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Theory of relaxor-ferroelectricity
Li-Li Zhang1,2 & Yi-Neng Huang1,2*

Relaxor-ferroelectrics are fascinating and useful materials, but the mechanism of relaxor-ferroelectricity 
has been puzzling the scientific community for more than 65 years. Here, a theory of relaxor-
ferroelectricity is presented based on 3-dimensional-extended-random-site-Ising-model along with 
Glauber-dynamics of pseudospins. We propose a new mean-field of pseudospin-strings to solve this kinetic 
model. The theoretical results show that, with decreasing pseudospin concentration, there are evolutions 
from normal-ferroelectrics to relaxor-ferroelectrics to paraelectrics, especially indicating by the crossovers 
from, (a) the sharp to diffuse change at the phase-transition temperature to disappearance in the 
whole temperature range of order-parameter, and (b) the power-law to Vogel-Fulcher-law to Arrhenius-
relation of the average relaxation time. Particularly, the calculated local-order-parameter of the relaxor-
ferroelectrics gives the polar-nano-regions appearing far above the diffuse-phase-transition and shows the 
quasi-fractal characteristic near and below the transition temperature. We also provide a new mechanism 
of Burns-transformation which stems from not only the polar-nano-regions but also the correlation-
function between pseudospins, and put forward a definition of the canonical relaxor-ferroelectrics. The 
theory accounts for the main facts of relaxor-ferroelectricity, and in addition gives a good quantitative 
agreement with the experimental results of the order-parameter, specific-heat, high-frequency 
permittivity, and Burns-transformation of lead magnesium niobate, the canonical relaxor-ferroelectric.

65 years after the discovery of so-called relaxor-ferroelectrics (RFEs)1, this manuscript promises to deliver the still 
missing theory of relaxor-ferroelectricity [Supplementary Information (SI) 1]2–10. For the existing phase-transition 
theories of normal-ferroelectrics are based on both structure and component homogeneity11–13, theoretically, the 
main difficulty in describing relaxor-ferroelectricity originates from RFEs being component-disordered although 
structure-ordered, i.e. disordered components on crystal lattices14–19. In fact, understanding how the component 
disorder on lattices leads to novel properties is an outstanding scientific challenge for a broad class of materials 
that include not only RFEs, but also spin glasses20, superelastic strain glasses (shape-memory alloys)21, colossal 
magnetoresistance manganites, and some superconductors22.

The best-known member of the RFE family is the disordered perovskite crystal PbMg1/3Nb2/3O3 (PMN), for 
which 27 years ago a plausible interpretation of its diffuse-phase-transition (DPT) was proposed by Westphal 
et al.3. Fluctuations of random-internal-electric-field (RIEF) emerging from the quenched charge disorder of the 
RFE are stabilizing the typical disordered polar nanodomain state. This disordering mechanism convinced scep-
tical experts at the latest thanks to a favorable review of Cowley et al.16. The subsequent lattice-dynamical theory 
of Arce-Gamboa and Guzmán-Verrí10, involving a Gaussian distribution of RIEF yielded indeed the predicted 
nanodomain state with anisotropic and power-law correlations.

A similar change of mind occurred with regard to the quenched random-internal-stress-field (RISF) in isova-
lent relaxors such as BaZrxTi1−xO3 (BZxT1−x). Experimental evidence of quenched random local displacements 
of the ferro-active Ti4+ ions in the RFE state23 motivated Kleemann24 to propose RISF being due to randomly 
distributed large Zr4+ and Sn4+ ions, respectively, and thus to give rise to relaxor behavior also in such systems.

Starting from this level of knowledge, the present authors have developed a theory of relaxor-ferroelectricity 
within a 3-dimensional-random-site-Ising-model (3D-RSIM)25–28 involving Glauber dynamics29,30 of pseudos-
pins (PSs. Equivalence of the orientational motion of permanent electric dipoles to spins)11,12, and the interaction 
of PSs with both RIEF and RISF3,4,16,24. Meanwhile, we propose a new mean-field of pseudospin-strings to solve 
this kinetic model.

The main facts of relaxor-ferroelectricity, i.e. the novel phase-transition phenomenon of RFEs, are: (i) As 
a function of temperature, (a) the frequency-dependent peak of permittivity, with a broad distribution of 
relaxation time and the average relaxation time varying as the Vogel-Fulcher-law31–33, (b) the diffuse change 
of spontaneous-polarization (order-parameter)34–38, and particularly, the quasi-fractal characteristic of the 
local-spontaneous-polarization (local-order-parameter) as well as its variation17,18, (c) the small broad peak of 
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specific-heat39–41, and (d) Burns-transformation42,43 and the corresponding polar-nano-regions (PNRs) appear-
ing far above the DPT44–47; and (ii) With varying components, the evolutions between normal-ferroelectrics ↔ 
RFEs ↔ paraelectrics48–51. Our theory can account for these facts, and in addition gives a good quantitative 
agreement with the experimental results of the order-parameter, specific-heat, high-frequency permittivity, and 
Burns-transformation of PMN, the generally viewed canonical RFE52,53, which is convincing evidence that the 
theory is essentially correct.

Results
Theory of relaxor-ferroelectricity.  In view of that, (a) RFEs have component disorder on crystal lat-
tices14,17,19, (b) BZxT1−x

49,51 and SrxBa1−xNb2O6
48,50 evolve from normal-ferroelectrics to RFEs with increasing x, 

(c) the permanent electric dipole-moment of BaTiO3
54 is much larger than that of BaZrO3

55, and (d) the success 
of the Mason theory describing the critical-relaxation of normal-ferroelectrics56,57, here, the proposed theory of 
relaxor-ferroelectricity includes the 3-dimensional-extended-random-site-Ising-model (3D-ERSIM) along with 
the Glauber-dynamics of PSs on a simple cubic lattice (lattice constant a0), referred to as 3D-ERSIGM, and the 
model Hamiltonian of RFEs is (SI 2),
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where, in the right side of Eq. 1a, the 1st-term is the Hamiltonian of the 3-dimensional-random-site-Ising-model 
(3D-RSIM)25–28, which is a special form of the random interaction Hamiltonian (Eq. 1 of Kleemann et al.4); J the 
interaction energy constant between the nearest-neighbor PS pairs; σk the kth-PS on the lattice, and its two states 
are represented by σk= ±1; φ the concentration of PS-vacancies or 1 − φ the concentration of PSs on the lattice 
(φ = 1/3 for PMN and φ = x for BZxT1−x); rk

φ the random function that =φr 0k  for φ<r , =φr 1k  for φ≥r , and r 
is a randomly generated number between 0 and 1; {nn} represents the summation of all the nearest-neighbor PS 
pairs; the 2nd- and 3rd-terms are the Hamiltonians related to the RISF and RIEF that originate from the differences 
in the size and charge of the disorder ions in RFEs, respectively. Sk and Ek are the random effective Zeeman fields 
related to the RISF and RIEF4. Obviously, Ek = 0 in the isovalent RFEs (such as BZxT1−x), but ≠E 0k  in the heter-
ovalent ones (PMN and SrxBa1−xNb2O6); and N the total number of the unit cells in an RFE. Considering the fact 
that: (i) Heterovalent and isovalent RFEs have the same characteristics of relaxor-ferroelectricity31–36,39–41,48–51, so 
the influence of Ek to relaxor-ferroelectricity is the secondary compared with the primary 3D-RSIM as pointed by 
Kleemann et al.4; and (ii) The similarity of RISF to RIEF4, we will use an approximate method to describe their 
influence (Sec. New mean-field...), and the specific forms of Sk and Ek are not given here.

Moreover, in order to describe the dynamic parameters of the 3D-ERSIM (such as complex-permittivity), here 
we use the Glauber-dynamics29,30, i.e. the transition probability [w(σk)] from σk to −σk in unit time [Appendix 
(App.) A of SI] is,
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{ }  is the local field of σk, {nnk} labels the summation of all the nearest-neighbors 
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, UB is the energy barrier that PSs stride over during the transition from σk to −σk, and 

v0 is the orientation vibration frequency of PSs in their local energy valleys; and kB is the Boltzmann constant.
The main reasons for choosing Glauber-dynamics are that: (a) It satisfies the detailed balance condition; (b) 

The Weiss, i.e. the single-PS, mean-field form of the 3D-RSIM58,59 along with the Glauber-dynamics (3D-RSIGM) 
when φ = 0 is the same as the Mason theory that describes the critical-relaxation of 2nd-order phase-transition56,57; 
and (c) The corresponding relaxation time predicted by our new mean-field to solve 3D-RSIGM for φ = 0 is con-
sistent with experimental results57 (Sec. Complex-permittivity…).

New mean-field to solve 3D-ERSIGM.  Considering (see SI 3 in details): (a) The existing problems of the 
approximate theoretical methods for 3D-RSIM60–62, and especially there is not any feasible method for solving 
3D-RSIGM according to the authors’ knowledge; (b) The successes of the existing multi-spin mean-field meth-
ods for solving Ising-model, and particularly, with increasing the spin number that the mean-fields contain, the 
corresponding results tend to the exact solution of 2D-Ising-model63–66; and (c) Inspired by the exact solution 
of the complex-permittivity of 1D-RSIGM30, we propose here a new mean-field of PS-strings (PSSs) that con-
tains more PSs and takes into account the correlation between PSs in 3D-space, referred as PSS-MF, to solve the 
3D-ERSIGM. The PSS-MF includes the following four steps:

Step-1: PSS construction.  There are six kinds of scans, i.e. x-y-z-, y-x-z-, x-z-y-, z-x-y-, y-z-x-, and z-y-x-scans, 
to construct PSSs for the 3D-RSIM (Fig. 1a–c). For example, the x-y-z-scan is as the follows: (i) Along the x-axis 
direction of the crystal lattice, connect the nearest-neighbor PSs into short PSSs (Fig. 1b); (ii) Along the y-axis 
direction, any two nearest-neighbor endpoints of the short PSSs are connected in the x-y plane to form long PSSs 
(An endpoint already connected to another PSS is no longer reconnected) as indicated in Fig. 1c; and (iii) Along 
the z-axis direction, continue to connect any two nearest-neighbor endpoints to form longer PSSs in the 
3D-lattice. Here, a PSS containing n PSs is expressed as an n-PSS, and the corresponding intra-string Hamiltonian 
(Hintra

ng ) is = − ∑ σ σ=
−

+H Jintra
ng

i
n

i
s

i
s

1
1

1, where σi
s indicates the ith-PS in the n-PSS, i.e. renumbering the PSs in the 

3D-ERSIM Hamiltonian of RFEs (Eq. 1a).
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Step-2: Calculation of PSS length distribution.  Count the number of n-PSSs in the model (Fig. 1c), obtaining 
the PSS length distribution function (qn) versus (vs) n. Due to the spatial isotropy of the 3D-RSIM in Eq. 1a, the 
calculated qn is the same for the six scans.

Step-3: Calculation of inter-PSS interaction distribution.  Count the number of the n-PSSs with the 
nearest-neighbor number of PSs being g (n-g-PSSs) in the model (Fig. 1d), getting the inter-string interaction 
(bond) distribution function (ρn

g) vs n and g.

Step-4: Mean-field of PSSs (App. B, Figs.B1 and B2 of SI for details).  The inter-string interaction of an n-g-PSS 
with its nearest-neighbor PSs, the RISF and RIEF is described by the Weiss-type mean-field58,59,64, and the corre-
sponding Hamiltonian (Hinter

ng ) is η= − 

 − + 


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n n n

g
n i
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, where b is the factor of the effective 

interface-effect (due to the interfaces between PS and PS-vacancy groups, the RISF and RIEF), and,
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In which, sni
g is the expectation value of σi

s (App. C and D of SI).

Figure 1.  (a) Surface plot of the simulated spatial distributions of PSs (red of height 1) and PS-vacancies 
(yellow of height 0) in the x-y-plane ( =z a/ 1000 ) of 3D-RSIM for φ = 1/3 (a 200 × 200 × 200a0

3 lattice). (b) 
Simulated PS distribution and connected short PSSs along the x-axis direction in the x-y-plane ( =z a/ 100 ) of 
3D-RSIM for φ = 1/3 (a small 25 × 25 × 25a0

3 lattice). Cyan lines and red solid circles show the crystal lattice 
and PSs, respectively, while the unlabeled lattice points are PS-vacancies. A blue solid square indicates that its 
nearest-neighbor two PSs belong to the same string; (c) Connected long PSSs in the x-y plane. They are ring 
PSSs in the circles of (c); and (d) Three PSSs selected from (c). The red circles, blue squares, and violet diamonds 
show the PSs, the intra-string and inter-string interaction bonds. PSS-1: =n 11 and =g 11. PSS-2: =n 24 and 

=g 21. PSS-3: =n 24 and =g 15.
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Therefore, the total Hamiltonian of n-g-PSSs is,
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and the PSS-MF simplifies the 3D-ERSIM (Eq. 1a) as the following Hamiltonian approximately,
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The normalized condition of qn and ρn
g  used here are, respectively, ∑ ==
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 in this paper.

From Hn
g  (Eq. 2b), the Glauber transition probability [ σw ( )n i ] of n-g-PSSs is (App. A of SI),
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In this article, we use the following computer simulations to show the spatial distribution of PSs and 
PS-vacancies, and calculate qn and ρn

g . Specifically: (i) Construct an ensemble which includes 104 
3D-simple-cubic-lattices with 200 × 200 × 200 grid points; and (ii) For any lattice point, a random number r 
between 0 and 1 is first generated by the Intel-Visual-Fortran 2013 program, and there is a PS-vacancy if r < φ or 
a PS if r ≥ φ on the point, respectively.

Spatial distribution of PSs and PS-vacancies.  Figure 1a shows the distribution of PSs and PS-vacancies 
in the x-y-plane of a simulated crystal lattice of 3D-RSIM for φ = 1/3. Due to the randomness of the PSs and 
PS-vacancies on the lattice, there are accumulated regions or clusters of PSs or PS-vacancies with random local 
structures. As shown in the Sec. Local-order-parameter, it is just these PS clusters that lead to the appearance of 
the PNRs15,16,44–47 first proposed by Burns et al.42,43, although its definition is quite unclear now as pointed out by 
Cowley et al.16.

PSS length distribution.  Due to the spatial isotropy of the 3D-ERSIM (Eq. 1a), the obtained qn and ρn
g  are 

same by any scan of the six kinds (Sec. New mean-field...). As shown in Fig. 2a, the resulting qn vs n can be 
described by the following exponential function,

= −q q e (3)n
n n

0
/ 0

where n0 is the average length of PSSs, and q0 is the normalized constant.
The probability that a PS belongs to an n-PSS is nqn, and nqn vs n is given in the inset of Fig. 2a. nqn appears as 

a single peak with n, and the corresponding n value (np) of the peak position decreases until np = 1 as φ increases 
(Table S4.1 of SI 4).

The calculated n0 vs φ is illustrated in Fig. 2b, and n0 decreases with increasing φ. As shown in Fig. 1, n can be 
used as a size measure of the PS clusters in 3D-RSIM, while n0 is their characteristic size. In this paper, the ring 
PSSs in 3D-RSIM are ignored (Fig. 1c). The probability (ER) that the PSs belong to the ring PSSs is equal to the 
number of all PSs in the rings divided by the total number of PSs in the model. ER vs φ is shown in the inset of 
Fig. 2b, and the maximum ER is about 2.7%.

Inter-PSS interaction distribution.  The simulated ρn
g  vs g of 3D-RSIM for serial φ and n is presented in 

Fig. 2c–f. There is a single peak of ρn
g  vs g for all φ and n, and it could be imagined that ρn

g  for φ → 0 is a Dirac 
δ-function at = 4g

n
. By representing the g value corresponding to the maximum of ρn

g  as gp
n, we could see that: (a) 

There is a threshold at 0 3cφ ≈ . , where gp
n is nearly irrelevant to n and ≈ .g 2 45p

n  (Fig. 2d); and (b) gp
n becomes 

smaller for φ < φc or larger for φ < φc as n goes up. In other words, although the sizes of PS clusters in 3D-RSIM 
of φ ≈ φc are different, the average coordination PS number per PS in the clusters is nearly same, and this number 
is equal to + ≈ .g 2 4 45p

n . Obviously, this phenomenon is related to the percolation of PS-vacancies if we change 
the view angle. In fact, φc is near to the percolation threshold (=0.31) of PS-vacancies in 3D-RSIM67, and we 
consider that they are equal and have the same physical origin in this article. We would like to point out that φc 
can be defined as the characteristic concentration of the canonical RFEs (Sec. Definition of canonical RFEs).

Moreover, the ρn
g  vs g for n = np (the magenta diamond symbols in Fig. 2c–f) indicates that there is another 

threshold at φ ≈ .0 7, and this value is near to the percolation threshold (φ = .0 69p ) of PSs in 3D-RSIM67 (Here, 
we also consider this threshold is equal to φp). Specifically, (i) when φ < φp, =( )g n 0p

n
p , and the ρn

g  peak becomes 
narrow with increasing φ; and (ii) For φ < φp, ( )g np

n
p  decreases while the ρn

g  peak widens as φ goes up.
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Order-parameter, static-permittivity and specific-heat.  When the n-g-PSSs are in thermal equilib-
rium, the corresponding equilibrium value (ηne

g ) of ηn
g , i.e. the order-parameter of the n-g-PSSs, is,

η γ
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where Zn
g  is the partition function of n-g-PSSs corresponding to Hn

g  (Eq. 2b), Qn
g  is an intermediate variable to 

calculate Zn
g  (App. C of SI), γ ≡ θtanh( )e e , and ηθ ≡ 


 − + 
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g
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1 1n
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b b
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From Eq. 4a, the static-permittivity (χs
ng) of the n-g-PSSs in thermal equilibrium is (App. E of SI),

χ =
ℵ

− ℵ
C
N

n
T A (4b)s

ng w n
g

n
g

n
g

0

where ℵn
g  is an intermediate variable (App. E of SI), ≡ − Θ( )A 1n

g
n n

g1
b

, ≡ μ
ε

Cw
N

kB

0
2

0
 the Curie-Weiss constant, N0 

the number of the lattice points per unit volume, and ε0 the vacuum dielectric constant.

Figure 2.  (a) qn vs n in 3D-RSIM with 0 1, 0 3, 05, 07, 0 9φ = . . . , and the inset shows nqn vs n for the 
corresponding φ values. np is the peak position of nqn. (b) n0 vs φ in 3D-RSIM, and the inset illustrates ER vs φ. 
(c–f) nn

g  vs g n/  and n in 3D-RSIM with φ = 0.1, 0.3, 0.7, and 0.9.
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By Hn
g  (Eq. 2b), the average internal energy (un

g) and specific-heat (cn
g) per PS of the n-g-PSSs in thermal equi-

librium are,
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where ζni
ge is the equilibrium value of the correlation-function (ζni

g ) between the ith- and (i + 1)th-PSs, i.e. the 
expectation value of σ σ +i

s
i
s

1, in the n-g-PSSs (App. F of SI).
Figure 3 shows the ηne

g , χs
ng , and cn

g  vs T for b = 1.5, serial n and g. We obtain that, with decreasing n and for 
non-zero g, n-g-PSSs have an evolution from 2nd-order phase-transition to DPT, which is indicated by the diffuse 
change of ηne

g  as well as the dispersion peaks of χs
ng  and cn

g , and the DPT spreads to a wider temperature zone. In 
this article, we define the temperature corresponding to the maximum value of −

η∂

∂T
ne

g

 as the transition tempera-
ture (T p

ng ) of the DPT of n-g-PSSs, and T p
ng  goes up with increasing n and g. ≡T 0p

ng  for n-g-PSSs with g = 0 
(n-0-PSSs), giving that they belong to the paraelectric-subsystem in 3D-ERSIM. n-0-PSSs has a small diffuse cn

g  
peak at low-temperature except n = 1 (Fig. 3f). Physically, for finite n and g > 0, the non-zero ηne

g  value at temper-
ature higher than T p

ng  originates from that the existence of the PS-vacancy groups, RISF and RIEF makes the 
probability of the ferroelectric configurations in 3D-ERSIM being higher compared with 3D-Ising-model at high 
temperature58,59,64 (App. B of SI).

The order-parameter (η), spontaneous-polarization (Ps), static-permittivity (χs
ps), as well as the average inter-

nal energy (ups) and average specific-heat (cps) per PS of 3D-ERSIM are,

∑ ∑η φ η= − ρ
=

∞

=
nq(1 )

(5a)n g

n

n n
g

ne
g

1 0

4

μη≈P N (5b)s 0

Figure 3.  (a) ηne
g , (b) χs

ng , and (c) cn
g  of the n-g-PSSs vs T for = .b 1 5, =g n/ 2, =n 1 (pink dot line), 10 (blue 

dash), and 100 (red solid). (d) ηne
g , (e) χs

ng , and (f) cn
g  of the n-g-PSSs vs T for = .b 1 5, =n 10, =g n/ 0 (red 

solid line #1), 1 (blue #2), 2 (pink #3), 3 (violet #4), and 4 (orange #5). T p
ng  in (a,d) is the DPT temperature.
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∑ ∑χ φ χ≈ − ρ
=

∞

=
N q(1 )

(5c)
s
ps

n g

n

n n
g

s
ng

0
1 0

4

∑ ∑φ= − ρ
=

∞

=
u nq u(1 )

(5d)
ps

n g

n

n n
g

n
g

1 0

4

c nq c(1 )
(5e)

ps
n g

n

n n
g

n
g

1 0

4

∑ ∑φ= − ρ
=

∞

=

In the calculation of macroscopic Ps and χs
ps by the microscopic ηne

g  and χs
ng , this paper uses an approxima-

tion similar to the parallel capacitance circuits (Eq. 5b,c).
For serial φ and = .b 1 5, η, χs

ps, and cps vs T are shown in Fig. 4a–c, and it could be seen that: (i) With varying 
φ, 3D-ERSIM has the evolutions between the normal-ferroelectrics of (nearly) 2nd-order phase-transition ↔ 
RFEs of DPT ↔ paraelectrics of (almost) no PS ordering as indicated by the very small η for φ = .0 9 and rapid 
increase of χs

ps with decreasing T (Fig. 4a,b); (ii) As φ increases, η
φ

→
−

T( 0)
1

 decreases (Fig. 4a), indicating that only 
part of the PSs become ferroelectric, i.e. ferroelectric- and paraelectric-subsystems coexist in 3D-ERSIM; and (iii) 
There are a low-temperature- and a high-temperature-DPTs corresponding to the two peaks of χs

ps (the line 5 in 
Fig. 4b) for φ φ≈ p.

Detailed analyses (Fig. 4d–f) show that the paraelectric-subsystem is just the n-0-PSSs in 3D-ERSIM, and its 
content (RP

0), order-parameter (η0), static-permittivity (χs
0), and specific-heat (cps

0 ) per PS are,

∑φ= − ρ
=

∞
R nq(1 )

(6a)P
n

n n
0

1

0

η ≡ 0 (6b)0

∑χ φ ρ χ≈ −
=

∞
N q(1 )

(6c)s
n

n n s
n0

0
1

0 0

Figure 4.  (a–c) η, χs
ps, and cps of 3D-ERSIM with 0, 0 1, 0 3, 0 5, 0 7, 0 9φ = . . . . .  vs T  for = .b 1 5. (d–f) 

Order-parameter, static-permittivity, and average specific-heat per PS of 3D-ERSIM, n-0-PSSs, n-1-PSSs, and 
n-2+-PSSs in the model vs T  for φ = 0.7 and = .b 1 5. Tp

1 and +Tp
2  are the transition temperatures, as well as Td

1 
and +Td

2  the diffuse temperatures of n-1-PSSs and n-2+-PSSs. (g,h) Phase diagram of 3D-ERSIM with = .b 1 5, 
i.e. Tp

1, +Tp
2 , Td

1, +Td
2 , RP

0, RF
1, +RF

2 , and Tb vs φ. φe and φp (PS percolation threshold of 3D-RSIM) are, respectively, 
the characteristic concentrations of the evolutions between the normal-ferroelectrics ↔ RFEs ↔ paraelectrics. 
φc (PS-vacancy percolation threshold of 3D-RSIM) is the characteristic concentration of the canonical RFEs 
(Sec. Inter-PSS interaction distribution and Sec. Definition of canonical RFEs).
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c nq c(1 )
(6d)ps

n
n n n

0

1

0 0∑φ= − ρ
=

∞

The low-temperature- and high-temperature-DPTs correspond to n-g-PSSs with g = 1 (n-1-PSSs) and 
n-g-PSSs of g ≥ 2 (n-2+-PSSs), respectively. The content (RF

1), order-parameter (η1), spontaneous-polarization 
(Ps

1), static-permittivity (χs
1), and average specific-heat per PS (cps

1 ) of n-1-PSSs are,

∑φ= − ρ
=

∞
R nq(1 )

(7a)F
n

n n
1

1

1

nq(1 )
(7b)n

n n ne1
1

1 1∑η φ η= − ρ
=

∞

μη≈P N (7c)s
1

0 1

N q(1 )
(7d)s

n
n n s

n1
0

1

1 1∑χ φ χ≈ − ρ
=

∞

c nq c(1 )
(7e)ps

n
n n n

1

1

1 1∑φ= − ρ
=

∞

The content ( +RF
2 ), order-parameter (η +2 ), spontaneous-polarization ( +Ps

2 ), static-permittivity (χ +
s
2 ), and 

average specific-heat per PS ( +cps
2 ) of n-2+-PSSs are,

∑ ∑φ= − ρ+

=

∞

=
R nq(1 )

(8a)
F

n g

n

n n
g2

1 2

4

nq(1 )
(8b)n g

n

n n
g

ne
g

2
1 2

4

∑ ∑η φ η= − ρ+
=

∞

=

μη≈+
+P N (8c)s

2
0 2

N q(1 )
(8d)

s
n g

n

n n
g

s
ng2

0
1 2

4

∑ ∑χ φ χ≈ − ρ+

=

∞

=

c nq c(1 )
(8e)

ps
n g

n

n n
g

n
g2

1 2

4

∑ ∑φ= − ρ+

=

∞

=

In order to quantitatively describe the high-temperature- and low-temperature-DPTs of 3D-ERSIM, this 
paper defines that: (i) The temperatures corresponding to the maximum values of −

ηd

dT
1  and −

η +d

dT
2  are the 

phase-transition temperatures of n-1-PSSs (TP
1) and n-2+-PSSs ( +TP

2 ); and (ii) To show the dispersion of the DPTs, 

the corresponding diffuse temperatures (Td
1 and +Td

2 ) are determined by ≡
η

η

( )
( )

T

T e
1d

P

1
1

1
1

 and ≡
η

η

+
+

+
+

( )
( )
T

T e
1d

P

2
2

2
2

 ( ≡ . e 2 718 , 

i.e. the Euler or natural number), as shown in Fig. 4d.
The phase diagram of 3D-ERSIM with b = 1.5 is shown in Fig. 4g–h, i.e. Tp

1, +Tp
2 , Td

1, +Td
2 , RP

0, RF
1, +RF

2 , and Tb 
(Burns temperature15,16, see Sec. Burns-transformation) vs φ, which indicates that, as φ increases: (i) +Tp

2  first 
decreases, but it remains almost unchanged after φ ≈ .0 8; +Td

2  first drops slightly, then rapidly, and keeps as a 
constant after 0 8φ ≈ . ; Td

1 first decreases slowly, then rapidly, and increases slightly at the end; as well as +Tp
2  is 

always higher than Tp
1, and Tp

1 is almost irrelevant to φ; (ii) RP
0 and +RF

2 , respectively, increases and decreases 
monotonically, with the maximum growth or drop rate near 0 8φ = . ; RF

1 shows a diffuse peak with the peak posi-
tion near φ = .0 75. In other words, 3D-ERSIM has three subsystems: paraelectric- (n-0-PSSs), 
low-transition-temperature-ferroelectric- (n-1-PSSs), and high-transition-temperature-ferroelectric- 
(n-2+-PSSs) subsystems. The dominant subsystem is n-2+-PSSs when φ is small; n-2+-PSSs, n-1-PSSs, 
and n-0-PSSs almost have the same contents near φ φ= p; and n-0-PSSs dominates the whole system when φ is 
large enough; and (iii) n-2+-PSSs gradually evolve from the normal-ferroelectrics of (nearly) 2nd-order 
phase-transition to RFEs of DPT, and the characteristic concentration (φe) of PS-vacancies of this evolution is 
about 0.12 [defined here by the crossover from the slight to rapid drops of +Td

2  (Fig. 4g)], which stems from the 
decrease of characteristic PS cluster size (n0) as shown in Fig. 2b and distribution broadening of the interaction 
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between the clusters (Fig. 2c,d). Compared with n-2+-PSSs, n-1-PSSs always have narrow DPT because they have 
no interaction distribution.

Local-order-parameter.  When the n-g-PSSs are in thermal equilibrium, the corresponding equilibrium 
value (sni

ge) of sni
g  (App. D of SI) is,

α=













+











 γ γ

− −

=

s
Q

Y Q Q Y1

(9)
ni
ge

n
g i

g
n i
g

i
g

n i
g

e

Based on sni
ge, the equilibrium expectation value (sk

e) of σk, i.e. the local-order-parameter of 3D-ERSIM (Eq. 1a), 
can be obtained (The specific calculation method of sk

e is given in the SI 5). The calculated sk
e results at serial tem-

peratures in the x-y-plane of 3D-ERSIM for 1/3φ =  and = .b 1 5 are shown in Fig. 5. It could be seen that: (i) sk
e 

shows significant spatial heterogeneity from 0 K to the temperatures far above +Tp
2  (Fig. 5b–f) due to the existence 

of the PS and PS-vacancy clusters (Fig. 5a); (ii) The black regions in Fig. 5b–f that never polarize correspond to 

Figure 5.  (a) Simulated spatial distributions of PSs and PS-vacancies in the x-y-plane ( =z a/ 200 ) of 
3D-ERSIM for 1/3φ =  and = .b 1 5 (40 × 40 × 40 lattice points). Red and blue squares show the PSs and PS-
vacancies, respectively. (b–f) Surface plots of the calculated sk

e in the x-y-plane when = . = . +T J k T0 5 / 0 14B p
2  

(b), . = +J k T3 7 / B p
2  (c), . = +J k T4 3 / B d

2  (d), . = +J k T7 4 / 2B p
2  (e), and . = +J k T8 6 / 2B d

2  (f).
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those of PS-vacancies (Fig. 5a); (iii) At very low-temperature ( . +T0 14 p
2 ), the PS shells adjacent to the PS-vacancy 

regions have smaller sk
e compared with those inside the PS clusters (Fig. 5b); (iv) Even at such high-temperature 

( +T2 d
2 ), individual polarized regions of nanoscale about a few a0, i.e. PNRs, with small sk

e appear in the PS clusters 
(Fig. 5f), which originates from the effective interface-effect of PS clusters (App. B of SI); and (v) With decreasing 
T, the size of the PNRs first increases (Fig. 5f,e), then new PNRs appear (Fig. 5e,d), and finally they interconnect 
to form large polarized regions with quasi-fractal structure (Fig. 5d-b), meanwhile the average of sk

e always 
increases.

Along with the DPT, there are at least three different kinds of interfaces in RFEs: (i) Phase boundary. The inter-
faces between adjacent paraelectric and ferroelectric regions (Fig. 5c–f); (ii) Sub-phase boundary. The interfaces 
between adjacent ferroelectric regions of different sk

e values (Fig. 5b–d); and (iii) Domain wall. The interfaces in 
ferroelectric regions with opposite polarization directions of sk

e. According to the domain formation theory68–70, 
the ferroelectric regions in 3D-ERSIM must become multi-domains due to the influence of the PS-vacancy 
groups within and adjacent to the PS clusters, the RISF and RIEF.

Complex-permittivity of correlated-relaxation of PSs.  The correlated-relaxation of PSs in 
normal-ferroelectrics of 2nd-order phase-transition is also referred to as the critical-relaxation or phase-transition 
relaxation because it appears in the vicinity of the critical-temperature56,57. To date, the most successful theory of 
the correlated-relaxation is given by Mason56, and it is a mean-field of single PS of 3D-RSIGM for 0φ = .

The complex-permittivity (including the linear and higher order) of n-g-PSSs is related to the change of sni
g  

with time (t). Based on Eq. 2b,d, we obtain that the equation of sni
g  vs t is (App. G of SI),

ν
β γ β ζ ζ= − + + + − +− + −

ds
dt

s s s1 ( ) [1 ( )] (10)
ni
g

ni
g

i ni
g

ni
g

i ni
g

ni
g

1 1 1

where = i n1, . Due to the interaction between PSs, the evolution of sni
g  is interrelated to ζni

g  = −i n( 1, 1) 
(App. F of SI).

The linear complex-permittivity of the correlated-relaxation of n-g-PSSs is directly related to the sufficiently 
small deviation (δni

g ) of sni
g  from its equilibrium value ( ≡

γ γ=
s sni

ge
ni
g

e
), i.e. δ ≡ −s sni

g
ni
g

ni
ge. By Eq. 10, we get that 

(App. H and I of SI),

χ χ χ
χ

ωτ
= − ″ ≈

+
′⁎

i
i1 (11)n

g
n
g

c n
g s

ng

c nn
g

where ic  is the imaginary unit, ω angular frequency, and τnn
g  the longest relaxation time of the 

spatial-relaxation-modes of the correlated-relaxation of n-g-PSSs (Figs. H1, H2 and I1 of App. H and I).
Figure 6a,b illustrates that, with decreasing n and for nonzero g, ντnn

g  shows a crossover from the λ-shape to 
diffuse peak near T p

ng , and from the power-law ντ ∼
−

( )nn
g

T T
1

p
ng

56,57 to Vogel-Fulcher-law31–33 [ ντ ∼
−

ln( )nn
g

T T
1

v
, 

where Tv is Vogel temperature] above T p
ng  (The relaxation time vs T between the power-law and Arrhenius-relation 

can be described by the Vogel-Fulcher-law approximately), which indicates that the Vogel-Fulcher-law originates 
from the effective interface-effect of PS clusters (App. B of SI). ντnn

g  with g = 0 always show Arrhenius behavior, 
and has the same divergent tendency at low-temperature for all g values. Obviously, τ

→∞nn
n

n
4  corresponds to the 

case of normal-ferroelectrics with 2nd-order phase-transition (Fig. 6a), and its power-law behavior is consistent 
with experimental results57.

Figure 6c–f give, when = .b 1 5, =U J20B , and =n 10, χ ′
n
g  and χ ″

n
g  vs T, serial ω and g calculated by Eq. 11. 

It could be seen that: (i) χ ′
n
g  and χ ″

n
g  have relaxation peaks, and the high-temperature side of χ ′

n
g  is almost inde-

pendent of ω; and (ii) The peak temperature (Tm
ng ) of χ ′

n
g  vs ω follows the Arrhenius-relation for g = 0 or 

Vogel-Fulcher-law for ≠g 0 (Insets of Fig. 6c,d).
χ

⁎

n
g  in 3D-ERSIGM has a distribution with both n and g (Eqs. 11 and 4b). However, there is still no exact 

method to calculate the complex-permittivity of a heterogeneous system on molecular scale. Here, an 
extended-Wagner-approximation71 is used to calculate the complex-permittivity (χ ⁎

ps) of 3D-ERSIGM, i.e.,

i N q(1 )
(12)

ps ps c ps
n g

n

n n
g

n
g

0
1 0

4
⁎ ⁎

∑ ∑χ χ χ φ χ= − ″ ≈ − ρ′

=

∞

=

where χ ′
ps and χ ″

ps are the real and imaginary parts of χ ⁎
ps, respectively.

Figure 7 shows the calculated χ ′
ps and χ ″

ps of 3D-ERSIGM for = .b 1 5, =U J20B , and 0 1,φ = .  0.3, 0.5, 0.7, 0.9 
vs T  and ω by Eq. 12. The line 5 of Fig. 7a has two peaks of χ ′

ps for φ = .0 1, which is a typical characteristic of the 
critical-relaxation56,57. Moreover, compared with other φ values, the peak temperature (Tm) of χ ′

ps for 0 1φ = .  
changes a little when ω is small, i.e. Tm vs ω follows the power-law ω∼

− +( )
T T

1

m p
2

 approximately as shown by the 

line 1 in the inset of Fig. 7b, which is another characteristic of the critical-relaxation56,57. These results indicate 
furtherly the definition rationality of φ = .0 12e  (Fig. 4g,h) as the characteristic concentration of the evolution 
between the normal-ferroelectrics and RFEs.

As indicated obviously in the inset of Fig. 7b, Tm vs ω for φ = . .0 7, 0 9 agrees well with the Arrhenius-relation, 
and that for φ = . .0 3, 0 5 is between the power-law and Arrhenius-relation, which can be described by the 
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Vogel-Fulcher-law ω



−

~ ( )ln
T T

1

m v
 approximately, a typical characteristic of RFEs31–33, which originates from the 

effective interface-effect of PS clusters (App. B of SI) and the broad interaction distribution between the clusters 
(Fig. 2d). These results also confirm the rationality that φp is taken as the characteristic concentration of the evo-
lution between the RFEs and paraelectrics (Fig. 4g,h). Based on Eq. 12 and Fig. 2, it could be expected that the 
distribution of relaxation time of χ ⁎

ps will first broaden and then narrow with increasing φ, as shown in Fig. 7.

Burns-transformation.  Currently, the interpretation to Burns-transformation of high-temperature 
thermal-strain (skl

T , =k l, 1, 2, 3) and refractive-index (nkl) in RFEs is based on the macroscopic 
quadratic-electro-strictive and Kerr (quadratic-electro-optic) effects14,42, and Burns et al.42 proposed that the 
transformation stems from the appearance of PNRs at Tb being much higher than the DPT15,16. However, an 
unsolved problem is that the calculated spontaneous-polarizations by the above effects are much larger than the 
data of hysteresis and pyroelectric measurements14,42.

Theoretically, the appearance of Ps will inevitably lead to the deviations of skl
T and nkl from the high-temperature 

values. However, this does not rule out the possibility that other factors may also contribute to the transformation. 
In this paper, according to the coupling between PSs and crystal lattices in 3D-ERSIM, we give a new 
micro-mechanism of Burns-transformation, which stems from not only the PNRs but also ζni

ge (App. F of SI) 
between PSs.

Figure 6.  τν nn
g of n-g-PSSs with = .b 1 5 vs T  for =g n/ 2 and =n 2, 10, 100 (a), and for =n 10 and =g n/ 0, 

1, 2, 3, 4 (b). (c–f) χ ′
n

g  and χ ″
n
g  of n-g-PSSs with = .b 1 5 and =U J20B  vs T and ω for =n 10 and =g n/ 0 (c,e), 

2 (d,f). Tm
ng  is the temperature corresponding to the maximum of χ ′

n
g . Insets of (c,d) show T1/ m

ng  vs ω.
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In view of the local-distortion (LD) of crystal lattices and the change of local-electronic-clouds (LE) induced 
by the local-interaction (LI) between the nearest-neighbor PS pairs in 3D-ERSIM, abbreviated as LI-LD and 
LI-LE couplings, respectively, and under the linear coupling approximation, the high-temperature skl

T and nkl of 
RFEs are (App. J and K of SI),

α− ≈ − −s s T T T c
u

J
( ) ( )

(13a)kl
T

kl r kl r kl
ps0

Figure 7.  (a,c,e,g,i) χ ′
ps as well as (b,d,f,h,j) χ ″

ps of 3D-ERSIGM with = .b 1 5, =U J20B , and serial φ vs T  and 
serial ω. (a,b) φ = 0.1. (c,d) φ = 0.3. (e,f) φ = .0 5. (g,h) φ = .0 7. (i,j) φ = .0 9. ω = 0 (red solid line), ν− .10 4 0

0 
(blue), ν− .10 3 5

0 (deep yellow), ν− .10 3 0
0 (pink), ν− .10 2 5

0 (dark green), ν− .10 2 0
0 (orange), and ν− .10 1 5

0 (violet). Tm in 
(e) is the temperature corresponding to the maximum of χ ′

ps. The inset of (b) shows the corresponding T1/ m vs ω.
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− ≈ − −n n T b T T d
u

J
( ) ( )

(13b)kl kl r kl r kl
ps0

Among them, ckl and dkl are the LI-LD and LI-LE coupling constants; skl
0, nkl

0, αkl and bkl are the thermal-strain, 
refractive-index, the high-temperature thermal-expansion and thermo-optic coefficients independent of the 
LI-LD and LI-LE couplings14,42, respectively; and Tr is a reference temperature.

When the temperature is high enough, →u 0ps  (Eq. 5d and Fig. 4c), so α− ≈ −s s T T T( ) ( )kl
T

kl r kl r
0  and 

− ≈ −n n T b T T( ) ( )kl kl r kl r
0 . With decreasing T, ups decreases, resulting in the deviation of skl

T and nkl from their 
linear behaviors of high-temperatures as shown in Fig. K1 of App. K in SI. Therefore, according to our theory 
(Eq. 13a,b), Burns-transformation originates from both the PNRs and ζni

ge between PSs for ups is related to not 
only ηne

g  but also ζni
ge (Eq. 4c). In addition, the Tb increases as ckl and dkl  go up (Fig. K1 of App. J-K in SI).

Comparisons with experimental results.  At present, the commonly used methods for measuring Ps are 
hysteresis and pyroelectric measurements14,34–36. However, for the canonical RFE, PMN, the large external electric 
field used to polarize the samples will induce the structural phase-transition near 210K34,36, which leads to the 
measured data being not intrinsic. Here, we use the diffuse neutron scattering data (proportional to η) of PMN 
single crystals37,38 to compare with the results (Eq. 5a) of 3D-ERSIM, as shown in Fig. 8a. This plot indicates that 
the model with φ = 1/3, =J 82 K, and = .b 1 5 gives a quite good fit to the data ( =+T 290 Kp

2  and =+T 341 Kd
2 ). 

Moreover, the model results show that PNRs appear well above +Tp
2  in PMN (Fig. 8e), and the predicted 

quasi-fractal characteristic of local-spontaneous-polarization (sk
e) of PMN near and below +Tp

2  (Fig. 8f,g) is also 
consistent with the experimental observations17,18.

The experimental data of the specific-heat of PMN, PbMg1/3Ta2/3O3, PbZn1/3Nb2/3O3, and SrxBa1−xNbO6 show 
that a specific-heat peak appears in RFEs39–41, which is also consistent with the model results as shown in Fig. 4c. 
In Fig. 8b, we give the comparison between the experimental data (cpt) of the specific-heat of PMN single crys-
tals39,41 and our theoretical prediction of 3D-ERSIM with 1/3φ = , =J 102 K, and = .b 1 5 (Eq. 5e). The fit looks 
reasonable, however the obtained values of J from η and cpt have a relative deviation of ~20%. One possibly direct 
origination of this deviation is that the preceding cpt data have big measurement error because the data were 
acquired by subtracting a huge nonlinear background vs T (~100 JK−1mol−1 at 300 K, and ~25 times larger than 
the cpt peak height), and this background has some uncertainties, e.g. it was chosen differently by different 
researchers39,41, especially its downturn region with decreasing T overlaps with the cpt peak (Fig. 6 of Tachibana 
et al.41), which leads to the obtained cpt peak height and temperature of Moriya et al. being ~40% larger and ~7% 
higher than those of Tachibana et al.41, respectively. So, the background selection in PMN is a problem worthy of 
deep studies. Moreover, we would like to point out that this paper chooses to fit the whole cpt peak of PMN39, 
resulting in the theoretical peak temperature of ~4% higher than that of the experiment, i.e. the corresponding J 
value may be overestimated by ~4% (Fig. 8b). Another possible origination is the neglection of the mutual 
Coulomb interaction between PNRs72 in our theory. E.g., this interaction will induce the adjacent PNRs to tend 
to the reverse arrangement of spontaneous polarization, leading to the decrease or even disappearance of the 
local-order-parameter (sk

e) in their adjacent parts (similar to the domain walls in normal-ferroelectrics), i.e. the 
reduction of η. Moreover, it is worth pointing out that, in addition to sk

e, cpt is related to the correlation-function 
(ζnk

ge) (Eq. 4c,d). It could be imagined that the above interaction would also result in the decrease of ζnk
ge. As for the 

quantitative reduction of sk
e and ζnk

ge, further researches are needed. Of course, other possible mechanisms may 
induce the deviation, too.

Due to the spatial distribution of sk
e (Fig. 5), the phase boundaries, sub-phase boundaries, and domain walls68–

70 appear during the DPT of RFEs, and these movable boundaries and walls will contribute significantly to the 
complex-permittivity (collectively referred as χ ⁎

b ) below the transition temperature ( +Tp
2 )15,73–75. Therefore, the 

main contributions of the complex-permittivity of RFEs are, respectively, χ ⁎
b  when < +T Tp

2  or χ ⁎
ps  when 

> +T Tp
2 . For PMN, =+T 290 Kp

2  (Fig. 8a), and according to the experimental data of complex-permittivity 
(χ χ χ= − ″′⁎ iexp exp c exp), the frequency (f) is about 1GHz when the peak temperature (Tm) of χ ′

exp is equal to +Tp
2  

(Bovtun et al.32). Therefore, the χ ⁎
exp of PMN is mainly χ ⁎

ps for f > 1GHz. In Fig. 8c,d, we give the comparison of 
χ ⁎

exp of PMN single crystals between 8 and 74GHz32 to the results (Eq. 12) of 3D-ERSIGM with φ = 1/3, =J 87 K, 
= .b 1 5, = . ×C 3 28 10 Kw

3 , =U J20B , and ν = . ×2 51 10 Hz0
14 . The theoretical T1/ m vs f is shown in the inset 

of Fig. 8d, and it varies as the Vogel-Fulcher-law. In view of that χ ⁎
exp has large measurement errors when f > 1GHz, 

especially χ ″
exp

32,76, the theoretical and experimental results can be considered being consistent with each other.
Figure 8h shows the fits of the theoretical predictions (Eq. 13a,b) to experimental data near Tb, (i) for nkl: 

1/3φ = , =J 90 K, = .b 1 5, = . × − −b 3 75 10 Kkl
5 1, and = .d 0 124kl , and (ii) for skl: 1/3φ = , =J 90 K, = .b 1 5, 

α = . × − −1 32 10 Kkl
5 1, and = . × −c 9 81 10kl

3. The good fits illustrate that our theory not only provides a new 
quantitative micro-mechanism of Burns-transformation, but also avoids the too large spontaneous-polarization 
data obtained by the quadratic-electro-strictive and Kerr effects (Eqs. J3 and K3 of Apps. J and K in SI that do not 
consider the contribution of ζni

ge as shown in Eq. 13a,b) when compared with the hysteresis and pyroelectric 
measurements14,42.

The experimental results show that there is an intermediate temperature (T*) between +Tp
2  and Tb in RFEs, 

and according to the current view, T* is the temperature where PNRs change from the high-temperature dynamic 
to low-temperature static38,76. Based on our theory, the relaxation or fluctuation time of the PNRs near Tb is much 
smaller than that near +Td

2  (Insets of Figs. 7b and 8d), and +Td
2  is the characteristic temperature that the PNRs are 

nearly individual above it (Figs. 5e,f and 8e), while they interconnect to form the quasi-fractal structure of 
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Figure 8.  (a) Red square, blue circle [from Gehring et al. Phys. Rev. B 79, 224109 (2009)], violet diamond, pink 
star, and cyan asterisk [from Stock et al. Phys. Rev. B 81, 144127 (2010)] points are the experimental data of the 
order-parameter (η) of PMN single crystals vs temperature (T). The line is the results of 3D-ERSIM with 
φ = 1/3, =J 82 K, and = .b 1 5. =+T 290 Kp

2  and =+T 341 Kd
2 . (b) Red square [from Moriya et al. Phys. Rev. 

Lett. 90, 205901 (2003)] and blue circle [from Tachibana et al. Phys. Rev. B 80, 094115 (2009)] points are the 
experimental data of the specific-heat (cpt) of the DPT of PMN single crystals vs T. The line is the results of 
3D-ERSIM with φ = 1/3, =J 102 K, and = .b 1 5. (c) Points are the experimental data of the real part (χ ′

exp) and 
(d) imaginary part (χ ″

exp) of complex-permittivity of PMN single crystals vs T for frequency (f) = 8, 17, 37, and 
74GHz from Bovtun et al. [J. Euro. Cer. Soc. 26, 2867 (2006)]. The lines are the results of 3D-ERSIGM with 
φ = 1/3, =J 87 K, = .b 1 5, = . ×C 3 28 10 Kw

3 , =U J20B , and ν = . ×2 51 10 Hz0
14 . The inset of (d) shows the 

theoretical 1/Tm vs f. (e–g) Surface plots of the calculated sk
e in a x-y-plane of PMN when = ≈T K T620 b, 

= +K T341 d
2 , and = +K T290 p

2  according to the 3D-ERSIM for φ = 1/3, =J 82 K and = .b 1 5. (h) Points are 
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local-spontaneous-polarization below it (Figs. 5d–b and 8f,g), so T* just corresponds to +Td
2  as shown in Fig. 8a, 

and the only difference is their mathematic definitions.
Since x can be continuously adjusted from 0 to 149,51, BZxT1−x is an ideal system to verify our theory. However, 

due to the limitation of crystal growth technology, large-size and high-quality single crystals with x > 0.2 cannot 
be grown so far54, which has affected the measurements of some physical parameters (especially high-frequency 
permittivity >GHz) to some extent. Nevertheless, with considering the similarity of the low- to high-frequency 
permittivity of PMN, the analogy of the phase diagram of BZxT1−x given by the low frequency (100Hz-500kHz) 
permittivity49,51 with our theoretical results has a certain degree of rationality. The obtained phase diagram 
shows that, with increasing x, BZxT1−x evolves from the normal-ferroelectrics to RFEs to paraelectrics (Fig. 11 
of Maiti et al.49), while the Tm vs ω from the power-law (Fig. 1 of Kleemann et al.51) to Vogel-Fulcher-law to 
Arrhenius-relation (Fig. 8 of Maiti et al.49), which is consistent with our theoretical predictions as shown in Fig. 4g 
and the inset of Fig. 7b.

It is worth pointing out that the results of the existing Monte-Carlo-simulations of 2D and 3D-RSIM25–28 sup-
port our PSS-MF method as shown in the SI 6.

Definition of canonical RFEs.  PMN is generally viewed as the canonical RFE, but what is a canonical RFE 
is not well defined so far52,53. The experimental results show that the systems with definite components but adjust-
able ion distributions, such as PbSc1/2Ta1/2O3, continuously evolve from normal-ferroelectrics to RFEs with the 
increase of disorder14, so it looks reasonable that the random distribution of ions, i.e. the most disordered case, is 
one necessary condition of canonical RFEs. Clearly, the 3D-ERSIM (Eq. 1a) proposed in this paper satisfies this 
condition.

Phenomenologically, the order-parameter (Fig. 4a), local-order-parameter (Fig. 5b-f), specific-heat (Fig. 4c), 
complex-permittivity (Fig. 7c-d), and average relaxation time (Inset of Fig. 7b) of 3D-ERSIGM near φc have the 
general characteristics of relaxor-ferroelectricity17,18,31–41. Moreover, when φ = φc, g n/p

n  is nearly independent of n 
(Fig. 2d), which means that, compared with other φ, the average transition temperatures (Eq. 4 and Fig. 2d) of the 
PS clusters in 3D-ERSIM of φc are the most uniform except for the case near φ = 0. Furthermore, φc is the perco-
lation threshold of PS-vacancies in 3D-RSIM, one of the most characteristic values of this model67. Therefore, 
here we propose to define that an RFE can being described by 3D-ERSIGM of φ = φc is the canonical (Fig. 4g-h), 
and based on this definition, PMN (φ = 1/3 according to Fig. 8) is the RFE quite close to the canonical.

Discussion
By the fitting of our theoretical results to the experimental data (Fig. 8), the obtained φ = 1/3 is a reasonable value 
for PMN. In addition, we can conclude that PbZn1/3Nb2/3O3 and PbMg1/3Ta2/3O3 also correspond to 3D-ERSIGM 
of φ = 1/3. Moreover, it could be imagined that, for BZxT1−x, J, μ, and UB are almost irrelevant to x when x is small. 
However, due to the RISF and when x is large enough, J, μ, and UB will change with increasing x, which needs 
deep studies. For the more complicated and anisotropic RFE, SrxBa1−xNb2O6, the relationship of φ, J, μ, and UB 
with x requires future researches, too.

It could be expected that the domain structure, including domain walls, can be obtained based on the calcu-
lated sk

e (Figs. 5b–f and 8e-g) and the theory of domain formation68–70. Moreover, the method for calculating χ ⁎
ps 

of single-PS flipping in this paper (Sec. Complex-permittivity…) would lay the foundation to obtain χ ⁎
b  of the 

overall movement of PSs, i.e. the multi-PS flipping, in the phase boundaries and domain walls73–75. Of course, they 
are the issues that need further studies. We would like to point out that the mutual Coulomb interaction of PNRs 
at T < T* has recently been evidenced by Kleemann and Dec72, to give rise to a super-dipolar glass state below the 
glass transition temperature (=240 K) in PMN, and the relevant research of χ ⁎

b  will undoubtedly deepen the 
understanding of this state.

It would be speculated that the approximation to calculate Ps (Eq. 5b), χs
ps (Eq. 5c), and χ ⁎

ps (Eq. 12) has large 
errors when φ is high, so it is a potential work to explore more accurate calculation method. Other future studies 
are: (i) To generalize the PSS-MF for solving isotropic 3D-ERSIGM to anisotropic cases, so that the possible aniso-
tropic RFEs, such as the single-axis tungsten bronze and layered Aurivillius structures17, can be described; (ii) 
Coupling of PSs with crystal lattices and the acoustic properties16 as well as possible structural phase-transitions of 
RFEs34,36; (iii) To model the ultrahigh piezoelectric RFE, PMN-PbTiO3

52,53,77–79, a heterogeneous system of J and μ; 
and (iv) To generalize our theory to the corresponding ferromagnetic systems, in particular spin-glasses, etc.20–22.

As shown in Figs. 1a, 4, 5, 7 and 8, our theory predicts that RFEs are a special kind of ferroelectrics (observable 
macro-spontaneous-polarization) with DPT originating from the spatial-dynamical heterogeneity as indicated by 
the spatial variation of local-spontaneous-polarization [local-order-parameter (sk

e)] including the coexistence of 
para- and ferroelectric regions (Fig. 5c) and corresponding distribution of relaxation time (Figs. 6a,b and 7c–f), 
which leads to sk

e being the key parameter of relaxor-ferroelectricity, instead of the macro-spontaneous-polarization 
[order-parameter (η)]. In this respect, normal-ferroelectrics are only special ferroelectrics where sk

e is equal every-
where. It is worth noting that at low temperature (T → 0), there are macro-spontaneous-polarization regions 
throughout RFEs (Fig. 5b) according to the percolation theory67, i.e. long-range ferroelectric order exists in RFEs 
although it is different from the spatial uniform one in normal-ferroelectrics. In addition, there are domain 

the experimental data of refractive-index (nkl, 4880Å) [red squares from H. S. Luo (private communication)] 
and thermal-strain (skl) [blue circles from L. N. Wang (private communication)] of PMN single crystals vs T. 
The lines are our theoretical results (Eq. 13a-b), (i) for nkl: φ = 1/3, =J 90 K, = .b 1 5, = . × −b 3 75 10kl

5K−1, 
and = .d 0 124kl , and (ii) for skl: φ = 1/3, =J 90K, = .b 1 5, α = . × −1 32 10kl

5K−1, and = . × −c 9 81 10kl
3.
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walls17,18 in RFEs as described in Sec. Local-order-parameter, and by analogy with the experimental results in 
normal-ferroelectrics73,74, the relaxation time of their lateral movement should increase with decreasing temper-
ature and tends to infinity when T → 0, resulting in the freezing or glass transition of domain wall movement at a 
certain temperature3,72–74. In short, based on the present theory, RFEs have spatially-dynamically heterogeneous 
local-order-parameter and the corresponding mesoscopic defects (domain walls and phase boundaries etc.) of the 
local-order-parameter show glassy behavior. Of course, the correctness of this relaxor-ferroelectricity picture still 
needs further theoretical and experimental studies.

The authors would like to point out that, in the preceding theories or models (SI 1), the spherical random-field 
random-bond model of Pirc et al.7,8 and the soft-mode theory with random-electric-field of Arce-Gamboa and 
Guzmán-Verrí10 give the most quantitative predictions. The theory of Arce-Gamboa and Guzmán-Verrí gives 
that: (1) For weak random-electric-field, long-range ferroelectric order sets in at a transition temperature where 
the obtained η changes discontinuously and it is accompanied by metastable paraelectric or random-electric-field 
state down to T → 0; (2) For moderate one, there is no transition as the paraelectric state becomes stable at all 
temperatures and the long-ranged polar state is now metastable; and (3) For strong one, only the paraelectric state 
exists. According this theory, PMN belongs to the case of (1)10, so both the theoretically discontinuous change 
of η with T in the absence of an external electric field and no PNR above the transition are inconsistent with the 
experimental results18,37,38, which is obviously different to the predictions of the present theory (Fig. 8a,e). The 
physical origination of these differences is that, according to our theory, there are dipole- or PS-vacancies ran-
domly distributing in RFEs (Eq. 1a and Fig. 1a) so that the interfaces between PS and PS-vacancy groups appear, 
which leads to the dispersion of the phase transition64, i.e. interface-effect (App. B), but similar interface-effect 
term does not exist in the model Hamiltonian as shown in Eq. 1 of Arce-Gamboa and Guzmán-Verrí theory10.

The spherical random-field random-bond model predicts that the DPT corresponds a dipolar glass transition, 
however, in view of the elementary motion and interaction unit being the effective dipole, i.e. PNR, this model 
is at the mesoscopic or semi-microscopic level and the glass transition might correspond to the super-dipolar 
glass transition of PNRs72, which is an issue of the present theory to be further explored as mentioned in the 2nd 
paragraph of this section.
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