
are warranted. Specifically, human genetic studies, conducted
in large and different cohorts, could provide interesting
validation of this hypothesis; furthermore, these studies could
identify specific subjects who may benefit more from this
possible treatment.
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