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Abstract: Poultry production plays a relevant role in the Ethiopian economy and represents a source of
poverty alleviation for several social classes. Infectious diseases can therefore significantly impact the
economy and welfare. Despite infectious bronchitis virus (IBV) and avian metapneumovirus (aMPV)
being present, the knowledge of their epidemiology and impact is extremely limited. In the present
work, a cross-sectional study based on 500 tracheal swabs collected from 50 intensive and backyard
unvaccinated flocks of the Jimma Zone was performed to investigate the circulation of these viruses
and molecularly characterize them. IBV and aMPV presence was tested by molecular assays,
and genotyping was carried out on positive samples. Accordingly, 6% (95% CI 2.06% to 16.22%)
and 8% (95% CI 3.15% to 18.84%) of flocks tested IBV and aMPV positive, respectively. Particularly,
IBV 793B (GI-13) strains were detected in backyard flocks only, and identical or closely related
sequences (p-distance <2%) were detected in distantly spaced flocks, suggesting relevant viral
circulation. On the contrary, both backyard and intensive flocks were affected by aMPV subtype
B. Potential epidemiological links associated to the importation of parental birds from foreign
countries could be established. These results highlight non-negligible circulation of these viruses,
warranting further epidemiological studies and the evaluation of control measure implementation.
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1. Introduction

Infectious bronchitis (IB) is a worldwide-distributed, acute, highly contagious viral disease of
poultry caused by infectious bronchitis virus (IBV) and is characterized by lesions in the respiratory,
reproductive, and urogenital organs [1–4]. It infects chickens of all ages, but young chicks are more
susceptible as resistance increases with age [5]. IBV causes major economic losses in the chicken
industry because of poor performance, decreased egg production and quality, and mortality, which can
be high in presence of nephropathogenic strains or when secondary infections occur [6]. IBV infection is
estimated to account for the third-highest losses among all livestock diseases, following avian influenza
and echinococcosis [7].
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IBV belongs to the family Coronaviridae, order Nidovirales, genus Gammacoronavirus,
species Avian coronavirus [6,8]. Its genome consists of 27.6 kb single-stranded positive-sense
RNA molecules with the following genomic organization: 5′-untranslated region (UTR)-1a/

1ab-S-3a-3b-E-M-5a-5b-N-3′-UTR. The spike (S), membrane (M), envelope (E), and nucleocapsid
(N) are structural viral proteins, while the non-structural ones are encoded by two polyproteins
(pp1a and pp1ab) [9]. Additionally, accessory proteins, 3a and 3b and 5a and 5b, have also been
identified [10,11]. Among others, the spike protein (S) is widely studied because of its genetic variability
and biological role.

The spike protein is cleaved into subunits S1 (amino-terminal component) and S2 (carboxy-terminal
component) [9]. The S1 subunit is responsible for tropism, receptor attachment, neutralizing antibodies,
and cell-mediated immune response induction, while S2 anchors S1 to the viral membrane [12]. After the
first IBV serotype was identified [13] the virus was reported in different parts of USA [14,15] and a wide
range of different IBV serotypes and genotypes were described worldwide [16–18]. The nomenclature
and genotyping of IBV lacked consistency, mainly due to the rapid appearance of novel variants,
unshared nomenclature criteria, and variable parts of S1 being sequenced to infer phylogenetic
trees. However, a rational and standardized nomenclature of the IBV genetic groups was recently
defined [19]. Accordingly, six genotypes comprising 32 lineages were recognized, although other
unassigned recombinants with inter-lineage origin exist. In spite of worldwide efforts to control IBV so
far, it remains a challenge for the poultry industry, mainly due to IBV’s extensive genetic diversity,
short generation time, and high mutation rate [9,20]. The continuous emergence of genetic diversity
and the selection process affect cross-protection among IBV variants, limiting the efficacy of natural or
vaccine immunity [18,21].

The IBV distribution and diversity differ remarkably among genotypes [19]; for example,
the Arkansas strain (GI-9) of IBV is the major strain in the USA [22] and has rarely been reported outside
the USA. Similarly, D1466 (GII-1) is hardly ever isolated outside western Europe [23]. In contrast,
the 793B (GI-13) and QX (GI-19) strains are widely distributed in Asia, Europe, and Africa, but have not
been reported in the USA and Australia.

In Africa, IBV is one of the most important viral diseases that threaten chicken production [24].
So far, vaccine genotypes (Mass and 793B strains) and several other non-vaccine types have been
reported [18], although specifically designed studies to define IBV (and relative lineages) prevalence
have not been performed yet. IBV was first reported in Africa in 1950 in Egypt from birds with
respiratory symptoms [25]. A number of IBV serotypes, antigenic variants, and field strains have since
been isolated. To the best of the authors’ knowledge, only two studies have been conducted so far.
Hutton et al. [26] reported the presence of the 793B genotype in commercial chicken farms with high
(94.5%) seroprevalence, and sequencing revealed a 92–95% relatedness to the French isolate FR-94047-94
strain. Moreover, Tesfaye et al. reported M41, D-274, 793B, and QX serotypes, with IBV prevalence
rates of 74.88% and 68.75% in unvaccinated backyard and commercial farms, respectively [27].

Avian metapneumovirus (aMPV) has been much less investigated. However, recent studies have
indicated the increasing role of aMPV in respiratory diseases in broiler farms, mainly as a primarily
pathogen [28]. Avian Metapneumovirus belongs to the family Pneumoviridae and genus Metapneumovirus,
causing diseases like turkey rhinotracheitis in turkeys [29], swollen head syndrome in broilers and
broiler breeders when associated with bacterial infections [30], and a decrease in egg production in
layers and breeders [31].

Avian metapneumovirus contains a non-segmented, single-stranded, negative-sense RNA genome
of approximately 13 kb in length, organized as 3′ leader N P M F M2 SH G L trailer 5′ [32]. After its first
detection in South Africa in 1978 [33], analysis of attachment protein revealed the presence of four
subtypes [34]. aMPV-A and B are widely distributed, while subtype C has been reported in only a few
countries, including the USA, France, China, and South Korea [35,36], and subgroup D has only been
reported in France [37].
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IBV and aMPV’s epidemiology, strain diversity, molecular characterization, and regional
distribution have not been comprehensively reported in Africa, particularly in Ethiopia [38].

However, there is no doubt among veterinarians about the economic importance of IBV and
aMPV in the Ethiopian poultry industry. Therefore, the purpose of this study was to molecularly
characterize aMPV and IBV in Jimma Zone and determine their genetic relationships with previously
known strains using sequence data analysis.

2. Materials and Methods

2.1. The Study Area

Oromia Regional State is the largest state in Ethiopia, hosting nearly half of the country’s
population and livestock, including poultry. The majority of the commercial poultry farms and
breeding centers in Ethiopia are located in this region. Jimma is the capital city of Jimma Zone, which is
located in Oromia Regional State. The total population of Jimma Zone is 2,642,114, of which 2,204,225
(88.66%) are members of rural communities engaged in agricultural activities for their livelihood.
Jimma Zone is, therefore, a remarkable source of livestock which contribute to the country’s growth and
domestic production: about 466,154 sheep, 194,677 goats, 1,718,284 cattle, 40,555 donkeys, 30,541 mules,
74,774 horses, and 1,774,116.36 chickens are kept in this area.

2.2. Study Design and Sampling Technique

A stratified cross-sectional study design was used in line with the primary objectives of this
study. The sample size for pooled samples was calculated with the aim to estimate the infection
prevalence with a confidence level of 95% and precision of 5%, assuming a conservative prevalence of
15%. Therefore, a minimum of 45 pooled samples was determined [39]. The sample size calculation
was performed using EpiTools (https://epitools.ausvet.com.au/). Commercial poultry farms in Jimma
city and backyard production systems from Jimma Zone were stratified according to production type,
breed, and agro-ecological region.

From the selected poultry farms, 10 tracheal swabs were randomly collected, air-dried to
prevent bacterial and mold growth, put in Eppendorf tubes, and transported to the Jimma University
College of Agriculture and Veterinary Medicine (JUCAVM) Molecular Biotechnology Laboratory for
storage at −80 ◦C. Tracheal swabs with dry ice were shipped to the Veterinary Infectious Disease
Laboratory, Department of Animal Medicine, Production and Health, Padova University, Italy for PCR,
sequencing, and genotyping. Whenever possible, the following data were collected: sampling date,
farm geolocalization, animal category (broilers or layers), breed, age, presence of clinical signs,
production (intensive and extensive) and housing system (backyard, commercial), population size,
and vaccination used.

Overall, tracheal swabs were taken from a total of 500 chickens located in 50 farms (25 commercial
farms with mean flock size 68 and age 9 months and 25 backyard premises with mean flock size 15 and
age 4 months) during January and February 2020.

2.3. Data Analysis

Risk factors potentially associated to IBV and aMPV infection (i.e., age, breed of chicken, farm type,
flock size) were assessed via logistic regression, conducted using SPSS version 20 software.

2.4. RNA Extraction, RT-PCR, and Sequencing

Individual samples were added to 500 µL of PBS and thoroughly vortexed. Then, 100 µL was
collected from each of the 10 resuspended swabs collected in the same farm and pooled. The RNA was
extracted from 200 µL of the obtained solution using the High Pure Viral RNA Kit (Roche, Basilea,
Switzerland) following the manufacturer’s instructions. The pools were tested for IBV presence
using the SuperScript™ III Platinum™ One-Step RT-PCR Kit (Thermo Fisher, Waltham, MA, USA),

https://epitools.ausvet.com.au/


Vet. Sci. 2020, 7, 187 4 of 11

amplifying a 464 bp hyper-variable region of the S1 gene using the method described by
Cavanagh et al. [40] with some modifications. Briefly, 5 µL of extracted RNA was added to a standard
mix composed of 1X Reaction mix, 0.6 µM of XCE1+(CACTGGTAATTTTTCAGATGG) and XCE2
(CTCTATAAACACCCTTACA) primer pair, and 1 µL of SuperScript™ III RT/Platinum™Taq Mix
(Thermo Fisher, Waltham, MA, USA). Molecular-biology-grade water was added up to a final volume
of 25 µL. The selected thermal protocol was as follows: 50 ◦C for 30 min, then 95 ◦C for 2 min,
followed by 45 cycles of 95 ◦C for 15 s, 50 ◦C for 20 s, and 68 ◦C for 40 s. A final extension step at 68 ◦C
for 5 min was also performed. The positivity and specificity of the bands were verified by SYBRTMsafe
(Thermo Fisher, Waltham, Massachusetts, USA) stained agarose gel electrophoresis, and amplicons
were Sanger-sequenced in both directions using the same primers as for PCR at Macrogen Europe
(Amsterdam, The Netherlands). The pools were also tested for aMPV presence using real-time RT-PCR
as described by Cecchinato et al. [41], which allows the detection and differentiation of aMPV subtypes
A and B.

2.5. Sequence Analysis

Chromatogram quality was evaluated using FinchTV (http://www.geospiza.com), and consensus
sequences were assembled using ChromasPro (ChromasPro Version 2.0.0, Technelysium Pty Ltd.,
South Brisbane, Australia). The Ethiopian IBV sequences obtained in the present study were aligned
with the reference strains obtained from Valastro et al. [19] using MAFFT [42]. Commonly applied
vaccines strains were also included in the dataset. A phylogenetic tree was reconstructed using the
maximum likelihood algorithm implemented in IQ-Tree [43], selecting as the substitution model
the one with the lowest Akaike information criterion (AIC) value, calculated by the same program.
The robustness of inferred clades was evaluated using the SH-like approximate likelihood ratio test
(SH-aLRT) with 10,000 replicates. To evaluate the distribution of Ethiopian strains in the international
scenario, an extensive dataset of IBV sequences of the corresponding genotype was downloaded from
GenBank and included in the phylogenetic tree.

2.6. Ethical Approval and Consent

This study was approved by the Animal Research Ethics Review Committee of JUCAVM.
Ethical clearance was obtained from the Ethics Committee of the College of Agriculture and
Veterinary Medicine, Jimma University (ethical code R/GS /217/2012). Handling of the study animals
throughout the study period was according to the World Organization for Animal Health (OIE) animal
welfare guidelines.

3. Results

Overview of IBV and aMPV Genotypes Detected

No significant effect of age (P = 0.436), chicken breed (P = 0.053), farm type (P = 0.086),
or flock size (P = 0.257) was identified on IBV and aMPV infection frequency using linear regression.
IBV-positive results were found in three backyard production systems only (Table 1), in local
Horro breeds raised for meat and egg production, corresponding to 6% (95% CI 2.06–16.22%)
farm-level prevalence, while the individual prevalence estimated from pooled samples was 0.6%
(95% CI 0.01–1.75%). On the contrary, aMPV subtype B was detected in two intensive (Jimma city
farm) and two backyard farms (Table 1), and in Bovans Brown and local Horro breeds (Asendabo
and Setema), corresponding to 8% (95% CI 3.15–18.84%) farm-level prevalence, while the individual
prevalence estimated from pooled samples was 1.04% (95% CI 0.34–2.43%).

http://www.geospiza.com
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Table 1. Number of pooled samples collected, IBV and aMPV positive, classified according to sample
location and production type.

Place No. of Pooled Samples Positive (n) Farms
IBV aMPV

Intensive
Jimma city and surroundings 16 2

Goma 4
Shebe 5

Backyard
Setema 4
Sigimo 3 1 2
Dedo 4

Omonada 4
Asendabo 5 2

Dedo, Kersa 5 0

The geographical distribution of the farms is reported in Figure 1 and Table 1. In five farms,
different clinical signs were observed predominantly: respiratory symptoms (n (number chickens in the
farm) = 19), enteric symptoms (n = 25), watery eyes or mucus in the nares (n = 15), lameness and crooked
neck (n = 5), and blindness (n = 1). Clinical signs were not detected in the IBV-positive flocks; however,
the intensive farms positive for aMPV showed respiratory signs. No documented data indicated either
backyard or commercial farm vaccination against IBV or aMPV among the farms included in this study.
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(aMPV)-positive (green), co-infected (yellow), and negative (blue) cases.

Sequence analysis of the hypervariable region of the S1 gene (Figure 2) showed the circulation of
793B genotypes (GI-13) only, Strains 33 and 37 being 100% identical, while their percentage of identity
with Strain 30 was 98%. The detected Ethiopian IBV strains were distantly related (minima of 4 and
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Figure 2. Maximum-likelihood phylogenetic tree comparing the IBV strains obtained in the present
study (highlighted in red) with some reference strains proposed by Valastro et al., 2016. Reference
vaccine strains are reported in blue.

Comparison of the obtained sequences with the reference ones demonstrated a relatively high
percentage of identity with the oldest known isolate of this genotype, EU914938-Morocco-1983 GI 13
(nucleotide identity of 95.4%), as well as with Z83975 United Kingdom 1991 GI-13 (nucleotide identity
of 98–99%) and JQ739375|China-2011-GI-13 (nucleotide identity of 98–99%). However, when a broader
793B dataset was evaluated, a closer phylogenetic relationship was observed with strains collected in
India and China (Supplementary Materials Figure S1).

4. Discussion

Especially in the small-scale village context, chicken farming can significantly contribute to poverty
alleviation by means of income generation and household food security [44,45], and it represents
a main source of self-reliance for women [46]. Poultry are kept by all levels of society, from the
landless rural poor to the well-off in the cities. Among multiple factors that affect the poultry
industry in Ethiopia, the major limiting ones are infectious diseases [47]. The most relevant poultry
viral diseases in Ethiopia are Newcastle disease, infectious bursal disease, and Marek’s disease [48].
However, IBV accounts for the third-highest economic losses among all livestock diseases in the poultry
industry worldwide by causing respiratory, reproductive, and renal damage, which leads to decreased
productive performance and increased mortality [7,16]. Nevertheless, despite its enormous economic
burden, it is underestimated and neglected in Ethiopia.

Different from the serological survey by Tesfaye et al., only genotype 793B (currently named
GI-13, based on [19]) was found in the present study. However, it must be stressed that serological
characterization is often challenging due to partial cross-reactivity or mutations in specific epitopes.
Therefore, more extensive molecular epidemiology studies should be performed to investigate whether
the herein-described scenario is representative of the overall Ethiopian one or different IBV genotypes
demonstrate a different spatial or temporal pattern in this country.
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The 793B genotype frequency in unvaccinated backyard farms was 6%, lower than in most previous
studies—16.04% in Oman [49], 40.62% in Iraq [50], 38.4–41.3% in Iran [51,52], and 12.7% in Ivory
Coast [53]—but greater than in one study conducted in Nigeria (2.9%) [54]. Using logistic regression
analysis, no association between any of the examined risk factors and the detection of IBV in a flock
was demonstrated at the set statistical significance level. However, the limited number of positive
samples surely prevented the identification of statistical association. In fact, IBV-positive results were
found in backyard production systems only, suggesting that IBV circulates more easily in this setting.

Although a low IBV infectious pressure cannot be excluded in Ethiopia, the high seroprevalence
levels observed in previous studies seem to contradict this hypothesis. Many factors could have
contributed to the low detection ratio, including the low animal/farm density and the old animal age.
In fact, most animals were some months old, while IBV infection often occurs in early life phases.
Therefore, previously acquired natural immunity could have decreased the infection frequency in the
tested population. Younger animals could represent a future research target to investigate whether
IBV infection is common in early life phases and to evaluate its impact and the potential usefulness of
extensive vaccination protocol implementation.

The dominance of 793B is not surprising, considering its widespread use as a vaccine [55–58].
However, in the considered Ethiopian farms, no IBV vaccination was implemented. Therefore,
the positive results were likely due to natural infection, as confirmed by the high genetic distance
compared to commonly applied vaccines. Alternatively, the detected strains could be descended
from vaccine strains that persistently circulated and evolved in the considered geographic area,
acquiring a “field-strain behavior”.

The 793B strains detected within the backyard flocks shared a high nucleotide sequence identity
(i.e., 98–100%), and the phylogenetic analysis based on the S1 hypervariable gene sequence demonstrated
a certain clustering, indicating that closely related strains may be circulating between different,
distantly located, Ethiopian backyard flocks and even regions (Figure 1).

In the absence of strict biosecurity measures, several spreading sources could be involved,
including wild birds, wherein IBV-like viruses have been identified from time to time. This is
particularly true in the case of backyard chickens that have access to the outdoors and live in close
contact with wild birds [59,60]. Therefore, their role in viral spreading cannot be excluded and deserves
further investigation.

Comparison of the S1 hypervariable gene sequence of Ethiopian 793B strains demonstrated
a percentage of identity higher than 96% with most reference strains collected from Europe, including the
ancient French isolate AJ618985_France-1985-GI 13, but especially with Asian strains. Parental chicken
stocks were imported into Ethiopia beginning in the early 1950s [61] from different countries of
Europe, Asia, and Africa to improve indigenous Ethiopian breeds and can thus be considered a likely
introduction route into Ethiopia [62].

Although genetically distinct, the relatively close relatedness demonstrated on the basis of
sequence analysis with commercial homologous vaccines might indicate a higher chance of good
protection [18]. Therefore, commercial vaccines should confer protection, and their application deserves
careful evaluation.

The results reported in this study evidenced the presence of aMPV in commercial and backyard
farms. The viral load of aMPV was extremely low (cp of ~40) and no sequencing was possible.
However, the use of specific probes allowed us to identify the aMPV-B subtype. aMPV-B was detected
in both production systems (intensive and backyard) in animals raised for dual purposes (egg and
meat production). Previously, subtype aMPV-B was reported in central Ethiopia in institutional
farms [26]. In this study, aMPV was detected in both Bovans Brown breeds and local Horro breeds.
Interestingly, the parent chicken stocks of the Bovans Brown breeds were imported into Ethiopia from
Europe. The introduction of foreign strains could represent a possible route of viral entry for aMPV
also, since the subtype B virus is by far the predominant one in Europe [30,63,64]. Other studies are
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currently ongoing to better characterize aMPV molecular epidemiology in Ethiopia and to understand
its clinical and economic relevance.

The present study demonstrates the relevant circulation of two main poultry pathogens in Ethiopia
and provides a molecular characterization of IBV strains. Since the old age of tested animals could
have decreased infection prevalence and disease occurrence, the pathogens’ economic impact might be
considered even more intense. Commercial vaccines against the reported genotypes and subtypes
are widely available. This information, combined with previous study results, will be of help in the
implementation of vaccination strategies directed toward the actually circulating genotypes, instead of
generic ones. In the future, more focused studies should be performed to investigate the impact of
these strategies and their potential benefits for the Ethiopian poultry sector’s productivity and overall
economy and welfare.

Supplementary Materials: The following are available online at http://www.mdpi.com/2306-7381/7/4/187/s1,
Figure S1: Phylogenetic tree reconstructed based on a broad dataset of IBV strains. The Ethiopian sequences have
been colored in red, while the corresponding clade is highlighted in yellow.
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