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Abstract

We propose new resampling‐based approaches to construct asymptotically

valid time‐simultaneous confidence bands for cumulative hazard functions

in multistate Cox models. In particular, we exemplify the methodology in

detail for the simple Cox model with time‐dependent covariates, where the

data may be subject to independent right‐censoring or left‐truncation. We

use simulations to investigate their finite sample behavior. Finally, the

methods are utilized to analyze two empirical examples with survival and

competing risks data.
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1 | INTRODUCTION

Multiplier resampling (also known as the wild bootstrap)
has evolved as a state‐of‐the‐art choice for inference on
cumulative incidences or hazards in nonparametric and
semiparametric survival and multistate models in event
history analysis; see Lin et al. (1993) and Lin et al. (1994)
for Cox models and Lin (1997) for competing risks set‐
ups. The basic idea is to mimic martingale representa-
tions of the estimators by replacing nonobservable
martingale residuals with randomly weighted counting
processes. This approach has been extended in various
directions, allowing for a greater flexibility (Beyersmann
et al., 2013; Dobler & Pauly, 2014; Dobler et al., 2017) and
multiple, possibly recurrent, states (Bluhmki et al., 2018,
2019). We will here focus on semiparametric regression
models. The most used regression model in survival
analysis is Cox’s proportional hazard model (Cox, 1972).
It is highly useful to predict survival probabilities based

on covariates. Such survival functions are typically
provided with point‐wise confidence intervals, and this
is implemented in all major software packages. However,
when interest is in the survival function as a whole, it is
preferable to report it together with uniform confidence
intervals. These so‐called confidence bands describe the
uncertainty of the whole survival function estimation.
But this is infrequently done in practice because there are
few programs that construct such uniform bands. In
addition, apart from only few exceptions such as Lin
(1997), systematic evaluations of finite sample results
with demonstrations of the bands’ performance are rarely
available in the literature. In the present article we
provide such results in Cox models and we investigate
various new resampling bands that exhibit a reliable
performance even for small sample sizes.

Our main achievements are the introduction of
resampling strategies that jointly mimic the unknown
distribution of baseline and parameter estimators in Cox
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models and corresponding multistate versions. We
provide theoretical justification for the resampling
approaches based on martingale arguments, thereby
allowing for different mechanisms of incomplete obser-
vations and simplifying many arguments.

There exist many resampling approaches for the Cox
model with independent right‐censoring. One approach
is based on the martingale representations of the Breslow
estimator for the cumulative hazard and the parameter
estimator, where all unobservable martingale residuals
dM u( )i are replaced with reweighted counting processes
G dN u( )i i (e.g., Lin et al., 1994). Another possibilty that
works more generally, for example for rate estimation, is
to replace the martingale instead with G dM u( )i i

 (e.g.,
Spiekerman & Lin, 1998). This exploits the model’s
semiparametric structure more actively.

We will also use a more natural approach, which
starts one step earlier by rewriting the score equations
for the baseline function and the Euclidean parameter:
we apply the multiplier techniques from above to
martingale representations of the score equations. This
leads to new equations, which are solved by quantities
depending on the multipliers. Hence, paralleling the
same steps as for the original estimators, their resam-
pling counterparts are obtained in an elementary way.
Throughout the article, we follow the flexible approach
of Beyersmann et al. (2013) and allow for general
multiplier distributions.

For ease of presentation, we exemplify the new
methodology mainly for the Cox model in a survival
setting but we also discuss extensions to more general
multistate and other regression models. We are able to
base our theoretical derivations for the resampling
approaches on martingale arguments, which are novel
in the semiparametric context. Thus, intricate derivations
for verifying conditional tightness, that is, tightness of the
resampling process conditioned on the observed data, are
no longer required and are handled conveniently by the
martingale central limit theorems. The martingale argu-
ments for the multiplier bootstrap are motivated by those
for resampling nonparametric Aalen‐Johansen estimators
(Bluhmki et al., 2018). In particular, we prove similar
martingale properties of the resampling counterparts as
for the original estimators. Moreover, mirroring the
martingale structure in the bootstrap world allows for a
simple interpretation and easy incorporation of missing-
ness mechanisms, for example, independent right‐cen-
soring or left‐truncation. To conclude, our findings allow
for a wide range of applications some of which will be
discussed in more detail in future papers.

The paper is organized as follows: Section 2 sketches
how estimators in Cox models are found and it lists the
technical conditions required for all of their large sample

properties. Section 3 contains a derivation of all
considered multiplier bootstrap procedures and also
theoretical statements about their validity. In addition,
we discuss several important extensions to more general
multistate or other regression models. In Section 4, we
compare the resampling procedures in an extensive
simulation study. Section 5 has a brief demonstration of
the methodology in a survival setting, where interest is
on constructing confidence bands for the survival
function for patients with acute myocardial infarction,
and another demonstration of confidence bands for
cumulative incidence functions for patients after a bone
marrow transplantation. Finally, we discuss the findings
in Section 6.

The online supporting information contains all proofs
whose novelty lies in the considerable simplification of
the technical arguments by transferring martingale
methods to the resampling procedures in the present
semiparametric framework. It also contains a second
small simulation study, algorithmic descriptions of the
multiplier bootstraps, and links to GitHub pages with
example R code for user‐friendly applicability of our
procedures.

2 | JOINT LARGE SAMPLE
PROPERTIES IN THE COX MODEL

We consider multiplicative Cox (or proportional hazards)
models given by the intensity

β X βλ t Y t λ t t( , ) = ( ) ( )exp{ ′ ( ) }.i i i0 0 0 (1)

of the counting process N t( )i of subject i n= 1, …, ,
possibly subject to independent left‐truncation and/or
right‐censoring, given its possibly time‐dependent p‐
dimensional vector of predictable covariates
X t X t X t( ) = { ( ),…, ( )}′i i ip1 . That is, X βE N t t λ t dt{d ( ) ( )} = ( , )i i i 0∣ .
Here, N t( ) {0, 1}i ∈ counts the occurence of a particular
event for subject i not later than treatment time t Y t, ( )i is
the corresponding at‐risk indicator at that time, λ0 is the
baseline hazard function, and β β β= ( ,…, )′p

p
0 1 ∈ is an

unknown regression parameter (Cox, 1972). Let τ > 0 be
a terminal evaluation time on the treatment time‐scale.
Throughout we assume all X t( )i to be contained in a
bounded set and that the cumulative baseline hazard
Λ t λ s ds( ) = ( )

t
0 0 0∫ is finite at t τ= . Standard arguments

yield the Breslow estimator Λ0
 of Λ0 and the maximum

partial likelihood parameter estimator β of β0. To
illustrate this, we simplify derivations of Scheike and
Zhang (2002) for Cox‐Aalen models to the Cox model
Equation (1): the score equation for Λ0 is
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X βdN t Y t t dΛ t[ ( ) − ( )exp{ ′ ( ) } ( )] = 0,
i

n

i i i

=1

0∑ (2)

and solved by β βΛ t J u S u dN u( , ) = ( ) ( , ) ( )
i

n t
i0 =1 0 0

−1 ∫∑ .
We will make use of the definitions

S β X X βt t Y t t k( , ) = ( ) ( )exp{ ′ ( ) }, = 0, 1, 2,k

i

n

i
k

i i

=1

∑ ⊗

where y yy y y= ′ , =p p p2 × 1 ∈ ∈⊗ ⊗ and y = 10 ∈⊗

for any vector y p∈ , and J u( ) is the indicator that any
individual is under risk shortly before u. For simplicity,
the notion of J u( ) is usually suppressed. Replacing

βΛ t( , )0
 for Λ0 in the score equation for β, that is,

X X βu Y u dN u u dΛ u( ) ( )[ ( ) − exp{ ′ ( ) } ( )]

= 0,

i

n
τ

i i i i

=1
0

0∫∑

(3)

and defining E β S β βt t S t( , ) = ( , ) ( , )1 0
−1 , we obtain a

solvable score equation for β:

U β X E βu u dN u( ) = { ( ) − ( , )} ( ) = 0.τ

i

n
τ

i i

=1
0
∫∑

Through its solution β we obtain the Breslow estimator
βΛ t( , )0
 of Λ t( )0 . The central limit theorem for β stated

below requires the negative Jacobian of Uτ with respect
to β, that is, I β U β V βD u dN u( ) = − ( ) = ( , ) ( )τ τ

τ

0
∫ ,

where V β S β β E βt t S t t( , ) = ( , ) ( , ) − ( , )2 0
−1 2⊗ and

N N=
i

n
i=1

∑ . Due to the assumed boundedness of the
covariates, it follows from Theorems VII.2.2 (p. 498) and
VII.2.3 (p. 503f.) in Andersen et al. (1993) that

β βn ( − )0
 and βn Λ Λ{ ( , ) − ( )}0 0

 ⋅ ⋅ are asymptoti-
cally Gaussian provided the following regularity condi-
tions hold; see Condition VII.2.1 in Andersen et al.
(1993, p. 497). Let

p
→ denote convergence in probability

as n → ∞ and ∇ the gradient operator with respect
to β.

Condition 1. There exists a neighborhood B of β0 and
functions B Bss τ τ: [0, ] × , : [0, ] × p

0 1 → → , and
such that for each k = 0, 1, 2:

(a) S β s βn t tsup ( , ) − ( , ) 0
β t τ k k, [0, ]

−1
p

∥ ∥ →
∈ ∈

, where ∥⋅∥

denotes the Euclidean norm;
(b) sk is a continuous function of Bβ ∈ uniformly

in t τ[0, ]∈ and bounded on Bτ[0, ] × ;
(c) βs ( , )0 0⋅ is bounded away from zero on τ[0, ];

(d) s β s βt D t( , ) = ( , )2 1 and s β βt s t( , ) = { ( , )}′1 0∇

for Bβ t τ, [0, ]∈ ∈ ;

(e) v β βt s t dΛ tSigma = ( , ) ( , ) ( )τ

τ

0 0 0 0 0∫ is positive definite,
where v β s β β s β βt t s t t s t( , ) = ( , ) ( , ) − { ( , ) ( , )}2 0

−1
1 0

−1 2⊗ .

Throughout, we assume Condition 1 to be satisfied.
Note that (a) and (b) immediately imply

S β s βt tsup ( , ) − ( , ) 0
t τ

k k
[0, ]

0

p
∥ ̃ ∥ →

∈

(4)

for each k = 0, 1, 2 as long as β β
p

0
̃ → . The proofs of the

aforementioned theorems in Andersen et al. (1993) make use
of the following asymptotic representations of the estimators:

{ }β β I β U βn
n n

o( − ) =
1

( )
1

( ) + (1)τ τ p0 0

−1

0
 (5)

β

β β e β

β

n Λ Λ

n u dΛ u

n
M u

S u
o

{ ( , ) − ( )}

= − ( − )′ ( , ) ( )

+
d ( )

( , )
+ (1).p

0 0

0 0 0 0

0 0 0







∫

∫

⋅ ⋅
⋅

⋅
(6)

These representations motivate the first bootstrap
approach in Section 3. Here, e is the probability limit of
E , and βM t M t N t λ u du( ) = ( ) = { ( ) − ( , ) }

i

n
i i

n
i

t
i=1 =1 0 0∫∑ ∑ is

a square‐integrable martingale in t τ[0, ]∈ ; cf. Andersen
et al. (1993, Section VII.2.2; p. 496ff) .

3 | MULTIPLIER RESAMPLING
APPROACHES AND MAIN
THEOREMS

While inference about β0 can be based on the asymptotic
normality of its estimator (e.g., Martinussen & Scheike,
2006; p. 184ff.), the complicated limit process of the
normalized Breslow estimator hinders straightforward
time‐simultaneous inference about Λ0 or functionals
thereof, for example, the survival function. As a remedy
we will investigate two resampling strategies, both of
which make use of independent i.i.d. zero mean and unit
variance random variables G G, …, n1 , which are hence-
forth called multipliers. Since Λ0

 and β are dependent,
we have to ensure that the bootstrap procedures respect
their dependence structure.

3.1 | The ‘Classical’ multiplier bootstrap

The first method is inspired by the resampling procedures
of Lin et al. (1994) and Spiekerman and Lin (1998). They
use standard normal multipliers, which is motivated from
the asymptotic martingale representation of the normalized
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estimators. The idea is to replace the martingale
increments X βdM t dN t Y t t dΛ t( ) = ( ) − ( )exp{ ′ ( ) } ( )i i i i 0 0

with G dN t( )i i (Lin et al., 1994) or with G M t( ) =i i


X β βG dN u Y u u dΛ u[ ( ) − ( )exp{ ′ ( ) } ( , )]i i i i 0
  , using esti-

mated martingale increments (Spiekerman & Lin, 1998).
We extend these approaches in several ways: our
approaches are not restricted to normal multipliers Gi; cf.
Beyersmann et al. (2013) where centered Poisson multi-
pliers exhibited a better finite sample behavior in a
nonparametric setting. Also, to be in line with the usual
guidelines for bootstrap‐based inference (Hall & Wilson,
1991), we provide and analyze suitable bootstrap versions
of the covariance estimators. Finally, in Section 3.4 an
extension to more general models is outlined.

We exemplify the general resampling idea forG dN u( )i i

by introducing multiplier bootstrap versions of the score
equation defining vectorUτ and its negative Jacobian Iτ .

U β X E βG t t dN t*( ) = { ( ) − ( , )} ( ) andτ

i

n

i

τ

i i

=1
0

 ∫∑ (7)

I β X E β X

E β

n n
G t t t

t dN t

1
( ) =

1
{ ( ) − ( , )}{ ( )

− ( , )}′ ( ).

*τ
i

n

i

τ

i i

i

=1

2

0

 



∫∑

(8)

Here and below, all objects with asterisks refer to
bootstrap quantities. Following the asymptotic represen-
tation Equations (5) and (6), we find their following
multiplier bootstrap counterparts:

{ }β β I β U βn
n n

( − ) =
1

( )
1

( ),* * *τ τ

−1
    (9)

β β

β β E β β

β

n Λ Λ

n u Λ du

n G
dN u

S u

{ ( , ) − ( , )}

= − ( − )′ ( , ) ( , )

+
( )

( , )
.

* *

*

i

n

i
i

0 0

0
0

=1
0

0

 

   



 

∫

∫∑

⋅ ⋅
⋅

⋅
(10)

Note that Equations (9) and (10) are essentially defini-
tions of β * and βΛ ( , )* *

0
 ⋅ , respectively, and that the o (1)p

terms in Equations (5) and (6) have been dropped.
Alternatively to this multiplier bootstrap choice, the
Spiekerman and Lin (1998)‐type martingale increment
estimates G dM u( )i i

 may replace G dN u( )i i in Equations
(7) and (10). A bootstrap‐type covariance estimate
similar to Equation (8) has been suggested by Dobler
and Pauly (2014) in a nonparametric competing risks
context. Here, it is additionally motivated from martin-
gale arguments: defining I*t and U *t as in Equations (7)

and (8) but t replacing τ , we found that I β{ ( )}*t t τ[0, ]


∈ is the
optional variation process of the square‐integrable
martingale U βn{ ( )}*t t τ

−1 2
[0, ]

∕
∈ ; see the supporting infor-

mation for details.
The next subsection offers an alternative resampling

strategy, which does not ignore the o (1)p terms in
Equations (5) and (6). Instead, they are naturally
incorporated into the resampling step.

3.2 | Bootstrapping the score equations

The idea of the second approach is to replace martingale
representations of score equations with their multiplier
counterparts. To this end, we parallel the classic
approach of jointly solving two score equations and first
expand the score equation in Equation (2) to

X β X βdM t Y t t t dΛ t( ) + ( )[exp{ ′ ( ) } − exp{ ′ ( ) }] ( ) = 0
i

n
i i

n
i i i=1 =1 0 0∑ ∑ . A

multiplier bootstrap counterpart thereof is now given
by replacing dM t( )i with βG dN t( ),i i 0 with β, and Λ t( )0

with βΛ t( , )0
 :

X β

X β β

β β

G dN t Y t t

t dΛ t

G dN t S t dΛ t

( ) + ( )[exp{ ′ ( ) }

− exp{ ′ ( ) }] ( , )

= ( + 1) ( ) − ( , ) ( , ) =
!
0.

i

n

i i

i

n

i i

i

i

n

i i

=1 =1

0

=1

0 0











∑ ∑

∑

(11)

Keeping β fixed, its “solution” for βΛ t( , )0
 is

β
β

Λ t G
dN t

S t
( , ) = ( + 1)

( )

( , )
.*

i

n

i

t i
0

=1
0 0

 ∫∑ (12)

Next, consider a martingale representation of the score
Equation (3) for β:

X X X β

X β

t Y t dM t t Y t t

t dΛ t

( ) ( ) ( ) + ( ) ( )[exp{ ′ ( ) }

− exp{ ′ ( ) }] ( ) = 0.

i

n
τ

i i i

i

n
τ

i i i

i

=1
0

=1
0 0

0

∫ ∫∑ ∑

This motivates a multiplier resampling version given by

X X X β

X β β

X E β

S β β

G t Y t dN t t Y t t

t dΛ t

t Y t G t dN t

t dΛ t

( ) ( ) ( ) + ( ) ( )[exp{ ′ ( ) }

− exp{ ′ ( ) }] ( , )

= { ( ) ( ) + ( , )} ( )

− ( , ) ( , ) =
!
0.

i

n

i

τ

i i i

i

n
τ

i i i

i

i

n
τ

i i i i

τ

=1
0

=1
0

0

=1
0

0
1 0













∫ ∫

∫

∫

∑ ∑

∑

Inserting βΛ t( , )*
0
 for βΛ t( , )0

 eventually yields the final
multiplier bootstrap score equation
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U β X E β

E β

X E β

t Y t G t dN t

t G dN t

G t t dN t

*( ) = { ( ) ( ) + ( , )} ( )

− ( , ) ( + 1) ( )

= ( + 1) { ( ) − ( , )} ( ) =! 0.

τ

i

n
τ

i i i i

τ

i

n

i i

i

n

i

τ

i i

=1
0

0
=1

=1
0

∫

∫

∫

∑

∑

∑

(13)

The last equality is due to X E βt t dN t{ ( ) − ( , )} ( ) =
i

n τ
i i=1 0

∫∑

U β( ) = 0τ
 . Hence,U β( )*τ

 coincides with formula Equation
(7). Define β * as the solution to Equation (13). Similarly as
in the proof of Theorem VII.2.1 in Andersen et al. (1993, p.
497f.), it can be shown that the probability of the existence of
tends to one and that β β−*  converges to zero in
probability as n → ∞; see also the proof of Theorem 1
below for similar arguments.

Finally, we combine Equation (12) with β * to find a
resampling version of the Breslow estimator, denoted

βΛ ( , )* *
0

 ⋅ . After centering it at βΛ t( , )0
 and multiplying it

with n , it equals

β β

β β

n G S u S u dN u

n G

n S u S u dN u

n G

( + 1) { ( , ) − ( , )} ( )

+

= { ( , ) − ( , )} ( )

+ .

*

*

β

β

i

n

i

t

i

i

n

i

t dN u

S u

i

n
t

i

i

n

i

t dN u

S u

=1
0

0
−1

0
−1

=1
0

( )

( , )

=1
0

0
−1

0
−1

=1
0

( )

( , )*

i

i

0

0

 

 





∫

∫

∫

∫

∑

∑

∑

∑

(14)

A Taylor expansion around β of the first term on the
right‐hand side reveals the striking similarity to decom-
position Equation (10). However, the current multiplier
bootstrap approach does not ignore the o (1)p term
resulting from the Taylor expansion. Another nice
property of this “estimating equation” approach is
the similar treatment for bootstrap and original
estimator, which is in line with general recommenda-
tions for constructing resampling algorithms (Efron
& Tibshirani, 1994). We are going to use the
mean value theorem (cf. Feng et al., 2013) to analyze
the asymptotic behavior of β * . To this end, we introduce
a modified Jacobian operator. For a continuously
differentiable function H H H= ( ,…, )′:p

p p
1  →

and a matrix B β β= ( … )p p p(1) ( ) ×∣ ∣ ∈ we define
H B β βD H H̄ ( ) = ( ( )′,…, ( )′)′.p

p
1

(1) ( )∇ ∇ The mean value

theorem yields that U β U β U β− ( ) = ( ) − ( )* * * *τ τ τ
  

U B β βD= ̄ ( )( − )* *
τ

 ∼
, where every column of B

∼
is on

the line segment between β * and β.

3.3 | Consistency and confidence bands
for the cumulative hazard

The validity proof of both resampling strategies from
Sections 3.1 and 3.2 is based on

Lemma 1. Under Conditions 1(a)‐(e) it holds that,
as n → ∞

(I) β β− 0* p ∥ ∥ → ,

(II) U Bn D− ̄ ( )
p
Σ*τ τ

−1 →
∼

if each column of B
∼

converges in probability to β0,

(III) given all observations, NU βn
d

0*( ) ( , Σ )τ τ
−1 2  ⟶∕ in

probability, i.e. it is asymptotically multivari-
ately normally distributed,

if the resampling is done via method Equation (9)
or (13).

The next theorem shows that both bootstraps based on
the G dNi i approach (Lin et al., 1994) are asymptotically
valid. Therein, d denotes a distance that metrizes weak
convergence on D τ× [0, ]p , e.g. the Prohorov distance
(Dudley, 2002, p. 309ff.), andL T( ) andL T( data)∣ are,
respectively, the unconditional and conditional law of a
random variable T .

Theorem 1. Under Condition 1 it holds for both
resampling strategies Equation (9) or (13) that the
asymptotic distributions of β βn Λ Λ( − , − )* *

0 0
    and

β βn Λ Λ( − , − )0 0
  coincide, that is,

L Lβ β β

β

d n Λ Λ n

Λ Λ

[ { ( − , − ) data}, { (

− , − )}] 0

* *
0 0

0 0

p

   


∣

→ (15)

as n → ∞, where βΛ t Λ t( ) = ( , )0 0
  and

βΛ t Λ t( ) = ( , )* * *
0 0

  .

The asymptotic variance function t σ t( )2↦ of
n Λ Λ( − )0 0
 (and thus also of n Λ Λ( − )*

0 0
  ) can be

found in Andersen et al. (1993), Corollary VII.2.4, p.
505, where a consistent estimator σ t( )2 is given. In
our simulation study in Section 4, we chose the
multiplier bootstrap counterpart of σ t( )2 to be the
empirical variance of the bootstrap realizations
of n Λ t Λ t{ ( ) − ( )}*

0 0
  .

We use the theorem to construct time‐simultaneous
confidence bands for Λ0 on fixed intervals
I t t τ= [ , ] [0, ]1 2 ⊂ . In particular, we obtain results
similar to those of Lin et al. (1994): denoting by ϕ a
continuously differentiable and strictly increasing or
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decreasing function, asymptotic level α1 − confidence
bands for Λ0 on I are given by

βϕ ϕ Λ t c α g t[ { ( , )} ( ) ( )],*ϕ n
−1

0
 ∓ ∕

where g I: (0, )n → ∞ is a possibly random weight
function. Typical choices are

g t n σ t g t n σ t( ) = ( ) and ( ) = {1 + ( )}
n n
(1) (2) 2 ∕ ∕

in case of the transformation ϕ x x( ) =1 , and

β

β

g t nΛ t σ t g t

nΛ t σ t

( ) = ( , ) ( ) and ( )

= ( , ) {1 + ( )}

n n
(1)

0
(2)

0
2













̃ ∕ ̃

∕

for the transformation ϕ x x( ) = log( )2 . The resulting
confidence bands correspond to the so‐called equal
precision (for g

n
(1) or g

n
(1)̃ ) and Hall‐Wellner bands (for

g
n
(2) or g

n
(2)̃ ), respectively. Let g t( )* and g t( )*̃ be the

multiplier bootstrap analogs of g t( )
n
j( ) and g t( )

n
j( )̃ ,

respectively, j {1, 2}∈ , that is, we utilized Λ *0 instead
of Λ0
 and the corresponding empirical variances

instead of σ. We chose c α c α( ) = ( )* *ϕ ϕ1
to be the α(1 − )

quantile of the conditional distribution of g tsup ( )*
t I∈

β βΛ t Λ t( , ) − ( , )*
0 0

  ∣ ∣, and the naïve choice
for c α( )*ϕ2 is the corresponding quantile of g tsup ( )*

t I

̃
∈

β βΛ t Λ tlog{ ( , )} − log{ ( , )}*
0 0

  ∣ ∣. However, the latter
resulted in numerical instabilities, and we preferred
the asymptotically equivalent choice c α c α( ) = ( )* *ϕ ϕ2 1

.
It follows from Theorem 1 that all confidence bands

are valid for large sample sizes. To additionally assess
their small sample properties, we compare them in
Monte‐Carlo simulations in Section 4. There, we also
analyze the analogous behavior of the resampling
approaches based on Md i

. It should be noted that the
confidence bands obtained from the ‘classical’ multiplier
bootstrap from Section 3.1 with standard normal multi-
pliers are not equal to those proposed in Lin et al. (1994).
The key difference is that we additionally use a
resampling version of the weight functions (particularly
of the variance estimator) to be in line with the usual
guidelines for bootstrap‐based inference (Hall & Wilson,
1991). We additionally refer to Allignol et al. (2018),
where a similar recommendation was made.

3.4 | Extensions to more general models
and more on inference

A related multiplier bootstrap approach carries over to
more general models in multistate set‐ups. In particular,

as long as the counting process martingale can be
mimicked with the help of bootstrap multipliers, the
asymptotics of the resampled estimators result in almost
the same way as for the original estimators. Thus, the
above methodology can straightforwardly be extended to
multistate models with K states and multiplicative
intensity processes

θ X βλ t Y t λ t γ t( , ) = ( ) ( , )exp{ ′ ( ) }ih ih h i0 0 (16)

for each transition h K K= 1, …, ( − 1), where
θ βγ= ( , ′ )′0 . Different to above, this model allows for an
arbitrary number of transitions between different states.
Following Bluhmki et al. (2018), the above multiplier
bootstrap approach remains applicable: instead of the
previously used multipliers Gi, more general white noise
processes G u{ ( )}ih u with zero mean and unit variance are
required. Randomly weighting the counting process incre-
ments leads to G u dN u( ) ( )ih ih . The evaluation occurs at a
finite number of times, so no existence problems arise for
the white noise processes, and the implementation is
straightforward.

The martingale arguments still hold, so that the
multiplier bootstrap mimics the joint stochastic behavior
of the parameter and multivariate hazard function
estimators. Indeed, according to Bluhmki et al. (2018),
independent white noise processes G u{ ( )}ih u and G u{ ( )}ih ũ

for transitions h h≠ ̃ give rise to orthogonal square‐
integrable martingales in t f u G u dN u, ( ) ( ) ( )

t
ih ih ih0

∫ and

f u G u dN u( ) ( ) ( )
t

ih ih ih0
∫ ̃ ̃ ̃ , with respect to the filtration

F F σ Y u N u Y u N u

u τ G v G v v t

= [ { ( ), ( ), ( ), ( )

: 0 ; ( ), ( ): 0 }]

.t ih ih ih ih

ih ih t τ[0, ]

≔

≤ ≤ ≤ ≤

̃ ̃

̃ ∈

Here, fih and fih ̃ are F ‐predictable random functions.
The predictable variation process of the first martin-
gale is f u dN u( ) ( )

t

ih ih0
2∫ , which nicely reflects the

properties of the original estimators: the correspond-
ing orthogonal counting process martingales

f u dM u( ) ( )
t
ih ih0

∫ and f u dM u( ) ( )
t
ih ih0

∫ ̃ ̃ have predictable

variation X βf u Y u λ u γ u du( ) ( ) ( , )exp{ ′ ( ) }
t

ih ih h i0
2

0 0∫ , and

similarly for h ̃. In this sense, the bootstrap‐based
predictable variation processes estimate the original
predictable variation processes. Extending the proofs
in the supporting information based on these findings,
large‐sample properties of estimators in multistate
problems transfer to their multiplier bootstrap ver-
sions in an obvious way, as long as the original
estimators admit martingale representations. Similar
arguments extend to Cox‐Aalen multiplicative‐addi-
tive intensities (Scheike & Zhang, 2002) or other
models with martingale structures.
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The incorporation of certain filtered (e.g., right‐
censored) observations is again allowed and important
inferential applications follow: confidence bands for
cumulative transition hazards or incidence functions,
and tests for null hypotheses formulated in terms of the
parameters can be constructed. Here, bootstrap‐based
versions of score or Wald‐type test statistics (Martinussen
& Scheike, 2006, p. 185f.) might ensure a proper finite
sample behavior. However, detailed evaluations of these
applications require additional extensive simulations and
further elaborations in future research. For simplicity, we
continue with our focus on the Cox model Equation (1)
and assess the impact of the proposed methods in
simulations.

4 | SIMULATION STUDY

To compare the performances of the various resampling
approaches described in Section 3.3, we conducted a
simulation study in which we covered situations of small
to large sample sizes: n = 100, 200, 400. The generated
data follow the Cox survival model with baseline hazard
rate λ 10 ≡ , normally distributed covariates

NX ~ (0, 16)i
i.i.d.

with standard deviation σ = 4, and
regression parameter β = 0.3. Censoring times are
standard exponentially distributed, truncated at τ = 3.
The time interval, along which 95% confidence bands for
the cumulative baseline hazard function Λ0 shall be
constructed, was t t[ , ] = [0.5, 3]1 2 . Here we chose the start
time of t = 0.51 because “the approximations tend to be
poor for t close to 0” (Lin et al., 1994, p. 77). Another
simulation study that evaluates the multiplier bootstrap
for confidence bands for baseline cumulative incidence
functions is given in Suporting Information.

As bootstrap multipliers G G, …, n1 , we considered the
common choice NG ~ (0, 1)i

i.i.d.
, centered unit Poisson

variables G Poi~ (1) − 1i
i.i.d.

with unit skewness, and
centered unit exponential variables G Exp~ (1) − 1i

i.i.d.
with

a skewness of 2. We simulated all confidence bands for
Λ0 that were introduced in Section 3.3, i.e. log‐ and
nontransformed Hall‐Wellner and equal precision bands.
We considered replacing the martingale increments dMi

with G dNi i or G dMi i
, denoted in Table 1 as “dN” and

“dM”, respectively, and also both kinds of resampling
algorithms, the direct resampling method of Section 3.1
and the method of Section 3.2 in which the estimating
equations were bootstrapped. We note that, apart from
the specific variance estimation scheme, the bands
resulting from the cox.aalen function in the R package
timereg are essentially the same as the multiplier boot-
strap from Section 3.1 with no transformation and

standard normal multipliers and the results for these
are therefore not shown. For each set‐up and type of
band, we constructed 10,000 confidence bands, where
each was based on 1,000 resampling iterations. The
obtained empirical coverage probabilities given in Table 1
are the observed frequencies of constructed bands
containing Λ0 completely.

When the sample size is 400, all methods give a
reasonable performance. For smaller samples there are
notable differences, and it seems that the log‐transform
improves the bands’ performances considerably. Whether
the bootstrap is based on G dNi i or G dMi i

 does not seem
important, and in terms of computations it is considerably
easier and faster to use the multipliers based on G dNi i.
Despite theoretical and practical advantages of Poisson
variables over standard normal multipliers in nonparametric
competing risks models (Dobler et al., 2017), this choice of
bootstrap multipliers does not seem highly important here.
However, centered exponential multipliers tend to perform
the best. Also, the particular resampling method, be it the
direct approach of Section 3.1 or the estimating equation
approach of Section 3.2, does not seem to have a clearly
positive or negative impact on the outcomes.

Apart from the coverage probabilities, we also com-
puted the bands’ median widths for t [0.5, 3]∈ . Because
of the marginal differences among multiple resampling
approaches, Figure 1 only shows the median widths for
theG dNi i method with standard normal multipliers, based
on resampling the estimating equation. Again, we let
n = 100, 200, 400. In all panels the trend is the same: at
early time points the equal precision bands are slightly
wider than the Hall‐Wellner bands. But for later time
points it is the opposite; and the widths of the Hall‐
Wellner bands grow rapidly due to quickly increasing
variances. Also, the log‐transformed bands are slightly
wider than their untransformed counterparts. All in all,
we recommend to use log‐transformed equal precision
bands for Λ0 because of their good coverage probabilities
(log‐transformation) and their reasonable slimness.

Finally, we remark that our simulation results are only
partially comparable to those of Lin et al. (1994): we
construct confidence bands for Λ0, that is, for an individual
with X = 0i ; their bands are for survival curves for multiple
covariates using also different transformantions.

Overall, however, the bands here and in Lin et al.
(1994) seem to work well.

5 | DATA EXAMPLES

In this section, we illustrate how the resampling
approach can be used in two practical settings, based
on data that are available in the timeregR‐package. The
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R‐code is given in the supporting information. First, we
show how confidence bands can be used and constructed
in a standard survival setting. The key point is that a
simultaneous confidence band is the type of interval
estimate most often of interest unless focus is on a
particular survival probability at a specific time such as,
for example, 5‐year survival. In addition, we find
confidence intervals for derived measures, in particular,
for the restricted mean life. The second example
illustrates in a competing risks setting how simple it is
to combine the multiplier bootstrap based on Cox models
for cause‐specific hazards to construct confidence bands
for the cumulative incidence.

5.1 | Survival estimation

We consider the TRACE study (Jensen et al., 1997),
where interest is on survival after acute myocardial
infarction for 1878 consecutive patients included in the
study. The data‐set is available in the timeregR‐package.
Here for sake of illustration we focus interest on the
covariates diabetes (1/0), sex and age. We depict the

survival predictions with confidence bands for a male
with average age (66.9 years) and with or without
diabetes, as well as the standard 95% point‐wise
confidence intervals for comparison.

We note that the hazard ratio related to diabetes is 1.82
with 95% confidence interval (1.50, 2.18). Thus reflecting
that diabetes is a factor that leads to increased mortality.
More interestingly, in regard to absolute mortality rates,
the higher risk of diabetics is reflected in our estimated
survival curves for males with average age and with
diabetes (lower set of curves, with confidence bands
(region) and point‐wise intervals (dotted lines) or without
diabetes (upper set of curves). The regions are standard
timereg‐bands based on direct resampling and via G dMi i

,
and for comparison we also show the resampling‐based
equal precision bands based on a log‐transform (broken
lines). We note a slight difference between the different
confidence bands. In addition we note that the bands are
quite a bit wider than the point‐wise intervals. As the latter
do not provide simultaneous coverage, the bands should
be used to provide uncertainty about the entire survival
curve as shown in Figure 2.

TABLE 1 Simulated coverage probabilities (in %, rounded) of various 95% confidence bands for the baseline cumulative hazard function
and sample sizes n = 100, 200, 400

Hall‐Wellner Equal precision

Distribution of Gi

Resampling
approach

Estimating
equation

Direct
resampling

Estimating
equation

Direct
resampling

n id log id log id log id log

N (0, 1) 100 dN 86.8 93.4 87.2 93.4 85.6 92.7 85.5 92.5

dM 86.9 93.2 87.2 93.6 85.7 92.6 85.2 92.4

200 dN 90.8 94.2 90.9 94.2 89.8 93.9 89.8 93.8

dM 90.6 94.0 90.7 94.2 89.4 93.3 89.3 93.2

400 dN 93.2 95.1 93.3 95.0 92.4 94.1 92.4 94.1

dM 93.2 94.9 93.2 95.1 92.3 94.1 92.4 94.0

Exp (1) − 1 100 dN 88.4 94.4 88.5 94.5 88.8 95.3 89.0 95.3

dM 88.1 94.3 88.4 94.5 88.7 95.4 87.9 94.6

200 dN 91.3 94.6 91.3 94.7 91.3 95.4 91.4 95.3

dM 91.2 94.5 91.2 94.6 91.0 94.9 90.8 94.6

400 dN 93.6 95.3 93.5 95.2 93.1 94.9 93.1 95.0

dM 93.9 95.4 94.1 95.5 93.5 95.4 93.4 95.2

Poi (1) − 1 100 dN 87.0 93.3 87.1 93.6 86.1 93.3 86.2 93.0

dM 87.0 93.6 87.4 93.7 86.0 93.2 86.0 92.8

200 dN 90.6 94.1 90.7 94.2 89.6 93.6 89.7 93.7

dM 91.0 94.2 91.2 94.3 90.0 94.1 90.0 94.0

400 dN 93.3 95.0 93.3 95.1 92.4 94.2 92.6 94.2

dM 93.3 95.1 93.1 95.1 92.4 94.3 92.3 94.2

Distributions of the multipliers Gi : standard normal (top panel), centered unit exponential (middle panel), centered unit Poisson (bottom panel)
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We finally illustrate how the joint asymptotic dis-
tribution of the baseline and parameter estimators can be
used with other functionals. To this end, consider the
restricted mean life of an individual with lifetime T and
covariate vector X , that is,

X X

X

Ψ Λ β Λ s β ds

E T τ

( , , ) = exp{− ( )exp( ′ )}

= {min( , ) }

τ

0 0 0
0 0∫
∣

with estimator XΨ Λ β( , , )0
 . We refer to Karrison

(1987) for the concept of adjusting the restricted mean
life to covariates. To get a description of the uncertainty
of XΨ Λ β( , , )0

 based on multiplier bootstrap construc-
tions we can simply apply the functional to the
obtained bootstrap samples. It follows that

X Xn Ψ Λ β Ψ Λ β{ ( , , ) − ( , , )}0 0 0
 has the same asymp-

totic distribution as X Xn Ψ Λ β Ψ Λ β{ ( , , ) − ( , , )}* *
0 0
  

due to Hadamard differentiability. Thus, we can easily
construct symmetric 95% confidence intervals for the
restricted mean and their differences based on the boot-

strap. The key point being that these are very easy to get at
when the bootstrap estimates are at hand. In addition, still
due to Hadamard differentiability, differences in restricted
mean life X XΨ Λ β Ψ Λ β( , , ) − ( , , )0 1 0 2

   and uncertainties
thereof are also estimable using the obtained bootstrap
estimates.

For example, the direct multiplier bootstrap approach
based on G dNi i and standard normal multipliers yields
that males with diabetes have a restricted mean life
within the first 5 years at 3.87 (3.74, 4.00) for males
without diabetes and 3.15 (2.91, 3.41) with diabetes.
Males with diabetes thus lose 0.71 (0.49, 0.93) years
within the first 5 years. Confidence intervals for other
functionals are similarly found by means of the
functional Δ method.

5.2 | Cumulative incidence for
competing risks

We here consider data on bone marrow transplantation
from patients that are treated for myelodysplasia (Sierra
et al., 2002). This data is also available in the the
timeregR‐package. Of 408 patients 161 died from treat-
ment‐related causes, and 87 had relapse before dying, and
the remaining were censored. We consider these as two
competing risks of death.

We wish to estimate the risk F1 of dying from treatment‐
related causes by a certain point in time, and do this by
modeling the two cause‐specific hazards using Cox
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FIGURE 1 Median widths of untransformed and log‐
transformed confidence bands for sample sizes n = 100 (top),
n = 200 (middle), n = 400 (bottom panel). Solid and dashed: Hall‐
Wellner, pointed and point‐dashed: equal precision. This figure
appears in color in the electronic version of this article
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FIGURE 2 Survival function estimates for males with average
age, with (fat broken line) or without diabetes (fat solid line), with
95 % confidence intervals (dotted lines), multiplier bootstrapped
log‐transform 95 % confidence bands (broken lines) and 95 %
confidence bands of timereg (regions). This figure appears in color
in the electronic version of this article
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regression models based on the covariates platelet count
(High 1/Low 0), tcell‐depletion (yes 1/no 0), and standar-
dized age ([age‐35]/15). We then combine the estimates for
a particular covariate combination (Low platelets, no tcell‐
depletion, and average age (35 years) to estimate the
cumulative incidence X X XF t S u λ u dt( ) = ( ) ( )

t
1 0 1∫∣ ∣ ∣ ,

where XS u( )∣ is the probability of surviving both causes,
and Xλ u( )1 ∣ is the intensity for a treatment‐related death.

We denote the baseline cumulative hazards and the
parameters of both Cox models by θ β βΛ Λ= ( , , , )1 1 2 2 .
Note that the Cox models for each cause‐specific
hazard are resampled independently. Their combina-
tion yields inference on the cumulative incidence
functional

θ X X β

X β X β

F t Λ t

Λ t dΛ t

( )( ) = exp{− ( )exp( ′ )

− ( )exp( ′ )}exp( ′ ) (d ).

t

1
0

1 1

2 2 1 1

∫∣

Again, θ θn F F{ ( ) − ( )}1 1
 has the same asymptotic

distribution as θ θn F F{ ( ) − ( )}*
1 1
  due to Hadamard

differentiability of the functional. We thus simply
need to apply the multiplier bootstrap to the two
Cox models and then combine estimates. Subsequently,
we can construct a confidence band for θF ( )1 based
on the realizations at hand. Figure 3 shows the
cumulative incidence curve for a subject with covariate
vector X 0= with 95% equal precision confidence
bands with (dotted lines) and without log‐transform
(broken lines).

6 | DISCUSSION AND FURTHER
RESEARCH

Despite their importance and considerable interest in
making survival predictions based on semiparametric
regression models such as the Cox model, confidence
bands are not used much in practice. This is probably
because the most commonly‐used Cox model routines
do not implement simultaneous confidence bands. The
aim of this work is to investigate some natural and
simple multiplier bootstrap approaches for filling this
gap. In particular, we show in the supporting informa-
tion that the proposed bootstrap solutions do asympto-
tically have the desired properties. A key point in
our proofs is that major characteristics of the procedure
can be deduced from martingale arguments. This
enormously facilitates the transfer of classical
proofs for the estimators to their multiplier bootstrap
counterparts. The approach evidently generalizes to
more complex models as long as martingale structures
for the relevant counting processes are preserved, that
is, Cox models in multistate models or Fine‐Gray
regression models for subdistribution functions (Fine
& Gray, 1999) with administrative censoring. Future
work will focus on the adaptation to more complex
designs.

In addition, we consider the finite sample perfor-
mance of various confidence bands. It turns out that
the choice of transformation and weight function
considerably influence widths and coverage of the bands.
Among the bootstrap weights, centered exponential
multipliers exhibit the best coverage probability. In
particular, their combination with the log‐transformation
leads to very accurate results, even for a small sample size
(n = 100). Furthermore, the equal precision bands
exhibit much smaller widths in comparison to the Hall‐
Wellner bands.

Another nice feature of our approach is its simple
extensibility to find confidence intervals for functionals.
We illustrated this with the restricted mean life based on
a Cox model.
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