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Peptide docking can be perceived as a subproblem of protein–protein docking. How-
ever, due to the short length and flexible nature of peptides, many do not adopt one
defined conformation prior to binding. Therefore, to tackle a peptide docking prob-
lem, not only the relative orientation, but also the bound conformation of the peptide
needs to be modeled. Traditional peptide-centered approaches use information about
peptide sequences to generate representative conformer ensembles, which can then be
rigid-body docked to the receptor. Alternatively, one may look at this problem from
the viewpoint of the receptor, namely, that the protein surface defines the peptide-
bound conformation. Here, we present PatchMAN (Patch-Motif AligNments), a
global peptide-docking approach that uses structural motifs to map the receptor sur-
face with backbone scaffolds extracted from protein structures. On a nonredundant
set of protein–peptide complexes, starting from free receptor structures, PatchMAN
successfully models and identifies near-native peptide–protein complexes in 58%/
84% within 2.5 Å/5 Å interface backbone RMSD, with corresponding sampling in
81%/100% of the cases, outperforming other approaches. PatchMAN leverages the
observation that structural units of peptides with their binding pocket can be found
not only within interfaces, but also within monomers. We show that the bound pep-
tide conformation is sampled based on the structural context of the receptor only,
without taking into account any sequence information. Beyond peptide docking, this
approach opens exciting new avenues to study principles of peptide–protein associa-
tion, and to the design of new peptide binders. PatchMAN is available as a server at
https://furmanlab.cs.huji.ac.il/patchman/.
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Peptide–protein interactions—namely, interactions mediated by short segments or
motifs often located in disordered regions—are very common in the cell, constituting
40% or more of the overall protein interactions (1). Such interactions participate in
many important cellular processes, like regulation and cell-signaling (2). Therefore
structural characterization of such interactions is crucial for the understanding of many
biological pathways and their potential in the development of therapeutic targets and
other biotechnological applications (3). However, such interactions are often weaker
and more transient than globular protein interactions and therefore more challenging
to characterize experimentally, highlighting the need for developing computational
tools for modeling their structures.
The intuitive way to look at protein–peptide docking is as a subproblem of

protein–protein docking. However, this approach presents several hurdles, since in
addition to the problem of finding the relative orientation between the two partners,
the peptide conformation is often not known or does not even assume a defined struc-
ture before binding the receptor (4). When the binding site is known and a coarse
model of a peptide–protein complex is available, it can be further refined to high accu-
racy by local refinement protocols, such as Rosetta FlexPepDock (5, 6). In the absence
of such information, however, global docking has to be performed. To reduce the con-
formational space needed to sampling both the peptide conformation and its location
on the receptor, many currently existing peptide-docking approaches tackle this prob-
lem by decoupling the folding and docking steps, generating a peptide conformational
ensemble for subsequent docking (7). For example, in the PIPER-FlexPepDock
(PFPD) protocol (8), a conformer ensemble is generated using the Rosetta Fragment
Picker (9) [similar to the first step in traditional ab initio folding (10)]. This ensemble
is then rigid-body–docked using PIPER (11) and further refined by FlexPepDock. This
approach is also implemented in the InterPep2 docking protocol (12). MDockPeP2
uses sequence-similar fragments extracted from monomers (13), while in HADDOCK
and pepATTRACT, peptide conformations are represented by idealized secondary
structure fragments (14, 15), and the CABS-dock protocol uses random peptide
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conformations for subsequent docking and refinement (16). All
these approaches are united by the idea that the peptide, as a
separate protein, carries enough information for its separate
folding, or at least the determination of a conformer ensemble
that represents its conformational preferences. But what if the
conformational ensemble of the peptide does not include
the conformation that it adopts upon binding? In such a case,
the rigid-body step of the docking protocol will not be able to
fit the peptide into the binding pocket. An alternative solution
for finding the bound conformation of the peptide is template-
based modeling. Many protein–protein interactions can be
modeled based on a solved structure of a homolog complex
(17), and the same can be applied to protein–peptide interac-
tions (18). However, such an approach is restricted to a limited
amount of solved protein–peptide complexes.
We present here an approach for blind peptide docking,

which we name PatchMAN (Patch-Motif AligNments), that
combines a global search with template-based modeling,
benefitting from both strategies. We look at peptide docking
from the viewpoint of the receptor, building on the assumption
that the protein surface carries enough information to deter-
mine the peptide-bound conformation. This is based on the
previously proposed theory that peptide–protein interactions
often mimic structural characteristics that are typical to mono-
meric folds (19), hinting at a large reservoir of information that
can further be used for peptide–protein docking. PatchMAN
uses surface patches, defined as bundles of disjoint backbone
segments, to search for similar “pockets” that contain a peptide
stretch interacting with it in a dataset of protein structures that
includes monomers, as well as protein–protein and protein–
peptide complexes. The backbone conformation of such pep-
tide stretches is then superimposed back to the receptor
protein, and is used as a starting point for local peptide-
docking refinement.
PatchMAN shows performance superior to current peptide-

docking methods, including our recent implementation of
AlphaFold2 (AF2) (20) for peptide docking (21). As such,
PatchMAN opens new opportunities to model more compli-
cated protein–peptide-like interactions, in addition to facilitat-
ing design of new peptide binders.

Results

General Overview of the PatchMAN Approach: Docking by
Globally Mapping the Receptor Surface with Local Motif
Templates. In general, protein–peptide as well as protein–
protein interaction modeling can be split into two categories:
template-based modeling, in which new interactions are mod-
eled based on solved structures of similar interactions, and free
modeling, in which a large number of new rigid-body orienta-
tions and internal degrees of freedom are sampled. In Patch-
MAN we suggest combining the two by generating peptide
templates on the whole protein surface, thus sampling the bind-
ing sites and “folding” the peptide at the same time. The proto-
col consists of four consecutive steps (Fig. 1): 1) definition of
surface patches on the receptor; 2) identification of structural
motif matches in protein structures; 3) generation of the
peptide–protein complex template structure by copying the
peptide fragment interacting with the matched structural motif
onto the receptor; 4) replacing side chains according to the
peptide sequence (threading), refinement, and scoring of
the model.
In the following, we describe the protocol in more details

(see also Methods). For the sampling step, we first identify the

surface residues based on surface accessible area. Next, the sur-
face is split into patches consisting of one or more peptide seg-
ments, each centered on a surface residue. Those patches are
then used to search for similar motifs in a diverse nonredun-
dant database of protein structures (maximum 30% pairwise
sequence identity), using MASTER (22). Peptide stretches
around every found motif are extracted (Fig. 1, enlargement of
step 3). If an interacting fragment is shorter than the required
peptide length, it is elongated in both directions so that even
patches only partially covering the binding site can lead to gen-
eration of a near-native template. The extracted peptide frag-
ments are then superimposed back to the receptor protein using
the rotational matrices from the patch-motif alignment. At this
point the receptor protein surface is fully mapped with tem-
plates for local peptide docking. The peptide sequence is then
threaded onto the generated peptide templates. These starting
structures are refined using Rosetta FlexPepDock (5). Finally,
all models are scored and the best models are selected. Addi-
tional and more extensive details on each step, including spe-
cific parameters, are described in Methods.

PatchMAN Performance. For the initial estimation of the
method performance, we ran PatchMAN on a nonredundant
dataset containing 26 solved protein–peptide complexes previ-
ously used to assess performance of PIPER-FlexPepDock (8). It
includes two subsets of complexes: one with known binding
motifs (here the motifs are eukaryotic linear motifs) (23), and
the second for which no motifs have (yet) been reported. For
all the complexes, free (unbound) receptor structures are avail-
able, and those were used in the present study to reflect a blind,
real-world scenario. To prevent bias, all the structures catego-
rized under the same UniProt number as the receptor protein
were filtered out from the template set used by MASTER to
find matching structural motifs.

For assessing PatchMAN performance, we used RMSD mea-
sured over the peptide interface residues (after aligning the
receptor; rmsBB_if calculated by Rosetta FlexPepDock). Patch-
MAN generates and identifies for 84%/58% of the complexes a
near-native model within 5 Å/2.5 Å RMSD, respectively (among
the top 10 cluster representatives) (Fig. 2A and Table 1). It out-
performs the PFPD blind peptide docking protocol that also
uses FlexPepDock in the refinement step, showing performance
similar to our recent application of AF2 to peptide docking (21).
PatchMAN also outperforms other approaches, including more
recently reported methods InterPep2 (12) and MDockPeP2
(13), as well as previously developed protocols: HADDOCK
(14, 15), pepATTRACT (14, 15), and CABS-dock (16) (SI
Appendix, Fig. S1). A more detailed comparison reveals that
while PFPD performs much better for docking the binding
motif than for full-length peptides, performance of PatchMAN
is not significantly affected when full-length peptides containing
flanking regions are modeled (Fig. 2B). In most cases Patch-
MAN outperforms PFPD (Fig. 2C). We inspected what caused
PatchMAN to fail on a few examples: For 1MFG, docking of
the motif region without the flanking sequence generated accu-
rate models (SI Appendix, Table S1 for detailed results of the
“motif only” runs), but the flanking region was not well mod-
eled. For 1ER8, we observed no sampling at the binding site (SI
Appendix, Fig. S2). We found that this is due to the absence of
matching motifs for the patches covering the binding site. This
can be solved by either further fine-tuning of the patch defini-
tion, increasing the template dataset, or loosening the RMSD
threshold for the match search.
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To assess robustness of performance, we applied PatchMAN
to an additional, nonredundant set of 39 peptide–protein com-
plexes (a subset with available free receptor structures of the
Large-Nonredundant [LNR] dataset described in our study of
AF2 implementation for peptide docking (21), Methods). In
this dataset, PatchMAN showed performance very similar to
that of AF2, slightly falling behind in the highest-resolution
modeling bin (10% vs. 21% of cases were modeled with
RMSD better than 1 Å), but outperforming AF2 for less strict
cutoffs, producing models within 5 Å cutoff in 62% of the

cases versus 49% for AF2 (Fig. 2 A and D and SI Appendix,
Table S2).

Finally, we evaluated PatchMAN performance also on a truly
blind case whose structure was published only after the devel-
opment of the PatchMAN protocol: the recently solved struc-
ture of UFC1 bound to a UBA5-derived peptide (PDB ID
code 7NW1) (24). PatchMAN produced a model with 2.5 Å
RMSD from the native structure in its top 10 predictions,
using an unbound receptor for the simulation (Fig. 2E). The
most significant differences between the models and the crystal
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Fig. 1. The PatchMan protocol: flowchart. The input is a receptor PDB file and a peptide sequence. 1) Definition of surface motifs on the receptor: the pro-
tein surface is defined based on solvent accessibility, and then split into small structural surface patches. 2) Identification of structural matches in protein
structures: matches are detected using MASTER search against a nonredundant dataset of protein structures. 3) Generation of the peptide–protein complex
structure: the peptide fragment is determined (see enlargement) and superimposed onto the receptor. 4) Threading, refinement and scoring: the peptide
sequence is threaded onto the identified complementing fragment and the structure is refined using the Rosetta FlexPepDock refinement protocol. The gen-
erated structures are clustered, and top-scoring cluster representatives are selected as final predictions. Enlargement in step 3: Extracting peptide frag-
ments. Neighboring residues (magenta) around the matching motif (green) are defined as Cβ distance within 8 Å of the motif. Consecutive backbone
stretches are then elongated in both directions to the desired peptide length. Arrows indicate stretches that can be elongated. Single residue (indicated with
dashed circle) will not be elongated. See Methods for more details.
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structure are located at the peptide termini. Discrepancy at the
N terminus is explained by the fact that a monomer structure
was used for simulation, while in the solved structure there is a
crystal contact between the monomers, forcing the N terminus
of the peptide to turn aside. The two methionines in the pep-
tide that were shown to be critical for the interaction (24)
adopt a different conformation in the PatchMAN model. This
is a result of side chain flipping of receptor residue Tyr36,
opening a pocket at the interface that is filled by peptide resi-
due Met401. Consequently, the critical interaction created by
Met401 in the solved structure is compensated by Met404 in
the model, leading to the aforementioned change in the C ter-
minus of the peptide.

The Receptor Surface Can Be Mapped by Local Structural
Motif Matches. Our results demonstrate that even with a rela-
tively small nonredundant set of proteins (Methods), we can
model the conformation of the peptide bound to its receptor

(Fig. 2). We show that in all cases, PatchMAN samples peptide
conformations within ∼5 Å RMSD from the native complex
structure (Table 1 and SI Appendix, Table S2). This is one of
the many possible conformations generated that cover the
whole receptor surface (SI Appendix, Fig. S3, and the energy
landscapes presented throughout this paper and in SI Appendix,
Fig. S2). This implies that even within a limited dataset of pro-
teins, there are many motifs that are similar to receptor surface
patches, and include complementing peptide stretches fitting
into these surface pockets. Increasing the size of the database
for the template search can help introduce more diversification
of the sampling step. More diverse motifs will help in finding
less trivial matches, thus introducing more intrinsic flexibility
to the receptor and aiding in solving more complicated cases.

We analyzed the sequence similarity between the peptide
templates and the docked peptide that led to generation of the
near-native models (top 1% best scoring models within 5 Å
RMSD) (Fig. 3A). We found that sequence identity of the

A B

C D E

Fig. 2. Highly accurate modeling of peptide–protein complexes with PatchMAN. (A) Comparison of performance of PatchMAN to PFPD and the AF2 imple-
mentation for peptide docking, on the PFPD benchmark (n = 26 complexes; solid lines) and on the LNR subset test set (n = 39; dotted lines). The y axis
shows the cumulative success, namely, the percentage of complexes modeled within the RMSD threshold indicated in the x axis. The top-performing model
is considered for each complex (i.e., the best RMSD among the top 10 cluster representatives; peptide interface residue backbone RMSD values are
reported). (B) Modeling only the motif sequence (dashed lines, extracted from the full peptide sequence) significantly improves performance of PFPD but
only slightly affects PatchMAN performance. (C and D) Detailed comparison of PatchMAN performance to PFPD (C) and AF2 (D). PatchMAN and AF2 comple-
ment each other, successfully modeling all the complexes from the PFPD dataset (black markers) within the 5 Å cutoff, except for the 2O02 complex for
which only PFPD produced a model within 5 Å (indicated with green outline). For 7 of 39 complexes from the LNR subset (gray and pink markers, solved
before and after the date of the MASTER dataset compilation, respectively) neither PatchMAN nor AF2 succeeded to produce a near-native model. Of note,
new complexes from the LNR subset show similar performance to the general performance. Triangles indicate structures for which the best RMSD model
was larger than 10 Å. (E) Modeling of the interaction of a UBA5-derived peptide bound to UFC1, a structure solved after the development of PatchMAN [PDB
ID code 7NW1 (24)]: The modeled peptide (green) is very similar to the native structure (magenta), with the most significant differences found at the peptide
termini. The two monomers of the crystal structure are shown in grey and black.
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peptide templates is predominantly below 30%, with many
templates showing no sequence identity to the native peptide.
For most cases (14 of 22), the best model is derived from a
template with less than 30% sequence identity, while only in
three cases were peptides derived from templates with more than
60% sequence identity. These results indicate that peptide-bound
conformation can be sampled based on the receptor surface con-
formation only, without regard to the peptide sequence.

Many Templates for Near-Native Models Can Be Extracted
from Monomer Structures. Analysis of the templates revealed
that although most of the templates originate from monomers
(an average of 77%), there is a great diversity in the source of
the templates that leads to the final near-native complex,
depending on the type of interaction (Fig. 3B and SI Appendix,
Fig. S2). In many cases, successful templates were extracted from
both interfaces and monomers, where the interfaces include both
peptide–protein complexes as well as protein–protein complexes.
However, for several cases (1NTV, 2DS8, 2CCH, 1OU8) the
only near-native complexes originated from monomers. For
example, for the PatchMAN prediction of the 1NTV complex
(Disabled-1 [Dab1] PTB domain-ApoER2 peptide complex)
(Fig. 3 C–F), the top-scoring structure (RMSD = 1.2 Å) (Fig.
3C) was generated using a template extracted from the structure
of the monomer of Cholera enterotoxin (Fig. 3D). This is an
example of nontrivial template extraction that requires finding a
“nonperfect match”: in this case the patch consists of four
disjoint segments with patch-motif alignment RMSD of 1.4 Å.
This is in contrast to cases where homologous complexes of
a peptide–protein interaction are available as templates (as,
for example, for 1X2R). These results demonstrate that protein
monomers can indeed serve as models for peptide conformations
and should be utilized in peptide-protein docking.

Inspection of the extracted templates at the 1NTV binding
site reveals that while they show considerable variability (SI
Appendix, Fig. S3C), the best-scoring models selected after clus-
tering converge toward the near-native peptide conformation,
and do not include conformations of different secondary struc-
ture or opposite orientation (Fig. 3E). At the same time we do
see a local diversity of the models in the binding site, in partic-
ular outside the motif region (Fig. 3F).

PatchMAN Overcomes Conformational Changes Induced by
Ligand Binding: The FERM Domain Example. One of the big
challenges in protein docking, and in peptide docking specifi-
cally, is that the binding pocket can undergo conformational
changes upon binding of the ligand. Given that at the sampling
stage we use only the receptor surface information, it is crucial
that the representation of the surface will be robust to such
changes. This challenge is addressed in PatchMAN in two
ways. 1) Backbone-based search: the surface patches that we use
for screening of matching motifs are represented as bundles of
backbone segments, thus allowing for flexibility at the side-
chain level with surface rotamers. 2) Diversification of matches:
for each surface patch we use matching motifs with very low
RMSD for finding easy templates (e.g., homologous structures),
but also more distant motifs with RMSD ∼1.5 Å to capture
cases of possible backbone conformational changes.

One example of a protein that undergoes such conforma-
tional change is the Moesin FERM domain (Fig. 4A). Prior to
binding, the F3b binding pocket is closed and inaccessible to
the peptide (25, 26). However, in case a binding site is known,
the pocket could be opened by positioning a peptide into the
binding site, with subsequent refinement of the structure, as
implemented previously, for example, in CAPRI target T121
(27). To test the ability of PatchMAN to deal with such

Table 1. Summary of performance for the representative, nonredundant benchmark (PFPD, from ref. 8)

Complex PDB ID Unbound receptor Best model RMSD* (Å) Best sampled RMSD (Å) Peptide length

1AWR 2ALF 0.9 0.8 6
1CZY 1CA4 2.8 2.1 7
1EG4 1EG3 19.6 3.9 13
1ELW 1A17 2.0 1.2 8
1ER8 4APE 9.7 3.7 8
1JD5 1JD4 3.7 2.5 8
1JWG 1JWF 1.4 1.3 5
1MFG 2H3L 9.4 1.8 9
1NTV 1P3R 1.2 1.2 10
1NVR 2QHN 0.7 0.5 5
1NX1 1ALV 1.6 1.2 11
1OU8 1OU9 4.2 2.6 8
1RXZ 1RWZ 1.1 1.1 11
1SSH 1OOT 1.3 0.8 11
1U00 2V7Y 2.0 2.0 9
1X2R 1X2J 0.9 0.9 9
2A3I 2AA2 1.1 1.0 12
2B9H 2B9F 3.4 2.2 12
2C3I 2J2I 3.7 2.1 8
2CCH 1H1R 4.9 3.0 12
2DS8 2DS7 1.3 1.3 6
2FMF 1JBE 4.6 2.4 13
2H9M 2H14 1.3 1.3 5
2HPL 2HPJ 1.7 1.7 5
2O02 2BQ0 9.2 3.8 14
3D1E 3D1G 1.0 1.0 6

*In this table, and in the SI Appendix, Tables, we refer to the top-RMSD model among the 10 top-scoring cluster representatives.
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conformational changes we docked a CD44-derived peptide,
known to bind the F3b pocket of the FERM domain, starting
from the structure with the closed pocket. We compared a

simulation without receptor backbone flexibility to a simulation
in which receptor backbone minimization was added in the
FlexPepDock refinement step of the protocol, to allow for

C DD

A B

E F

Fig. 3. Peptide templates leading to high-resolution models show no sequence similarity and can be extracted from monomers. (A and B) Detailed results
for the different complexes (shown are the 1% top-scoring models within 5 Å RMSD; the category that includes the best RMSD model is marked with a bold
outline). (A) Most of the top-scoring near-native models are modeled using templates with low sequence identity. (B) The source of low-RMSD templates
comes from monomers (orange) as well as interfaces (blue). Complexes are sorted in increasing order of the best RMSD. Interactions with known binding
motifs are marked with an asterisk. (C–F) Details of the prediction for 1NTV (43). (C) Energy landscape. Models generated based on templates originating
from monomers and interfaces are indicated in orange triangles and blue circles, respectively. The model shown in D is marked with a red circle on the
energy landscape. SI Appendix, Fig. S2 shows more energy landscapes. (D) Structure of the interaction, together with the template that was used for model-
ing [PDB ID code 2A5D, chain A: Cholera enterotoxin (44)]. The free receptor structure (1P3B) (45) is shown in gray, the native peptide in black, top-scoring
model in red and the monomer from which the template was extracted in gold. The matching motif is colored in orange. (E) The top 10 cluster representa-
tive models converge to the binding site. In ribbon models (coloring scheme is the same as in C, depending on whether the templates originate from mono-
mers/interfaces), gray sticks represent native peptide; N and C termini in blue and red spheres, accordingly. (F) Heatmap of backbone per residue RMSD for
the models shown in E. The upper bar indicates the motif and the flanking region with blue and gray color, respectively. For each model, the per-residue
heatmap is followed by the value of the overall RMSD.
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opening of the inaccessible binding site (Fig. 4). We found that
PatchMAN samples near-native fragments on the free FERM
domain (with the closed F3b pocket), but cannot identify it as
top-scoring on the rigid receptor structure (Fig. 4 A and C).
However, it easily identified the near-native complex structure
when backbone minimization was allowed (Fig. 4 B and D).
PFPD failed to place the peptide at the closed binding site at the
rigid-body docking step, requesting an initial opening of the
pocket for successful docking (28). This case demonstrates that
PatchMAN is able to identify cryptic binding pockets, with its
sampling approach that takes into account motifs with structural
variability. Moreover, PatchMan can open such pockets by posi-
tioning the peptide and moving the receptor backbone around it
during the subsequent refinement step. Thus, this example illus-
trates the ability of PatchMAN to accommodate for conforma-
tional changes of the receptor upon peptide binding.
The extent to which PatchMAN can account for conforma-

tional changes in the receptor may depend among others on
the RMSD cutoff applied to select matching templates (set cur-
rently to 1.5 Å backbone RMSD) (Methods). We checked the
effect of changing the matching RMSD cutoff on several exam-
ples of complexes that undergo conformational changes upon

binding. Surprisingly, when analyzing the origin of templates
from which PatchMAN derived the near-native models in the
FERM domain example, we found that the source-target patch
RMSD was only 0.9 Å for the top scoring model, and 0.4 Å
for the second best (Fig. 4B). This means that changing the
cutoff to as low as 0.5 Å will not significantly affect the quality
of prediction (SI Appendix, Fig. S4). Of note, the near-native
energy funnel also includes a model that originated from a 1.5
Å match; however, this model scored much worse than the
models derived from similar templates, highlighting the chal-
lenge in refinement of structures originating from an initially
distinct template (Fig. 4B). However, increasing the matching
cutoff from 1.5 to 2.5 Å for examples for which PatchMAN
failed, and which involve conformational changes upon bind-
ing, showed only insignificant improvement (SI Appendix,
Table S3). Only for one of them was PatchMAN able to iden-
tify a model within 5 Å RMSD. This model indeed originated
from a patch match with source-target RMSD of ∼2.5 Å [Pro-
tein Data Bank (29), PDB ID code 5JIU ()] (SI Appendix, Fig.
S5). Further studies are therefore needed to map out the fea-
tures that govern PatchMAN performance in cases that involve
receptor conformational changes upon binding.

A

C

B

C

Fig. 4. Successful modeling of a peptide into a closed binding pocket using PatchMAN, shown on the example of a CD44-derived peptide binding to the
Moesin FERM domain F3b binding site. (A) PatchMAN simulation without receptor backbone minimization samples the correct binding pocket but misses it
at the scoring stage. (B) PatchMAN simulation including receptor backbone minimization identifies a clear funnel around the native structure. (A and B) The
red line indicates the 5 Å RMSD cutoff. The dots are colored according to a green-yellow scale that reflects source-target patch RMSD in ångstroms. (C) The
moesin FERM domain structure, showing the unbound closed [gray, PDB ID code 1EF1 (25)] and the bound open F3b binding pocket [orange, PDB ID code
6TXS (26)] structures. A shift in the β-sheet at the F3b binding site is induced by peptide binding. (D) Comparison of model (red) to crystal structure (black)
(for the crystal structure, only the peptide is shown).
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Discussion

Peptide–protein docking poses particular challenges due to the
flexible nature of the peptide partner. The sampling space is
vast and complex, as it involves both peptide-internal degrees
of freedom as well as rigid-body orientation, and often also
receptor flexibility. Many different approaches were developed
to tackle this sampling challenge, usually by breaking it into
several smaller, independent sampling steps. However, the bio-
logical process of peptide binding is likely to be less modular. It
can be seen as a subproblem of monomer folding, in which the
peptide complements the receptor structure in a way structur-
ally similar to what is observed within other monomers. Here
we present a template-based approach that builds upon these
biological observations and aims to bridge the gaps between the
sampling steps.
PatchMAN leverages information on local structural motifs

to search for complementary fragments of the protein surface.
These local motifs can be derived from interfaces, but also from
completely nonrelated, monomer structures, as demonstrated in
this work (Fig. 3B and SI Appendix, Fig. S2). The definition of
the structural patches is crucial for success in finding comple-
menting peptides and requires thorough optimization. As was
shown previously in Verschueren et al. (31), matching single
fragments (e.g., using pairs of fragments, one from the receptor
and the other from the peptide) instead of patches composed of
multiple segments (as in PatchMAN) can be useful in some
cases, but is not enough to generate a robust sampling strategy.
We show that the PatchMAN patch definition is coarse enough
to be flexible for conformational changes and thus able to iden-
tify near-native templates even from divergent structures, but
still specific enough to keep the hit number tractable. We dem-
onstrate that the sampling at the binding site is specific to the
native peptide-like conformation, while at the same time
diverse, resulting in multiple starting points to local peptide
docking, increasing the chances to model a native-like confor-
mation at the refinement step (Fig. 3 E and F and SI Appendix,
Fig. S3).
It is important to note that fast screening of such arbitrary

structural motifs is challenging. Here we use MASTER (22), a
fast and exhaustive RMSD-based search tool that uses the
Kabsch algorithm (32) for fast alignment of backbone frag-
ments, managing the growing complexity of multiple segment
motif alignments by on-the-fly filtering of nonpromising
matches. This approach does not include any heuristics, finding
all existing alignments within the cutoff RMSD in a matter of
seconds, and allowing for fast and efficient sampling.
PatchMAN also demonstrates lower sensitivity to parameters

that limit the performance of other methods, such as the pep-
tide length and modeling flanking regions of the peptide. As
shown in Fig. 2B, PatchMAN performs equally well on full
peptides and on peptide motifs, compared to PFPD perfor-
mance, which decreases when adding the flanking regions.
Those findings suggest that using PatchMAN docking can be
further improved by connecting templates on the protein
surface, to model more complex interactions involving long
intrinsically disordered proteins wrapping around a structured
partner, a problem only addressed by a few studies to date (33).
In PatchMAN, instead of using the sequence of the peptide

as the key to modeling its backbone conformation, the focus
shifts toward the receptor context. The receptor dictates the
ensemble of possible peptide structures, making the sampling
strategy invariant to peptide sequence. As shown here, most of
the selected fragments share very low sequence identity to the

docked peptide (Fig. 3A). PatchMAN opens an avenue for
improved peptide design based on these principles. For a tar-
geted receptor pocket, peptide conformations could be
extracted and modeled with new sequences. Additionally, pep-
tide backbones could be pieced together to design peptides that
interact with multiple adjacent pockets of the receptor.

Moving the focus to the receptor surface also allows for
improved modeling by including intrinsic local flexibility (Fig.
4). For each receptor surface patch, PatchMAN assembles an
ensemble of similar motifs from different structures. Hence,
even if the surface patch on the receptor is in a “closed” confor-
mation, it can be identified by finding a similar pocket in an
“open” conformation. Such a pocket can then be opened by
superimposing an extracted template followed by short struc-
tural refinement. We believe that enriching the hit pool with
matches from receptor homologous structures will further
improve PatchMAN performance, and specifically may be help-
ful for cases of conformational changes.

Preliminary examination showed no evidence that calibration
of the RMSD cutoff at the matching step affects PatchMAN
performance (SI Appendix, Fig. S5 and Table S3). This could be
thanks to the ability of PatchMAN to identify hits to patches
that often cover only part of a binding pocket, but locate the
peptide at an accurate position, allowing the opening of the
pocket in the following refinement step that includes receptor
flexibility (Fig. 4 B and D). Thus, one standard cutoff can fit a
wide range of conformational changes. However, PatchMAN
still needs to overcome challenges posed by cases for which the
closed pocket clashes significantly with the backbone of the
bound peptide (as for example for 1D4T and 4TJX of the LNR
dataset) (SI Appendix, Table S2). We can improve PatchMAN
performance in such cases by loosening the filtering criteria of
clashing structures, or alternatively by iterative docking starting
with a shorter motif followed by subsequent elongation, in case
the clashes involve mainly the peptide termini.

A new era of structural biology has opened up by Deep
Learning, as strongly highlighted by Deepmind’s AF2 (20).
Within this context, we recently demonstrated in another study
that the peptide docking field can benefit from AF2 (21), out-
performing our previously developed state-of-the-art PFPD
protocol (8). The PatchMAN approach presented here per-
forms similarly well (Fig. 2A), but not on the same set (Fig.
2D), suggesting that these approaches may be combined for
further improvement. It remains to be tested how well Patch-
MAN will perform on structural models of the receptor, and
how this work may be optimally incorporated into Deep Learn-
ing frameworks.

To summarize, we presented here a robust, quick and high-
performing global peptide-docking protocol, and demonstrate
that the PatchMAN approach is accurate and versatile. As such,
it holds high hopes for the peptide modeling as well as peptide
design. The incorporation of biological insights and concepts in
the development of PatchMAN extends the implications of this
work and presents a more general approach to treat peptide–
protein docking and binding. It is our hope that the Patch-
MAN webserver (https://furmanlab.cs.huji.ac.il/patchman/) will
be widely used and will contribute to the detailed study of a wide
range of additional peptide-mediated interactions.

Methods

Splitting the Surface into Structural Patches. The protein surface is
defined based on solvent accessibility criteria using surface accessible area calcu-
lated using the “rolling ball” algorithm implemented in PyRosetta with ball
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radius = 1.35 Å (34). The surface is then split into small structural motifs by
selecting the neighbors (Cα–Cα distance within 10 Å) around every second sur-
face residue (to reduce the number of overlapping patches). Every motif is
defined as one or more disjoint peptide segments, not shorter than 2 amino
acids. The maximum length for a single segment is 7 residues for strands and
coiled regions, and 11 residues for helices. A stretch is defined to be helical, if it
has at least three consecutive helical residues based on DSSP (35).

In case of obligatory homomultimers (1NX1, 2DS8, 1OU8, 2O02, and 1CZY,
4BTA in the present study) we removed the interfaces between the monomers
from the mapped surface. This prevented false positives at these inaccessible
regions with strong interaction potential.

Searching for Local Structural Motif Matches Using MASTER. Every patch
is searched using the MASTER algorithm (22) against a database of nonredun-
dant protein structures described in the original implementation of MASTER.
This database includes 12,661 protein structures, generated using BLASTClust
(36) at 30% sequence identity on a PDB version of 2014 (22). Briefly, MASTER
aligns structural motifs containing multiple disjoint backbone segments to iden-
tify all matches within a user-specified RMSD cutoff in a dataset of protein struc-
tures. It utilizes the Kabsch algorithm for identifying the match with the lowest
RMSD (30), and manages possible combinatorial explosion due to multiple seg-
ments in each motif by on-the-fly filtering of partial matches that will not answer
the RMSD criteria. For the search, we used the RMSD cutoff of 1.5 Å, and took
the 50 lowest, as well as the 50 highest, RMSD matches to ensure diversity.

To prevent possible bias, we removed structures solved for the receptor pro-
tein from the dataset (i.e., those annotated with the same UniProt ID) (37). We
did keep other structures of homolog proteins, reflecting the real-world scenario
in which some homolog templates will be available.

Generating Initial Complexes for Further Refinement. For each of the
matches we identify the residues that constitute the motif in the corresponding
PDB structure. Using PyRosetta (33) we then identify the neighboring peptide
stretches (Cα–Cα distance within 8 Å), and finally, we elongate peptides longer
than 2 amino acids to the desired length in both directions, if possible (Fig. 1,
enlargement from step 3). Using the rotation-translation matrices from the MAS-
TER search, the peptide templates are superimposed back onto the receptor pro-
tein. We retain those peptides whose backbone does not clash with the receptor
(backbone atom distance > 2 Å) and who interact with the receptor (at least
45% interacting residues with a heavy atom interaction distance within 5 Å). The
peptide sequence is then threaded onto the remaining templates (using Rosetta
fixed backbone design (38)).

Model Refinement. The Rosetta FlexPepDock refinement protocol was used to
refine the structures to high resolution and to discriminate near-native models
from the rest [as described previously (39), one structure was generated]. For the
main benchmark we included receptor backbone minimization.

Criteria for Measuring Performance. The accuracy of performance was mea-
sured as in previous studies (8). In short, the final top 1% of the models [based
on the Rosetta reweighted score (40), using the Rosetta ref2015 scoring function
(41)] are clustered (with 2.0 Å RMSD cutoff, as in ref. 8) and top 10 clusters rep-
resentatives are analyzed. For the plots in Fig. 2, we calculated the number of
structures for which the best RMSD model among these 10 representatives lies
within the indicated RMSD cutoffs. All results were assessed using RMSD calcu-
lated over all interface peptide residue backbone atoms, after superposition of
the receptor (i.e., rmsBB_if, as in previous studies) (e.g., ref. 8). Note that the
PDB 1LVM was removed from the dataset due to an error in the previous dataset
(the “unbound” structure included in the set is bound to the same peptide).

Datasets Used in This Study. We used two datasets to assess performance of
PatchMAN in this study: Initial assessment was performed on the PFPD dataset
(from ref. 8) (Table 1), which includes 26 protein–peptide complexes with unique
ECOD family IDs (42). For each of the complexes, the free receptor structure was
used for docking simulations. To validate performance, we compiled a second,
nonoverlapping set, based on the LNR set described in Tsaban et al. (21). The
LNR subset includes all the complexes for which a free receptor structure is avail-
able. The criteria for choosing free structures were as follows: 1) the free receptor
has the same UniProt ID as the receptor in the complex; 2) applying symmetry
operations on the asymmetric unit of the free structure did not reveal any crystal
contact that may bias the simulation toward the binding site; and 3) no ligands
(including small molecules) were found in the proximity of the binding site. The
final validation dataset includes 39 structures (SI Appendix, Table S2).

Data Availability. All scripts, runline commands, and data analysis are pro-
vided on GitHub (https://github.com/Alisa-Kh/PatchMAN and https://github.com/
Alisa-Kh/PatchMAN-figures).
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