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Abstract: The aim of using atypicality is to extract small, rare, unusual and interesting pieces out
of big data. This complements statistics about typical data to give insight into data. In order to
find such “interesting” parts of data, universal approaches are required, since it is not known in
advance what we are looking for. We therefore base the atypicality criterion on codelength. In a prior
paper we developed the methodology for discrete-valued data, and the current paper extends this
to real-valued data. This is done by using minimum description length (MDL). We develop the
information-theoretic methodology for a number of “universal” signal processing models, and finally
apply them to recorded hydrophone data and heart rate variability (HRV) signal.
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1. Introduction

A central question in the era of “big data” is what to do with the enormous amount of information.
One possibility is to characterize it through statistics, e.g., averages, or classify it using machine
learning, in order to understand the general structure of the overall data. The perspective in this paper
is the opposite, namely that most of the value in the information—in some applications—is in the
parts that deviate from the average, that are unusual, atypical. Think of art: The valuable paintings or
writings are those that deviate from the norms and brake the rules, that are atypical. Or groundbreaking
scientific discoveries, which find new structure in data. Finding such unusual data is often done by
painstaking human evaluation of data. The goal of our work is to find practical, automatic methods
for localizing atypical parts of data.

When searching for atypical data, a key characteristic is that we do not know what we are looking
for, we are looking for the “unknown unknowns”. We therefore need universal methods. In the
paper [1] we developed a methodology, atypicality, that can be used to discover such data. The basic
idea is that if some data can be encoded with a shorter codelength in itself, i.e., with a universal source
coder, rather than using the optimum coder for typical data, then it is atypical. The purpose of the
current paper is to generalize this to real-valued data. Lossless source coding does not generalize
directly to real-valued data. Instead we can use minimum description length (MDL). In the current
paper we develop an approach to atypicality based on MDL, and show its usefulness on a real dataset.

In this section before an extensive literature review of detection problems, we first describe the
concepts of atypicality and how this framework can be used for data discovery. This arrangement is
essential in order to compare the atypicality with the state of the art methods.
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1.1. Anomaly Detection and Data Discovery Based on Description Length

A common way to define an outlier or anomaly in data is a sample that does not fit the statistics of
typical data [2], e.g., if typical data is described by a pdf fT(x), and if fT(x) < τ for some threshold τ

then x is an outlier. In this paper we approach the problem of anomaly detection, and in particular data
discovery, from a different point of view. We consider sequences of data xl , and say that a sequence of
data xl is atypical if there is some alternative model that ’fits’ the data better than the typical model.
This point of view has been considered before in anomaly detection, e.g., [3]. Given a typical probability
distribution, data that is unlikely could simply be, well, outliers, e.g., faulty measurements, and not of
much interest in itself. Requiring data to fit an alternative model gives an indication that there is some
interesting, new relationship in the data. We therefore think of this approach going beyond simply
finding anomalous data, to finding interesting data, i.e., data discovery.

In our paper [1] we used universal source coding for anomaly detection; in [3–5] the authors used
a type of universal empirical histogram. This kind of methodology is feasible when data is discrete.
However, real-valued data is too rich for such universal descriptions. Models for real-valued data is
almost always given as parametric models, either directly or indirectly. Our approach to atypicality
for real-valued data, in the absence of universal coders, is to consider multiple ‘universal’ real-valued
models given by parametric models. For example, it is well-known [6] that by the Wold decomposition
(almost) all Gaussian stationary processes can be described in terms of a linear prediction model.
Wavelets are also good for compressing (lossily) many signals and images. One can therefore expect
these will also work well as alternative models. Most modeling and compression are based on a second
order analysis, and therefore fit with Gaussian models. One could be interested in also finding atypical
data that does not fit a Gaussian model; however, apart from iid (independently, identically distributed)
models (similar to [3]), this is difficult to do, so the richness of non-Gaussian models is limited. We will
therefore focus on Gaussian models in this paper; notice, however, this is not a limitation of atypicality,
we have considered non-Gaussian models in [7].

Consider an atypicality setup where the typical model is given by a probability density function
(pdf) fT(xl) and the atypical model is given by f (x|θ) with θ unknown. Asking if the atypical model
is better can be thought of simply as a generalized likelihood ratio test (GLRT) hypothesis test [8].

minθ f (xl |θ)
fT(xl)

≥ τ.

However, in atypicality we would like to test the sequence with respect to a large class of
alternative hypotheses—even the class of linear prediction models is infinite. So, assume we have
a finite or countable infinite set of model classesMi with corresponding pdfs fi(x|θi). A test could
then be

mini minθi fi(xl |θi)

fT(xl)
≥ τ. (1)

However, this is clearly not very useful. More and more complex model will fit data better and
better [9], so that the false alarm probability will be very large—model complexity has to be taken into
account. One way to do this through Bayesian statistics assigning prior probabilities to both models
and parameters, ending up in the test

PA ∑i P(Mi)
∫

fi(xl |θi) fi(θi)dθi

(1− PA) fT(xl)
≥ 1 (2)

where PA is the probability of a sequence being atypical and P(Mi) the probability of an alternative
modelMi. The issue is that using (2) requires choosing a lot of prior distributions and being able to
calculate marginal distributions

∫
fi(xl |θi) fi(θi)dθi. As explained in for example (3.4–3.5 [9]), these are

not easy problems to tackle. Priors are often dictated by the need for the integral to be calculable, rather
than actual prior information, and it still leaves parameters unknown (’hyperparameters’). In addition,
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choosing prior distributions is anathema to the central idea of looking for unknown data in big data.
The whole point is that we know very little about the data we are looking for.

This is where we can use description length. Suppose at first that data is discrete-valued. To each
sequence xl we assign a codeword c(xl) with length L(xl). The codewords have to be prefix free and
the lengths therefore have to satisfy the Kraft inequality [10]: ∑xl 2−L(xl) ≤ 1. If we let p(xl) = 2−L(xl)

this defines a (sub)probability on the data, which can be used in a hypothesis test. One can think of
description length and coding as a method to find probabilities. There is a key advantage in using
description length, as explained in the following. In decoding, a decoder reads a sequence of bits
sequentially and turns this into a copy of the source sequence; the codes must be prefix-free. Key here
is that in the current step the decoder can only use what is decoded in prior steps. Therefore, when the
source sequence is encoded, the encoder cannot use future samples to encode the current sample.
We call this ’the principle of sequentiality’. It is the Kraft inequality in reverse: In one direction,
as above, we can use the Kraft inequality to verify that a set of codelengths gives valid codes. In the
other direction, when codes are decodable (in the pre-fix free sense), they must satisfy the Kraft
inequality, and the corresponding probabilities must therefore be valid. An example is Lempel-Ziv
coding [10–12], which does not explicitly rely on probabilities. It gives valid codewords because the
coding is decodable with a sequential decoder.

To generalize the coding approach to real-valued data, lossless coding is needed. One can notice
that lossless coding of real-valued data is used in many applications, for example lossless audio
coding [13]. However, direct encoding of the reals represented as binary numbers, such as done
in lossless audio coding, makes the methods too dependent on data representation rather than the
underlying data. Instead we will use a more abstract model of (finite-precision) reals. We will assume
a fixed point representation with a (large) finite number, r, bits after the period, and an unlimited
number of bits prior to the period as in [14]. Assume that the actual data is distributed according to
a pdf f (x). Then the number of bits required to represent x is given by

L(x) = − log
∫ x+2−r

x
f (t)dt ≈ − log( f (x)2−r)

= − log( f (x)) + r. (3)

As we are only interested in comparing codelengths the dependency on r cancels out.
Suppose we want to decide between two models f1(x) and f2(x) for data. Then we decide f1(x) if

limr→∞− log
∫ x+2−r

x f1(t)dt+ log
∫ x+2−r

x f2(t)dt > 0, which is− log f1(x) > − log f2(x). Thus, for the
typical codelength we can simply use LT(x) = − log fT(x). One can also argue for this codelength more
fundamentally from finite blocklength rate-distortion in the limit of low distortion [15], which makes
it more theoretically well-founded. Notice that this codelength is not scaling invariant:

y = ax + b

Lt(y) = − log f (x) + log |a| (4)

which means care has to be taken when transforms of data are considered. To code the atypical
distributions, as the decoder does not know the values of the parameters, both data and parameters in
parametric models have to be encoded for a decoder to be able to decode; this was the starting point in
the original paper on MDL [14]. One could also use a Bayesian distribution

∫
fi(xl |θi) fi(θi)dθi from (2),

which does not solve the issues with using Bayes. Instead we can use the principle of sequentiality
of coding as follows. We replace

∫
fi(xl |θi) fi(θi)dθi in (2) with a codelength based on Rissanen’s

predictive MDL [16].

Li(xl) = −
l−1

∑
n=0

log fi(xn+1|θ̂i(xn)) (5)
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where θ̂(xi) is the maximum likelihood estimate of the parameter. Since this is sequentially decodable,
it gives a valid codelength, and hence probability, without any prior distribution on θ. It does not
work for the first sample, as there is no estimate. Instead we encode x1 with a default distribution.
In general application of MDL choice of the default distribution can be tricky, but for atypicality we
have a good default distribution: The typical distribution, giving the codelength

Li(xl) = −
l−1

∑
n=1

log fi(xn+1|θ̂i(xn))− log fT(x1). (6)

Notice that default distribution is the same for all models Mi: we do not have to choose a
prior for each model. There are no prior assumptions involved, since we use the typical distribution.
We still need the probabilities P(Mi); here we can use Rissanen’s universal coder of the integers [14].
The codelength for an integer i is c + log∗ i where c is a normalization constant in the Kraft
inequality [14] and log∗ l = log l + log log l + · · · with the sum continuing as long as the log is
defined. We order the models according to complexity and encode the ordinal of a model. The
description length test for the sequence xl to be atypical then becomes

− log
(
∑ 2−Li(xl)−log∗ i−c

)
− log PA

≤ − log fT(xl)− log(1− PA). (7)

The appeal of coding becomes even more clear when we search for atypical subsequences of long
sequences. Using coding this can be done as follows. The coder uses a special header, a codeword
not a prefix of any codeword used for the actual data, to denote the start of a subsequence—the
decoder will now know it needs to use the atypical decoder. It also encodes the length of the atypical
subsequence using Rissanen’s universal coder for the integers [14], adding c + log∗ l to the code length,
so that the decoder knows when to switch back to the typical coder. The whole sequence is sequentially
decodable, thus has a valid probability, and we know from [1] that this gives a valid criterion, at least
for iid sequences, in the sense that not the whole sequence will be classified as atypical; the key
is the insistence on decodability. It would be difficult to do this directly using Bayesian analysis,
as we would have to develop probability distributions for the total sequence for every combination
of atypical subsequences in the long sequence. To be precise, for every set of potential subsequences
S = {xe1

s1 , xe2
s2 , . . .} we would have to calculate p(xl |S)p(S), and then choose the S giving the largest

probability, i.e., MAP.
To understand how (7) avoids the problem overfitting of (1), we notice that asymptotically for

large l by [16]

Li(xl) ≈ f (xl |θ̂(xl)) +
k
2

log l (8)

where k is the number of parameters in θ; this is true for many MDL and Bayesian methods, including
Rissanen’s original approach [14]. Because (8) penalizes models with many parameters, overfitting is
avoided even if we consider an infinite collection of models. While (8) is often used for model selection,
it is not accurate enough for our purposes, and we use (5) directly. However, (8) is useful for discussion
and analysis.

The above approach can be seen as a generalization to real-valued data of the approach in [1]

Definition 1. A sequence is atypical if it can be described (coded) with fewer bits in itself rather than using the
(optimum) code for typical sequences.

There is a further difference from Bayes (2), which is more philosophical than computational and
practical. When we describe the problem as a hypothesis test problem as in (2), we are asking which
hypothesis is correct (which is also the basis of Bayesian model selection [9]). However, in stating the
problem as a description length problem, we are just asking if we can find a shorter description length,
not if a model is correct. By considering a very large class of alternative models (most pronounced
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when we use universal source coding), none might fit very well, none might be even close to the actual
model, but we might find one that fits better than the typical model, and that is sufficient for a sequence
to be atypical. We have no idea how atypical data might look like, so we cast a very wide net.

1.2. Alternative Approaches

Atypicality has many applications: Anomaly detection, outlier detection, data discovery, novelty
detection, transient detection, search for ‘interesting’ data etc. What all of these applications have in
common is that we seek data that is unusual in some way, and atypicality is a general method for
finding such data. Each of these applications have specific alternative methods, and we will discuss
atypicality compared to other approaches in some of these applications.

There is a very large existing literature on anomaly detection [17–26]; The paper [17] gives
an overview until 2009. What is characteristic of all methods, as far as we know, is that they look
for data that do not fit the characteristics of normal data, either statistically or according to some
other measure. From [17]: “At an abstract level, an anomaly is defined as a pattern that does not
conform to expected normal behavior.” Atypicality takes a different approach. Atypicality looks for
data where an alternative model fits the the data better. Atypicality will still find the first type of
anomalies according to [17], but it will also be able to find a wider, more subtle class of anomalies.
As a simple example, suppose the normal data is iid Gaussian with zero mean and variance σ2. The
anomalous data is also Gaussian with zero mean and variance σ2, but the noise is colored. This is in no
way anomalous according to the definition in [17]. However, by coding data with a linear predictive
coder (see Section 3.2 later) atypicality will detect the anomalous sequence. In [27] we in fact prove
that atypicality is exactly optimum for discrete data in the class of finite state machines. While we
do not have a similar theorem for real-valued data, this indicates the advantages of atypicality for
anomaly detection.

Another advantage of atypicality is that it can straightforwardly be applied to data of
unknown/variable length, as discussed in Section 1.1. All existing anomaly detection algorithms we
know of use fixed windows, so they cannot make decisions between long, slightly unusual sequences,
and short, very unusual sequences; atypicality can. On the other hand, atypicality cannot find single,
anomalous samples—outliers: To be able to find a new model for anomalous data, it needs a collection
of samples. For this kind of application, more traditional methods must be used.

A type of detection problem closely related to anomaly detection is transient detection [28–34].
In many signal processing applications, it is of interest to detect short-duration statistical changes in
observed data. For a parametric class of probability distribution { f (x|θ) : θ ∈ Θ} and for an unknown
ns and nd the following two hypotheses are considered:

H0 :xl
1 ∼ f (x|θ0)

H1 :xns−1
1 ∼ f (x|θ0) , xnd−1

ns ∼ f (x|θ1) , xl
nd
∼ f (x|θ0) .

If θ0 and θ1 are known, the Page test is optimal for this in the sense that by using a GLRT; given
an average wait between false alarms, it minimizes the worst-case average delay to detection [31].
However in many applications, there is either no information about θ1 or it varies from one transient
signal to another. In this case, it is shown that Variable Threshold Page (VTP) gives a reliable
result [29,31]. There are also other approaches of transient detection based on Nuttall’s power-law
detector that are often used in the literature [29,30]. Other methods are [32–34]. In general atypicality
will outperform this methods since it not only allows a more comprehensive class of models, but also
it can take advantage of various powerful signal processing methods such as filterbanks and linear
prediction to find transient signals with various statistics.

Finally, we will mention change point detection and quickest change detection [35–42]. The goal
here is to find a point in time where the distribution of data changes from one to another. The difference
from atypicality is that in atypicality, subsequences have both a start and end point. In principle one
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could use atypicality for change point detection, but since it is not optimized for this application,
the comparison is not that relevant, and atypicality might not perform well. We refer to [35,36] for how
to use MDL for change point detection.

2. Minimum Description Length Methods

Above we have argued for using (5) as a codelength. The issue with this method is how to
initialize the recursion. In (6) this is solved by using the typical distribution for the first sample,
but in general, with more than one parameter, θ̂i(xi) may not be defined until i becomes larger than 1.
The further issue is that even when θ̂(xi) is defined, the estimate might be poor for small i, and using
this in (5) can give very long codelengths, see Figure 1 below.

Our solution to the first issue is to encode with increasingly complex models as i increases;
we therefore only have to use the default distribution for the very first sample. Since we are not
interested in finding a specific model, this is not problematic in atypicality. Our solution to the second
issue is rather than using the ML estimate for encoding as though it is the actual parameter value,
we use it as an uncertain estimate of θ. We then take this uncertainty into account in the codelength.
This is similar to the idea of using confidence intervals in statistical estimates [43]. Below we introduce
two methods using this general principle. This is different to the sequentially normalized maximum
likelihood method [44], which modifies the encoder itself.

2.1. Sufficient Statistic Method (SSM)

As explained above, our approach to predictive MDL is to introduce uncertainty in the estimate of
θ. Our first methodology is best explained through a simple example. Suppose our model is N (µ, σ2),
with σ known. The average x̄n is the ML estimate of µ at time n. We know that

x̄n = µ + z, z ∼ N
(

0,
σ2

n

)
.

We can re-arrange this as
µ = x̄n − z.

Thus, given x̄n, we can think of µ as random N
(

x̄n, σ2

n

)
. Now

xn+1 = µ + zn+1 ∼ N
(

x̄n, σ2 +
σ2

n

)
which we can use as a coding distribution for xn+1. This compares to N

(
x̄n, σ2) that we would use

in traditional predictive MDL. Thus, we have taken into account that the estimate of µ is uncertain
for n small. The idea of thinking of the non-random parameter µ as random is very similar to the
philosophical argument for confidence intervals [43].

In order to generalize this example to more complex models, we take the following approach.
Suppose t(xn) is a k-dimensional sufficient statistic for the k-dimensional θ ∈ Θ. Also suppose there
exists some function s and a k-dimensional (vector) random variable Y independent of θ so that

t(xn) = s(Y, θ). (9)

We now assume that for every (t, Y) in their respective support, (9) has a solution for θ ∈ Θ so
that we can write

θ = r(Y, t(xn)). (10)
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The parameter θ is now a random variable (assuming r is measurable, clearly) with a pdf fxn(θ)

This then gives a distribution on xn+1, i.e.,

f (xn+1|xn) =
∫

f (xn+1|θ) fxn(θ)dθ. (11)

The method has the following property:

Theorem 1. The distribution of xn+1 is invariant to arbitrary parameter transformations.

This is a simple observation from the fact that (11) is an expectation, and that when θ is
transformed, the distribution according to (10) is also transformed with the same function.

One concern is the way the method is described. Perhaps we could use different functions s and r
and get a different result? In the following we will prove that the distribution of θ is independent of
which s and r are used.

It is well-known [6,10] that if the random variable X has CDF F, then U = F(X) has a uniform
distribution (on [0, 1]). Equivalently, X = F−1(U) for some uniform random variable U. We need to
generalize this to n dimensions. Recall that for a continuous random variable [6]

Fi|i−1,...,1(xi|xi−1, . . . x1) =
∫ xi

−∞
f (t|xi−1, . . . , x1)dt

=
1

f (xi−1, . . . , x1)

∫ xi

−∞
f (t, xi−1, . . . , x1)dt

whenever f (xi−1, . . . , x1) 6= 0. As an example, let n = 2. Then the map (X1, X2) 7→
(F1(X1), F2|1(X2, X1)) is a map from R2 onto [0, 1]2, and (F1(X1), F2|1(X2, X1)) has uniform distribution
on [0, 1]2. Here F1(X1) is continuous in X1 and F2|1(X2, X1) is continuous in X2

We can write X1 = F−1
1 (U1). For fixed x1 we can also write X2 = F−1

2|1 (U2|x1) for those x1 where
F2|1 is defined, and where the inverse function is only with respect to the parameter before |. Then[

X1

X2

]
=

[
F−1

1 (U1)

F−1
2|1 (U2|F−1

1 (U1))

]
, F̌−1(U1, U2).

This gives the correct joint distribution on (X1, X2): The marginal distribution on X1 is correct,
and the conditional distribution of X2 given X1 is also correct, and this is sufficient. Clearly F̌−1 is not
defined for all U1, U2; the relationship should be understood as being valid for almost all (X1, X2) and
(U1, U2). We can now continue like this for X3, X4, . . . , Xn. We will state this result as a lemma

Lemma 2. For any continuous random variable X there exists an n-dimensional uniform random variable U,
so that X = F̌−1(U).

Theorem 2. Consider a model t = s1(Y1; θ), with θ = r1(Y1; t) and an alternative model t = s2(Y2; θ), with
θ = r2(Y2; t). We make the following assumptions:

1. The support of t is independent of θ and its interior is connected.
2. The extended CDF F̌i of Yi is continuous and differentiable.
3. The function Yi 7→ si(Yi; θ) is one-to-one, continuous, and differentiable for fixed θ.

Then the distributions of θ given by r1 and r2 are identical.

Proof. By Lemma 2 write Y1 = F−1
1 (U1), Y2 = F−1

2 (U2). Let u be the k-dimensional uniform pdf, i.e.,
u(x) = 1 for x ∈ [0, 1]k and 0 otherwise, and let Yi = s−1

i (t; θ) denote the solution of t = si(Yi; θ) with
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respect to Yi, which is a well-defined due to Assumption 3. We can then write the distribution of t in
two ways as follows ([6]), due to the differentiability assumptions

f (t; θ) = u(F1(s−1
1 (t; θ))

∣∣∣∣∣∂F1(s−1
1 (t; θ)

∂t

∣∣∣∣∣
= u(F2(s−1

2 (t; θ))

∣∣∣∣∣∂F2(s−1
2 (t; θ)

∂t

∣∣∣∣∣ .

Due to Assumption 1 we can then that conclude ∂F1(s
−1
1 (t;θ)
∂t =

∂F2(s−1
2 (t;θ)
∂t , or

F1(s−1
1 (t; θ) = F2(s−1

2 (t; θ)) + k(θ).

But both F1 and F2 have range [0, 1]k, and it follows that k(θ) = 0. Therefore

t = s1(F−1
1 (U); θ) = s2(F−1

2 (U); θ).

If we then solve either for θ as a function of U (for fixed t), we therefore get exactly the same
result, and therefore the same distribution.

The assumptions of Theorem 2 are very restrictive, but we believe they are far from necessary.
In [45] we proved uniqueness in the one-dimensional case under much weaker assumptions
(e.g., no differentiability assumptions), but that proof is not easy to generalize to higher dimensions.

Corollary 3. Let t1(xn) and t2(xn) be equivalent sufficient statistic for θ, and assume the equivalence map is a
diffeomorphism. Then the distribution on θ given by the sufficient statistic approach is the same for t1 and t2.

Proof. We have t1 = s1(Y1, θ) and t2 = s2(Y2, θ). By assumption, there exists a one-to-one map a so
that t1 = a(t2), thus t1 = a(s2(Y2, θ)). Since the distribution of θ is independent of how the problem is
stated, t1 and t2 gives the same distribution on θ.

2.2. Normalized Likelihood Method (NLM)

The issue with the sufficient statistic method is that a sufficient statistic of the same dimension of
the parameter vector can be impossible to find. We will therefore introduce a simpler method. Let the
likelihood function of the model be f (xl |θ). For a fixed xl we can consider this as a ‘distribution’ on θ;
the ML estimate is of course the most likely value of this distribution. To account for uncertainty in
the estimate, we can instead try use the total f (xl |θ) to give a distribution on θ, and then use this for
prediction. In general f (xl |θ) is not a probability distribution as it does not integrate to 1 in θ. We can
therefore normalize it to get a probability distribution

fxl (θ) =
f (xl |θ)
C(xl)

; C(xl) =
∫

f (xl |θ)dθ (12)

if
∫

f (xl ; θ)dθ is finite. For comparison, the Bayes posteriori distribution is

f (θ|xl) =
f (xl |θ) f (θ)∫
f (xl |θ) f (θ)dθ

.

If the support Θ of θ has finite area, (12) is just the Bayes predictor with uniform prior. If the
support Θ of θ does not have finite area, we can get (12) as a limiting case when we take the limit of
uniform distributions on finite Θn that converge towards Θ. This is the same way the ML estimator
can be seen as a MAP estimator with uniform prior [46]. One can reasonably argue that if we have
no further information about θ, a uniform distribution seems reasonable, and has indeed been used
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for MDL [47] as well as universal source coding ([10], Section 13.2). What the Normalized Likelihood
Method does is simply extend this to the case when there is no proper uniform prior for θ.

The method was actually implicitly mentioned as a remark by Rissanen in ([48], Section 3.2),
but to our knowledge was never further developed; the main contribution in this paper is to introduce
the method as a practical method. From Rissanen we also know the coding distribution for xn:

f (xn+1|xn) =
∫

f (xn+1|θ) fxn(θ)dθ =
C
(
xn+1)

C (xn)
. (13)

Let us assume C(xn) becomes finite for n > 1 (this is not always the case, often n needs to be
larger). The total codelength can then be written as

L(xl) =
l−1

∑
i=1
− log f (xi+1|xi)− log fd(x1)

= − log C(xl) + log C(x2)− log fd(x1), (14)

where fd(x) is the default distribution, which for application in atypicality can be taken as the typical
distribution. One might see this simply as a (generalized) Bayesian method. However, in general
C(xn) is not a valid probability, and as mentioned in ([9], Section 3.4) an improper prior cannot be
used for Bayesian model selection. But when implemented sequentially, as indicated in (14) it does
give a valid codelength, because of the principle of sequentiality, central to coding.

2.3. Examples

We will compare the different methods for a simple model. Assume our model is N (0, σ2)

with σ unknown. The likelihood function is f (xn|σ2) = 1
(2πσ2)n/2 exp

(
− 1

2σ2 ∑n
i=1 x2

i

)
. For n = 1 we

have
∫ ∞

0 f (xn|σ2)dσ2 = ∞, but for n ≥ 2

C (xn) =
∫

f (xn|σ2)dσ2 =
1

π
n
2 2

Γ
( n−2

2
)

[
nσ̂2n

] n−2
2

then

fnlm(xn+1|xn) =
Γ
(

n−1
2

)
√

πΓ
( n−2

2
)

[
nσ̂2n

] n−2
2

[
(n + 1) σ̂2

n+1

] n−1
2

where σ̂2n = 1
n ∑n

i=1 x2
i . Thus, for coding, the two first samples would be encoded with the default

distribution, and after that the above distribution is used. For the SSM, we note that σ̂2n is a sufficient
statistic for σ2 and that z = n

σ2 σ̂2n ∼ χ2
(n), i.e., σ̂2n = s(z, σ2) = σ2

n z, which we can be solved as

σ2 = r(z, σ̂2n) = n
z σ̂2n, in the notation of (9)–(10). This is a transformation of the χ2

(n) distribution
which can be easily found as [6]

fxn(σ2) =

[
nσ̂2n

] n
2

2
n
2 Γ
( n

2
)
(σ2)

n+2
2

exp
{
− n

2σ2 σ̂2n

}
.
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Now we have

fssm(xn+1|xn) =
∫

f (xn+1|σ2) fxn(σ2)dσ2

=
Γ
(

n+1
2

)
√

πΓ
( n

2
)

[
nσ̂2n

] n
2

[
(n + 1) σ̂2

n+1

] n+1
2

. (15)

For comparison, the ordinary predictive MDL is

f (xn+1|xn) =
1√

2πσ̂2n

exp

(
− 1

2σ̂2n
x2

n+1

)
(16)

which is of a completely different form. To understand the difference, consider the codelength for x2:

L(x2) = log
(

x2
1+x2

2
|x1|

)
+ log

(√
πΓ( 1

2 )
Γ(1)

)
SSM,

L(x2) = 1
2 log

(
2πx2

1
)
+

x2
2

x2
1

predictive MDL.

It can be seen that if x1 is small and x2 is large, the codelength for x2 is going to be large. But in
the sufficient statistic method this is strongly attenuated due to the log in front of the ratio. Figure 1
shows this quantitatively in the redundancy sense. The redundancy is the difference between the
codelength using true and estimated distributions. As can be seen, the CDF of the ordinary predictive
MDL redundancy has a long tail, and this is taken care of by SSM.

Redundancy
-10 -5 0 5 10 15 20 25 30 35 40
0

0.2

0.4

0.6

0.8

1

CDF of Redundancies

Redundancy of x2 given x1: SSM
Redundancy of x2 given x1: O.P. MDL
Redundancy of a length-10 sequence: SSM
Redundancy of a length-10 sequence: O.P. MDL

Figure 1. Redundancy comparison between ordinary predictive minimum description length (O.P.
MDL) and our proposed sufficient statistic method for µ = 0 and σ2 = 4.

3. Scalar Signal Processing Methods

In the following we will derive MDL for various scalar signal processing methods. We can take
inspiration from signal processing methods generally used for source coding, such as linear prediction
and wavelets; however, the methods have to be modified for MDL, as we use lossless coding, not lossy
coding. As often in signal processing, the models are a (deterministic) signal in Gaussian noise.
In a previous paper we have also considered non-Gaussian models [7]. All proofs are in Appendices.
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3.1. Iid Gaussian Case

A natural extension of the examples considered in Section 2.1 is xn ∼ N (µ, σ2) with both µ and σ2

unknown. Define µ̂n = 1
n ∑n

i=1 xi and S2
n = 1

n−1 ∑n
i=1 (xi − µ̂n)

2. Then the sufficient statistic method is

f (xn+1|xn) =

√
n

π (n + 1)
Γ
( n

2
)

Γ
(

n−1
2

)
×
[
(n− 1) S2

n
] n−1

2[
nS2

n+1
] n

2
. (17)

This is a special case of the vector Gaussian model considered later, so we will not provide a proof.

3.1.1. Linear Transformations

The iid Gaussian case is a fundamental building block for other MDL methods. The idea is to
find a linear transformation so that we can model the result as iid, and then use the iid Gaussian
MDL. For example, in the vector case, suppose xn ∼ N(µ, Σ) is (temporally) iid, and let yn = Axn ∼
N(Aµ, AΣAT). If we then assume that AΣAT is diagonal, we can use the iid Gaussian MDL on each
component. Similarly, in the scalar case, we can use a filter instead of a matrix. Because of (4) we
need to require A to be orthonormal: For any input we then have yT

n yn = xT
n ATAxn = xT

n xn, and in
particular E[yT

n yn] = E[xT
n xn] independent of the actual Σ. We will see this approach in several cases

in the following.

3.2. Linear Prediction

Linear prediction is a fundamental to random processes. Write

x̂n+1|xn =
∞

∑
k=0

wkxn−k

en+1 = xn+1 − x̂n+1|xn .

Then for most stationary random processes the resulting random process {en} is uncorrelated,
and hence in the Gaussian case, iid, by the Wold decomposition [6]. It is therefore a widely used
method for source coding, e.g., [13]. In practical coding, a finite prediction order M is used,

x̂n+1|xn =
M

∑
k=1

wkxn−k+1, n ≥ M

Denote by τ the power of {en}. Consider the simplest case with M = 1: There are two
unknown parameters (w1, τ). However, the minimal sufficient statistic has dimension three [49]:(

∑n
k=1 x2

k , ∑n−1
k=1 x2

k , ∑n
k=2 xkxk−1

)
. Therefore, we cannot use SSM; and even if we could, the distribution

of the sufficient statistic is not known in closed form [49]. We therefore turn to the NLM.
We assume that en+1 = xn+1 − x̂n+1|xn is iid normally distributed with zero mean and variance τ,

f (xn|τ, w) =
1

(2πτ)(n−M)/2

× exp

− 1
2τ

n

∑
i=M+1

[
xi −

M

∑
k=1

wkxi−k

]2
 . (18)
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Define

r̂(n)(k) =
n

∑
i=M+1

xixi−k.

Then a simple calculation shows that

n

∑
i=M+1

e2
i = r̂(n)(0)− 2wTp(n) + wT R(M)

(n) w

where wT = [w1 w2 · · · wM], pT
(n) = [r̂(n)(1) r̂(n)(2) · · · r̂(n)(M)],

R(M)
(n) =

n

∑
i=M+1

xi−1
i−M

(
xi−1

i−M

)T
(19)

and xi−1
i−M = [xi−1, xi−2, . . . , xi−M]. Thus

f (xn|τ, w) =
1

(2πτ)(n−M)/2

× exp
(
− 1

2τ

[
r̂(n)(0)− 2wTp(n) + wT R(M)

(n) w
])

giving (see Appendix A)

C(xn) =
1

2 (π)
n−2M

2

√
det

(
R(n)

) Γ
(

n−2M−2
2

)
(

τ̂
(M)
(n)

) n−2M−2
2

and

fM(xn+1|xn) =

√√√√√ det
(

R(M)
(n)

)
det

(
R(M)
(n+1)

) Γ
(

n−2M−1
2

)
Γ
(

n−2M−2
2

)

× 1√
π

(
τ̂
(M)
(n)

) n−2M−2
2

(
τ̂
(M)
(n+1)

) n−2M−1
2

(20)

with τ̂
(M)
(n) = r̂(n)(0)− pT

(n)R
−1
(n)p(n).

The Equation (20) is defined for n ≥ 2M + 2: The vector xi−1
i−M is defined for i ≥ M + 1, and R(M)

(n)
defined by (19) becomes full rank when the sum contains M terms. Before the order M linear predictor
becomes defined, the data needs to be encoded with other methods. Since in atypicality we are not
seeking to determine the model of data, just if a different model than the typical is better, we encode
data with lower order linear predictors until the order M linear predictor becomes defined. So, the first
sample is encoded with the default pdf. The second and third samples are encoded with the iid
unknown variance coder (There is no issue in encoding some samples with SSM and others with
NLM) (15). Then the order 1 linear predictor takes over, and so on.

3.3. Filterbanks and Wavelets

A popular approach to source coding is sub-band coding and wavelets [50–52]. The basic idea is
to divide the signal into (perhaps overlapping) spectral sub-bands and then allocate different bitrates
to each sub-band; the bitrate can be dependent on the power in the sub-band and auditory properties
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of the ear in for example audio coding. In MDL we need to do lossless coding, so this approach cannot
be directly applied, but we can still use sub-band coding as explained in the following.

As we are doing lossless coding, we will only consider perfect reconstruction filterbanks [50,53].
Furthermore, in light of Section 3.1.1 we also consider only (normalized) orthogonal filterbanks [50,52].

The basic idea is that we split the signal into a variable number of sub-bands by putting the
signal through the filterbank and downsampling. Then the output of each downsampled filter is
coded with the iid Gaussian coder of Section 3.1 with an unknown mean and variance, which are
specific to each sub-band. In order to understand how this works, consider a filterbank with two
sub-bands. Assume that the signal is stationary zero mean Gaussian with power σ2, and let the power
at the output of sub-band 1 be σ2

1 and of sub-band 2 be σ2
2 . Because the filterbank is orthogonal,

we have σ2 = 1
2
(
σ2

1 + σ2
2
)
. To give some intuition to why a sub-band coder can give shorter codelengh,

we use (8) to get the approximate codelengths

Ldirect =
l
2

log
(

σ2
)
+

l
2
(log 2π + log e) +

1
2

log l

Lfilterbank =
l
4

log
(

σ2
1

)
+

l
4
(log 2π + log e) +

1
2

log l

+
l
4

log
(

σ2
2

)
+

l
4
(log 2π + log e) +

1
2

log l

=
l
2

log
(√

σ2
1 σ2

2

)
+

l
2
(log 2π + log e) + log l.

Since
√

σ2
1 σ2

2 ≤ σ2 (with equality only if σ2
1 = σ2

2 ), the sub-band coder will result in shorter
codelength for sufficiently large l if the signal is non-white.

The above analysis is a stationary analysis for long sequences. However, when considering shorter
sequences, we also need to consider the transient. The main issue is that output power will deviate
from the stationary value during the transient, and this will affect the estimated power σ̂2

n used in
the sequential MDL. The solution is to transmit to the receiver the input to the filterbank during the
transient, and only use the output of the filterbank once the filters have been filled up. It is easy to see
that the system is still perfect reconstruction: Using the received input to the filterbank, the receiver
puts this through the analysis filterbank. It now has the total sequence produced by the analysis
filterbank, and it can then put that through the reconstruction filterbank. When using multilevel
filterbanks, this has to be done at each level.

We assume the decoder knows which filters are used and the maximum depth D used. In principle
the encoder could now search over all trees of level at most D. The issue is that there are an astonishing
large number of such trees; for example for D = 4 there are 676 such trees. Instead of choosing the
best, we can use the idea of the CTW [1,54,55] and weigh in each node: Suppose after passing a signal
xn of an internal node S through low-pass and high-pass filters and downsampler, xn/2

L and xn/2
H are

produced in the children nodes of S. The weighted probability of xn in the internal node S will be

fw (xn) =
1
2

f (xn) +
1
2

fw

(
xn/2

L

)
fw

(
xn/2

H

)
which is a good coding distribution for both a memoryless source and a source with memory [54,55].

4. Vector Case

We now assume that a vector sequence xn, xi ∈ RM is observed. The vector case allows for
a more rich set of model and more interesting data discovery than the scalar case, for example atypical
correlation between multiple sensors. It can also be applied to images [56], and to scalar data by
dividing into blocks. That is in particular useful for the DFT, Section 4.4.

A specific concern is initialization. Applying sequential coding verbatim to the vector case means
that the first vector x1 needs to be encoded with the default coder, but this means the default coder
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influences the codelength too much. Instead we suggest to encode the first vector as a scalar signal
using the scalar Gaussian coder (unknown variance→unknown mean/variance). That way only the
first component of the first vector needs to be encoded with the default coder.

4.1. Vector Gaussian Case with Unknown Mean

First assume µ is unknown but Σ is given. We define etr (· · · ) = exp (trace (· · · )) and we have

f (xn|µ) = 1√
(2π)kn det (Σ)n

× exp

{
−1

2

n

∑
i=1

(xi − µ)T Σ−1 (xi − µ)

}
.

We first consider the NLM. By defining µ̂n = 1
n ∑n

i=1 xi and Σ̂n = ∑n
i=1 xixi (note that Σ̂n is not the

estimate of Σ) we have

C (xn) =
∫

f (xn|µ) dµ

=
1√

(2π)kn det (Σ)n
exp

{
−1

2

n

∑
i=1

xiΣ−1xi

}

×
∫

exp
{
−n

2
µTΣ−1µ + nµ̂T

n Σ−1µ
}

dµ

= C exp

{
−1

2

n

∑
i=1

(
xiΣ−1xi − µ̂T

n Σ−1µ̂n

)}

= Cetr
{
−1

2

(
Σ̂n − nµ̂nµ̂T

n

)
Σ−1

}
where C = 1√

(2π)k(n−1)nk det(Σ)n−1
, hence we can write

f (xn+1|xn) =
C
(
xn+1)

C (xn)

=

√(
n

n + 1

)k 1√
(2π)k det (Σ)

×
etr
{
− 1

2
(
Σ̂n+1 − (n + 1) µ̂n+1µ̂T

n+1
)

Σ−1
}

etr
{
− 1

2
(
Σ̂n − nµ̂nµ̂T

n
)

Σ−1
} . (21)

It turns out that in this case, the SSM gives the same result.

4.2. Vector Gaussian Case with Unknown Σ

Assume xn ∼ N (0, Σ) where the covariance matrix is unknown:

f (xn|Σ) = 1√
(2π)kn det (Σ)n

etr
{
−1

2
Σ̂nΣ−1

}

where Σ̂n = ∑n
i=1 xixT

i .
In order to find the MDL using SSM, notice that we can write

xn = Szn, zn ∼ N (0, I)
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where S = Σ
1
2 , that is S is some matrix that satisfies SST = Σ. A sufficient statistic for Σ is

Σ̂n =
n

∑
i=1

xixT
i = S

n

∑
i=1

zizT
i ST def

= SUST .

Let Ŝn = Σ̂
1
2
n = SU

1
2 . Then we can solve S = ŜnU−

1
2 and Σ = ŜnU−1ŜT

n . Since U−1

has Inverse-Wishart distribution U−1 ∼ W−1
M (I, n), one can write Σ ∼ W−1

M
(
Σ̂n, n

)
. Using this

distribution we calculate in Appendix B that

f (xn+1|xn) =
1

π
M
2

det
(
Σ̂n
) n

2

det
(
Σ̂n+1

) n+1
2

ΓM

(
n+1

2

)
ΓM
( n

2
) (22)

where ΓM is the multivariate gamma function [57].
On the other hand, using the normalized likelihood method we have

C (xn) =
ΓM

(
n
2 −

M+1
2

)
2

M(M+1)
2 π

kn
2 det

(
Σ̂n
) n

2−
M+1

2
,

from which

f (xn+1|xn) =
C
(
xn+1)

C (xn)

=
1

π
k
2

det
(
Σ̂n
) n

2−
M+1

2

det
(
Σ̂n+1

) n
2−

M
2

ΓM

(
n
2 −

M
2

)
ΓM

(
n
2 −

M+1
2

) . (23)

4.3. Vector Gaussian Case with Unknown Mean and Σ

Assume xn ∼ N (µ, Σ) where both mean and covariance matrix are unknown:

f (xn|µ, Σ) =
1√

(2π)Mn det (Σ)n

× exp

{
−1

2

n

∑
i=1

(xi − µ)T Σ−1 (xi − µ)

}
.

It is well-known [46] that sufficient statistics are µ̂n = 1
n ∑n

i=1 xi and Σ̂n = (n− 1) Sn =

∑n
i=1 (xi − µ̂n) (xi − µ̂n)

T . Let S be a square root of Σ, i.e., SST = Σ. We can then write

µ̂n = µ +
1√
n

Sz

Σ̂n = SUST

where z ∼ N (0, I) and U ∼ WM (I, n− 1), z and U are independent, and WM is the Wishart
distribution. We solve the second equation with respect to S as in Section 4.2 and the first with respect
to µ, to get
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Σ = ŜnU−1ŜT
n ∼ W−1

M
(
Σ̂n, n− 1

)
µ = µ̂n −

1√
n

Sz = µ̂n −
1√
n

ŜnU−
1
2 z ∼ N

(
µ̂n,

1
n

Σ
)

where Ŝn is a square root of Σ̂n. We can explicitly write the distributions as

fxn (µ|Σ) =
√

nM

(2π)M det (Σ)
exp

{
−n

2
(µ− µ̂n)

T Σ−1 (µ− µ̂n)
}

fxn (Σ) =
det

(
Σ̂n
) n−1

2

2
M(n−1)

2 ΓM

(
n−1

2

) det (Σ)−
n+M

2 etr
{
−1

2
Σ̂nΣ−1

}
.

Using these distributions, in Appendix C we calculate

f (xn+1|xn) =
1

π
M
2

√(
n

n + 1

)M det
(
Σ̂n
) n−1

2

det
(
Σ̂n+1

) n
2

ΓM
( n

2
)

ΓM

(
n−1

2

)
and for NLM

f (xn+1|xn) =
1

π
M
2

√(
n

n + 1

)M det
(
Σ̂n
) n−1

2 −
M+1

2

det
(
Σ̂n+1

) n
2−

M+1
2

×
ΓM

(
n−M−1

2

)
ΓM

(
n−M−2

2

) .

These are very similar to the case of known mean, Section 4.2. We require one more sample before
the distributions become well-defined, and Σn is defined differently.

4.4. Sparsity and DFT

We can specify a general method as follows. Let Φ be an orthonormal basis of RM and write the
signal model as

xn =
N

∑
i=1

(Ai + si,n)φj(i) + wn.

Here N is the number of basis vectors used, and j(i), i = 1, . . . , N their indices. The signal si,n is iid
N (0, σi), the noise wn iidN (0, σ2I), and Ai, σ2

i , σ2 are unknown. If we let yn = ΦTxn and J the indices
of the signal components then

yj(i),n = Ai + si,n + wj(i),n = Ai + s̃i,n, j(i) ∈ J

yj,n = wj,n, j /∈ J.

Thus the yj(i),n can be encoded with the scalar Gaussian encoder of Section 3.1, while the yj,n can
be encoded with a vector Gaussian encoder for N (0, σ2IM−N) using the following equation that is
achieved using the SSM:
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f (wn+1|wn) =
1

π
(M−N)

2

Γ
(
(M−N)(n+1)

2

)
Γ
(
(M−N)n

2

)
× [nτ̂n]

(M−N)n
2

[(n + 1) τ̂n+1]
(M−N)(n+1)

2

where τ̂n = 1
n ∑n

i=1 wT
i wi. Now we need to choose which coefficients j(i) to choose as signal

components and inform the decoder. The set J can be communicated to the decoder by sending
a sequence of 0, 1 encoded with the universal encoder of ([10], Section 13.2) with MH

(
N
M

)
+ 1

2 log M
bits. The optimum set can in general only be found by trying all sets J and choosing the one with
shortest codelength, which is infeasible. A heuristic approach is to find the N components with
maximum power when calculated over the whole blocklength l (the decoder does not need to know
how J was chosen, only what J is, it is therefore fine to use the power at the end of the block). What still
remains is how to choose N. It seems computationally feasible to start with N = 1 and then increase N
by 1 until the codelength no longer decreases, since most of the calculations for N can be reused for
N + 1.

We can apply this in particular when Φ is a DFT matrix. In light of Section 3.1.1 we need to
use the normalized form of the DFT. The complication is that the output is complex, i.e., the M real
inputs result in M complex outputs, or 2M real outputs. Therefore, care has to be taken with the
symmetry properties of the output. Another option is to use DCT instead, which is well-developed
and commonly used for compression.

5. Experimental Results

5.1. Transient Detection Using Hydrophone Recordings

As an example of the application of atypicality, we will consider transient detection [28].
In transient detection, a sensor records a signal that is pure noise most of the time, and the task
is to find the sections of the signal that are not noise. In our terminology, the typical signal is noise,
and the task is to find the atypical parts.

As data we used hydrophone recordings from a sensor in the Hawaiian waters outside Oahu,
the Station ALOHA Cabled Observatory (ACO) [58]. The data used for this paper were collected (with
sampling freuquency of 96 kHz which was then downsampled to 8 kHz) during a proof module phase
of the project conducted between February 2007 and October 2008. The data was pre-processed by
differentiation (y[n] = x[n]− x[n− 1]) to remove a non-informative mean component.

The principal goal of this two years of data is to locate whale vocalization. Fin (22 m, up to 80 tons)
and sei (12–18 m, up to 24.6 tons) whales are known by means of visual and acoustic surveys to be
present in the Hawaiian Islands during winter and spring months, but migration patterns in Hawaii
are poorly understood [58].

Ground truth has been established by manual detection, which is achieved using visual inspection
of spectrogram by a human operator. 24 h of manual detections for both the 20 Hz and the
20–35 Hz variable calls were recorded for each the following dates (randomly chosen): 1 March 2007,
17 November 2007, 29 May 2008, 22 August 2008, 4 September 2008 and 9 February 2008 [58].

In order to analyze the performance of different detectors on such a data, first the measures
’Precision’ and ’Recall’ are defined as below
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Recall =
number of correct detections

total number of manual detections

Precision =
number of correct detections

total number of algorithm detections

where Recall measures the probability of correctly obtained vocalizations over expected number of
detections and Precision measures the probability of correctly detected vocalizations obtained by the
detector. The Precision versus Recall curve show the detectors ability to obtain vocalizations as well as
the accuracy of these detections [58].

In order to compare our atypicality method with alternative approaches in transient detection,
we compare its performance with Variable Threshold Page (VTP) which outperforms other similar
methods in detection of non-trivial signals [31].

For the atypicality approach, we need a typical and an atypical coder. The typical signal is
pure noise, which, however, is not necessarily white: It consists of background noise, wave motion,
wind and rain. We therefore used a linear predictive coder. The order of the linear predictive coder was
globally set to 10 as a compromise between performance and computational speed. An order above
10 showed no significant decrease in codelength, while increasing computation time. The prediction
coefficients were estimated for each 5 min segment of data. It seems unreasonable to expect the
prediction coefficients to be globally constant due to for example variations in weather, but over short
length segments they can be expected to be constant. Of course, a 5 min segment could contain atypical
data and that would result in incorrect typical prediction coefficients. However, for this particular data
we know (or assume) that atypical segments are of very short duration, and therefore will affect the
estimated coefficients very little. This cannot be used for general data sets, only for data sets where
there is a prior knowledge (or assumption) that atypical data are rare and short. Otherwise the typical
coder should be trained on data known to be typical as in [1] or by using unsupervised atypicality,
which we are developing for a future paper.

For the atypical coder, we implemented all the scalar methods of Section 3 in addition to the
DFT, Section 4.4, with optimization over blocklength. Let X (n, l) = (xn, ..., xn+l−1) be a subsequence
of length l to be tested for atypicality, and suppose LT (X (n, l)) and LA (X (n, l)) are the typical
codelength and atypical codelength of sequence X (n, l), respectively. Note that LA (X (n, l)) =

− log ( f (X (n, l))) + log∗ l where f is any encoder of Sections 3 and 4.4, and log∗ l is the number of bits
to tell the decoder the length of the atypical subsequence, as discussed in Section 1.1, see also [1,59].
Then for every sample of data we calculate

∆L(n) = max
l
{LT(X (n, l))− LA(X (n, l))} (24)

and the atypicality criterion would be ∆L(n) > τ for some threshold (which does not need to be
chosen prior to running the algorithm, since the larger ∆L(n) is the more atypical). Please note that
the threshold τ can be seen as the length of the header the encoder uses to tell the decoder an atypical
sequence is next. Calculating ∆L(n) requires examining every subsequence (perhaps up to a maximum
length). Because the coders (e.g., (5)) are recursive, we can efficiently calculate LA (X (n, l + 1)) from
LA (X (n, l)), so the complexity is not prohibitive. Still, for a large dataset (i.e., big data), direct
implementation of atypicality search is too computationally complex; so instead, similar to [59] we
propose a tree-structured searching algorithm in which discovery of atypical sequence (in this case,
whale vocalizations) can be performed in different stages. First in coarse search, a tree-structured
division of data is considered such that at each level i, data is divided into non-overlapping blocks
of length 2i, then for each block typical and atypical codelengths are compared. Obviously due to
non-overlapping division some atypical sequences are missed, and the worse case is if an atypical
sequence of length l is divided equally into two consecutive non-overlapping blocks of length 2i.
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However, each of these sequences of length l/2 might be detected at the level i− 1. The issue is that

the complexity penalty per sample from (8) is about
k
2 log l

l , which is decreasing in l. Thus, a sequence
of length l may be atypical, but each of the length l

2 halves may not be. This can be compensated by
repeating every block once and encoding this double length block. By experimentation we have found
that this gives a very low chance of missing an atypical subsequence. On the other hand, it does give
false positives, because an exactly repeated block clearly has a strong (false) pattern. This is not a big
issue, as these false positives are eliminated during the next stage.

After the coarse search, the next stage is fine search, in which the blocks flagged by coarse search
are expanded and every subsequence of this expanded block is tested in an exhaustive search, which
eliminates false positives. The final stage is segmentation, where the exact start and end point of
atypical sequences are determined by minimizing the total codelength of the whole sequence of data.
Figure 2 shows Precision vs. Recall curve for both atypicality and VTP.
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Figure 2. Precision vs. Recall probability for all six days that manual detections are available.

5.2. Anomaly Detection Using Holter Monitoring Data

As another example of atypicality application, we consider an anomaly detection problem.
We consider data obtained by Holter Monitoring, i.e., a continuous tape recording of a patient’s
ECG for 24 h. We use the MIT-BIH Normal Sinus Rhythm Database (nsrdb) which is provided by
PhysioNet [60]. Even though the subjects included in this database were found to have had no
significant persistent arrhythmias, there still existed arrhythmic beats and patterns to look for [60].
We apply atypicality to find interesting parts of the the dataset.

Since the data is assumed to be ‘Normal Sinus Rhythm’, a Gaussian model with unknown mean
and variance is assumed for the typical data. For atypical encoding, we used the same methodology
as in the previous section. As can be seen in the Figure 3, atypicality as an anomaly detector was
able to find two major atypical segments, both of which contained multiple supraventricular beats
and ventricular contraction (provided by HRV annotation files, PhysioNet [60]). Based on the data
annotation these two segments were the only fractions in the data that contained abnormal beats and
rhythms, which shows the efficacy of the atypicality framework. For comparison we included VTP as
a transient detection method and the pruned exact linear time (PELT) method [37] as a change-point
detection algorithm. As can be seen, VTP and PELT detected only one of the anomalous segments,
while atypicality detected both.
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Figure 3. Detected atypical segments of Holter Monitoring heart rate variability (HRV): “S” stands for
supraventricular arrhythmia and “V” stands for ventricular contraction based on annotation provided
by PhysioNet [60].

6. Conclusions

Atypicality is a method for finding rare, interesting snippets in big data. It can be used for anomaly
detection, data mining, transient detection, and knowledge extraction among other things. The current
paper extended atypicality to real-valued data. It is important here to notice that discrete-valued
and real-valued atypicality is one theory. Atypicality can therefore be used on data that are of mixed
type. One advantage of atypicality is that it directly applies to sequences of variable length. Another
advantage is that there is only one parameter that regulates atypicality, the single threshold parameter τ,
which has the concrete meaning of the logarithm of the frequency of atypical sequences. This contrasts
with other methods that have multiple parameters.

Atypicality becomes really interesting in combination with machine learning. First, atypicality can
be used to find what is not learned in machine learning. Second, for many data sets, machine learning
is needed to find the typical coder. In the experiments in this paper, we did not need machine learning
because the typical data was pure noise. But in many other types of data, e.g., ECG (electrocardiogram),
‘normal’ data is highly complex, and the optimum coder has to be learned with machine learning.
This is a topic for future research.
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Appendix A. Linear Prediction

We showed

f (xn|τ, w) =
1

(2πτ)(n−M)/2

× exp
(
− 1

2τ

[
r̂(n)(0)− 2wTp(n) + wT R(M)

(n) w
])

,

therefore using NLM we have

C(xn) =
∫ ∫

f (xn|τ, w)dwdτ

= A
∫

τ
τ−

(n−M)
2 exp

{
−

r̂(n)(0)
2τ

}
e1 (τ) dτ

where A = 1
(2π)(n−M)/2 and e1 (τ) =

∫
w exp

{
− 1

2τ

[
wT R(n)w−2pT

(n)w
]}

dw. Hence

C(xn) = B
∫

τ
τ−

n−2M
2 exp

{
− 1

2τ

[
r̂(n)(0)− pT

(n)R
−1
(n)p(n)

]}
dτ

= B
∫

τ
τ−

n−2M
2 exp

{
− 1

2τ
τ̂
(M)
(n)

}
dτ

=
1

2 (π)
n−2M

2

√
det

(
R(n)

) Γ
(

n−2M−2
2

)
(

τ̂
(M)
(n)

) n−2M−2
2

where B = 1
(2π)(n−2M)/2

√
det(R(n))

.

Appendix B. Vector Gaussian Case: Unknown Σ

We showed that Σ has Inverse-Wishart distribution Σ ∼ W−1
M
(
Σ̂n, n

)
where Σ̂n = ∑n

i=1 xixi, hence

fxn (Σ) =
det

(
Σ̂n
) n

2

2
nM

2 ΓM
( n

2
) det (Σ)−

n+M+1
2 etr

{
−1

2
Σ̂nΣ−1

}
,

and since

f (xn+1|Σ) =
1√

(2π)M det (Σ)
etr
{
−1

2
(
Σ̂n+1 − Σ̂n

)
Σ−1

}
,

therefore we have
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f (xn+1|xn) =
∫

Σ>0
f (xn+1|Σ) fxn (Σ) dΣ

= C
∫

Σ>0
det (Σ)−

n+M+2
2 etr

{
−1

2
Σ̂n+1Σ−1

}
dΣ

(A)
= C

∫
Y>0

det (Y)
n
2−

M
2 etr

{
−1

2
Σ̂n+1Y

}
dY

= D
∫

V>0
det (V)

n
2−

M
2 etr {−V} dV

(B)
= D

∫
V>0

det (V)
n+1

2 −
M+1

2 etr {−V} dV

=
1

π
M
2

det
(
Σ̂n
) n

2

det
(
Σ̂n+1

) n+1
2

ΓM

(
n+1

2

)
ΓM
( n

2
)

where C =
det(Σ̂n)

n
2

2
M(n+1)

2 ΓM( n
2 )π

M
2

and D =
det(Σ̂n)

n
2

det(Σ̂n+1)
n+1

2

1

ΓM( n
2 )π

M
2

, and in equations (A) and (B) we changed

the variable Σ = Y−1 and Y = 2Σ̂−
1
2

n VΣ̂−
1
2

n respectively and Γm (a) =
∫

V>0 det (V)a− (m+1)
2 etr {−V} dV

is the multivariate Gamma function.

Appendix C. Vector Gaussian Case: Unknown Mean and Σ

We showed that µ ∼ N
(

µ̂n, 1
n Σ
)

and Σ ∼ W−1
M
(
Σ̂n, n− 1

)
where µ̂n = 1

n ∑n
i=1 xi and Σ̂n =

∑n
i=1 (xi − µ̂n) (xi − µ̂n)

T . Now using Bayes we can write the joint pdf as fxn (µ, Σ) = fxn (µ|Σ) fxn (Σ).

Define A def
= f (xn+1|xn) =

∫
Σ>0

∫
f (xn+1|µ, Σ) fxn (µ, Σ) dµdΣ,

A = B
∫

Σ>0
det (Σ)−

n+M+2
2 e1 (Σ) e2 (Σ) dΣ

where

e1 (Σ) = etr
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2

(
Σ̂n + nµ̂nµ̂T

n + xn+1xT
n+1

)
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}
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∫
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{
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2

[
µTΣ−1µ− 2µ̂n+1Σ−1µ

]}
dµ

=
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(n + 1)M exp
{
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2
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}
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(
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) n−1

2
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(
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2

) n
M
2

2
M(n−1)

2 (2π)M
.

Now since Σ̂n+1 = Σ̂n + nµ̂nµ̂T
n + xn+1xT

n+1 − (n + 1) µ̂n+1µ̂T
n+1, by defining C def

= B
√

(2π)M

(n+1)M =√( n
n+1
)M det(Σ̂n)

n−1
2
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2 )

1
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M
2

we can write
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A = C
∫

Σ>0
det (Σ)−

n+M+1
2 etr
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−1
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Σ̂n+1Σ−1

}
dΣ

= C
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det (Y)

n
2−

M+1
2 etr

{
−1

2
Σ̂n+1Y

}
dY

= C
2

Mn
2

det
(
Σ̂n+1

) n
2

∫
V>0

det (V)
n
2−

M+1
2 etr {−V} dV

=
1

π
M
2

√(
n

n + 1

)M det
(
Σ̂n
) n−1

2

det
(
Σ̂n+1

) n
2

ΓM
( n

2
)

ΓM

(
n−1

2

) .

References

1. Høst-Madsen, A.; Sabeti, E.; Walton, C. Data Discovery and Anomaly Detection Using Atypicality: Theory.
IEEE Trans. Inf. Theory 2016, submitted.

2. Chandola, V.; Banerjee, A.; Kumar, V. Anomaly Detection for Discrete Sequences: A Survey. IEEE Trans.
Knowl. Data Eng. 2012, 24, 823–839. [CrossRef]

3. Li, Y.; Nitinawarat, S.; Veeravalli, V.V. Universal Outlier Hypothesis Testing. IEEE Trans. Inf. Theory 2014,
60, 4066–4082. [CrossRef]

4. Li, Y.; Nitinawarat, S.; Veeravalli, V.V. Universal Outlier Detection. In Proceedings of the Information Theory
and Applications Workshop (ITA), San Diego, CA, USA, 10–15 February 2013; pp. 1–5.

5. Li, Y.; Nitinawarat, S.; Veeravalli, V.V. Universal Sequential Outlier Hypothesis Testing. In Proceedings of
the IEEE International Symposium on Information Theory (ISIT), Honolulu, HI, USA, 29 June–4 July 2014;
pp. 3205–3209.

6. Grimmett, G.R.; Stirzaker, D.R. Probability and Random Processes, 3rd ed.; Oxford University Press: Oxford,
UK, 2001.

7. Sabeti, E.; Host-Madsen, A. Atypicality for the Class of Exponential Family. In Proceedings of the 54th
Annual Allerton Conference on Communication, Control, and Computing (Allerton), Monticello, IL, USA,
27–30 September 2016.

8. Kay, S.M. Fundamentals of Statistical Signal Processing, Volume II: Detection Theory; Prentice-Hall: Upper Sadle
River, NJ, USA, 1993.

9. Bishop, C.M. Pattern Recognition and Machine Learning; Springer: Berlin, Germany, 2006.
10. Cover, T.; Thomas, J. Information Theory, 2nd ed.; John Wiley: Hoboken, NJ, USA, 2006.
11. Ziv, J.; Lempel, A. A Universal Algorithm for Sequential Data Compression. IEEE Trans. Inf. Theory 1977,

23, 337–343. [CrossRef]
12. Ziv, J.; Lempel, A. Compression of Individual Sequences via Variable-Rate Coding. IEEE Trans. Inf. Theory

1978, 24, 530–536. [CrossRef]
13. Ghido, F.; Tabus, I. Sparse Modeling for Lossless Audio Compression. IEEE Trans. Audio Speech Lang. Proc.

2013, 21, 14–28. [CrossRef]
14. Rissanen, J. A Universal Prior for Integers and Estimation by Minimum Description Length. Ann. Stat. 1983,

11, 416–431. [CrossRef]
15. Kostina, V. Data Compression With Low Distortion and Finite Blocklength. IEEE Trans. Inf. Theory 2017,

63, 4268–4285. [CrossRef]
16. Rissanen, J. Stochastic Complexity and Modeling. Ann. Stat. 1986, 14, 1080–1100. [CrossRef]
17. Chandola, V.; Banerjee, A.; Kumar, V. Anomaly Detection: A Survey. ACM Comput. Surv. 2009, 41, 15.

[CrossRef]
18. Ranshous, S.; Shen, S.; Koutra, D.; Harenberg, S.; Faloutsos, C.; Samatova, N.F. Anomaly Detection in

Dynamic Networks: A Survey. WIREs Comput. Stat. 2015, 7, 223–247. [CrossRef]
19. Lee, Y.J.; Yeh, Y.R.; Wang, Y.C.F. Anomaly Detection via Online Oversampling Principal Component Analysis.

IEEE Trans. Knowl. Data Eng. 2013, 25, 1460–1470. [CrossRef]

http://dx.doi.org/10.1109/TKDE.2010.235
http://dx.doi.org/10.1109/TIT.2014.2317691
http://dx.doi.org/10.1109/TIT.1977.1055714
http://dx.doi.org/10.1109/TIT.1978.1055934
http://dx.doi.org/10.1109/TASL.2012.2211014
http://dx.doi.org/10.1214/aos/1176346150
http://dx.doi.org/10.1109/TIT.2017.2676811
http://dx.doi.org/10.1214/aos/1176350051
http://dx.doi.org/10.1145/1541880.1541882
http://dx.doi.org/10.1002/wics.1347
http://dx.doi.org/10.1109/TKDE.2012.99


Entropy 2019, 21, 219 24 of 25

20. Pimentel, M.A.; Clifton, D.A.; Clifton, L.; Tarassenko, L. A Review of Novelty Detection. Signal Process. 2014,
99, 215–249. [CrossRef]

21. Esling, P.; Agon, C. Time-Series Data Mining. ACM Comp. Surv. (CSUR) 2012, 45, 12. [CrossRef]
22. Li, W.; Mahadevan, V.; Vasconcelos, N. Anomaly Detection and Localization in Crowded Scenes. IEEE Trans.

Pattern Anal. Mach. Intell. 2014, 36, 18–32. [PubMed]
23. Jia, Z.; Shen, C.; Yi, X.; Chen, Y.; Yu, T.; Guan, X. Big-Data Analysis of Multi-Source Logs for Anomaly

Detection on Network-Based System. In Proceedings of the 13th IEEE Conference on Automation Science
and Engineering (CASE), Xi’an, China, 20–23 August 2017; pp. 1136–1141.

24. Ahmed, M.; Mahmood, A.N.; Hu, J. A Survey of Network Anomaly Detection Techniques. J. Netw.
Comp. Appl. 2016, 60, 19–31. [CrossRef]

25. Yoon, M.K.; Mohan, S.; Choi, J.; Christodorescu, M.; Sha, L. Learning Execution Contexts from System Call
Distribution for Anomaly Detection in Smart Embedded System. In Proceedings of the Second International
Conference on Internet-of-Things Design and Implementation, Pittsburgh, PA, USA, 18–21 April 2017;
pp. 191–196.

26. Sari, A. A Review of Anomaly Detection Systems in Cloud Networks and Survey of Cloud Security Measures
in Cloud Storage Applications. J. Inf. Secur. 2015, 6, 142. [CrossRef]

27. Høst-Madsen, A.; Sabeti, E.; Walton, C.; Lim, S.J. Universal Data Discovery Using Atypicality. In Proceedings
of the 3rd International Workshop on Pattern Mining and Application of Big Data (BigPMA 2016) at the 2016
IEEE International Conference on Big Data (Big Data 2016), Washington, DC, USA, 5–8 December 2016.

28. Han, C.; Willett, P.; Chen, B.; Abraham, D. A Detection Optimal Min-Max Test for Transient Signals.
IEEE Trans. Inf. Theory 1998, 44, 866–869. [CrossRef]

29. Wang, Z.; Willett, P. A Performance Study of Some Transient Detectors. IEEE Trans. Signal Proc. 2000,
48, 2682–2685. [CrossRef]

30. Wang, Z.; Willett, P.K. All-Purpose and Plug-In Power-Law Detectors for Transient Signals. Trans. Signal Proc.
2001, 49, 2454–2466. [CrossRef]

31. Wang, Z.J.; Willett, P. A Variable Threshold Page Procedure for Detection of Transient Signals. IEEE Trans.
Signal Proc. 2005, 53, 4397–4402. [CrossRef]

32. Guépié, B.K.; Fillatre, L.; Nikiforov, I. Sequential Detection of Transient Changes. Seq. Anal. 2012, 31, 528–547.
[CrossRef]

33. Egea-Roca, D.; López-Salcedo, J.A.; Seco-Granados, G.; Poor, H.V. Performance Bounds for Finite Moving
Average Tests in Transient Change Detection. IEEE Trans. Signal Proc. 2018, 66, 1594–1606. [CrossRef]

34. Guépié, B.K.; Fillatre, L.; Nikiforov, I. Detecting a Suddenly Arriving Dynamic Profile of Finite Duration.
IEEE Trans. Inf. Theory 2017, 63, 3039–3052.

35. Hirai, S.; Yamanishi, K. Detecting Changes of Clustering Structures Using Normalized Maximum Likelihood
Coding. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, Beijing, China, 12–16 August 2012; pp. 343–351.

36. Yamanishi, K.; Miyaguchi, K. Detecting Gradual Changes from Data Stream Using MDL-Change Statistics.
In Proceedings of the IEEE International Conference on Big Data (Big Data), Washington, DC, USA,
5–8 December 2016; pp. 156–163.

37. Killick, R.; Fearnhead, P.; Eckley, I.A. Optimal Detection of Changepoints with a Linear Computational Cost.
J. Am. Stat. Assoc. 2012, 107, 1590–1598. [CrossRef]

38. Zou, S.; Fellouris, G.; Veeravalli, V.V. Quickest Change Detection under Transient Dynamics: Theory and
Asymptotic Analysis. IEEE Trans. Inf. Theory 2018, 1. [CrossRef]

39. Molloy, T.L.; Ford, J.J. Minimax Robust Quickest Change Detection in Systems and Signals with Unknown
Transients. IEEE Trans. Autom. Control 2018, 1. [CrossRef]

40. Veeravalli, V.V.; Banerjee, T. Quickest Change Detection. Acad. Press Library Signal Proc. 2013, 3, 209–256.
41. Fuh, C.D.; Tartakovsky, A.G. Asymptotic Bayesian Theory of Quickest Change Detection for Hidden Markov

Models. IEEE Trans. Inf. Theory 2019, 65, 511–529. [CrossRef]
42. Lavielle, M. Using Penalized Contrasts for the Change-Point Problem. Signal Proc. 2005, 85, 1501–1510.

[CrossRef]
43. Larsen, R.J.; Marx, M. An Introduction to Mathematical Statistics and Its Applications; Prentice-Hall: Englewood

Cliffs, NJ, USA, 1986; Volume 2.

http://dx.doi.org/10.1016/j.sigpro.2013.12.026
http://dx.doi.org/10.1145/2379776.2379788
http://www.ncbi.nlm.nih.gov/pubmed/24231863
http://dx.doi.org/10.1016/j.jnca.2015.11.016
http://dx.doi.org/10.4236/jis.2015.62015
http://dx.doi.org/10.1109/18.661537
http://dx.doi.org/10.1109/78.863080
http://dx.doi.org/10.1109/78.960393
http://dx.doi.org/10.1109/TSP.2005.857060
http://dx.doi.org/10.1080/07474946.2012.719443
http://dx.doi.org/10.1109/TSP.2017.2788416
http://dx.doi.org/10.1080/01621459.2012.737745
http://dx.doi.org/10.1109/TIT.2018.2877972
http://dx.doi.org/10.1109/TAC.2018.2872198
http://dx.doi.org/10.1109/TIT.2018.2843379
http://dx.doi.org/10.1016/j.sigpro.2005.01.012


Entropy 2019, 21, 219 25 of 25

44. Roos, T.; Rissanen, J. On Sequentially Normalized Maximum Likelihood Models. In Proceedings of the
Workshop on Information Theoretic Methods in Science and Engineering (WITMSE-08), Tampere, Finland,
18 August 2008.

45. Sabeti, E.; Host-Madsen, A. Enhanced MDL with Application to Atypicality. In Proceedings of the IEEE
International Symposium on Information Theory (ISIT), Aachen, Germany, 25–30 June 2017.

46. Scharf, L.L. Statistical Signal Processing: Detection, Estimation, and Time Series Analysis; Addison-Wesley:
Boston, MA, USA, 1990.

47. Grunwald, P.D. The Minimum Description Length Principle; MIT Press: Cambridge, MA, USA, 2007.
48. Rissanen, J. Stochastic Complexity in Statistical Inquiry; World Scientific: Singapore, 1998; Volume 15.
49. Forchini, G. The Density of the Sufficient Statistics for a Gaussian AR(1) Model in Terms of Generalized

Functions. Stat. Probab. Let. 2000, 50, 237–243. [CrossRef]
50. Mallat, S. A Wavelet Tour of Signal Processing: The Sparse Way; Academic press: Cambridge, MA, USA, 2008.
51. Vetterli, M.; Kovacevic, J. Wavelets and Subband Coding; Prentice Hall: Englewood Cliffs, NJ, USA, 1995;

Volume 995.
52. Vetterli, M.; Herley, C. Wavelets and Filter Banks: Theory and Design. IEEE Trans. Signal Process. 1992,

40, 2207–2232. [CrossRef]
53. Mitra, S.K.; Kuo, Y. Digital Signal Processing: A Computer-Based Approach; McGraw-Hill New York: New York,

NY, USA, 2006; Volume 2.
54. Willems, F.M.J.; Shtarkov, Y.; Tjalkens, T. The Context-Tree Weighting Method: Basic Properties. IEEE Trans.

Inf. Theory 1995, 41, 653–664. [CrossRef]
55. Willems, F.; Shtarkov, Y.; Tjalkens, T. Reflections on “The Context Tree Weighting Method: Basic properties”.

Newslett. IEEE Inf. Theory Soc. 1997, 47, 1.
56. Sabeti, E.; Høst-Madsen, A. How interesting images are: An Atypicality Approach For Social Networks.

In Proceedings of the IEEE International Conference on Big Data (Big Data), Washington, DC, USA,
5–8 December 2016.

57. Muirhead, R.J. Aspects of Multivariate Statistical Theory; John Wiley & Sons: Hoboken, NJ, USA, 2009;
Volume 197.

58. Silver, K. A Passive Acoustic Automated Detector for Sei and Fin Whale Calls. Master’s Thesis, University
of Hawaii, Honolulu, HI, USA, 12 November 2014.

59. Host-Madsen, A.; Sabeti, E. Atypical Information Theory for Real-Valued Data. In Proceedings of the IEEE
International Symposium on Information Theory (ISIT), Hong Kong, China, 14–19 June 2015; pp. 666–670.

60. Goldberger, A.L.; Amaral, L.A.N.; Glass, L.; Hausdorff, J.M.; Ivanov, P.C.; Mark, R.G.; Mietus, J.E.;
Moody, G.B.; Peng, C.K.; Stanley, H.E. PhysioBank, PhysioToolkit, and PhysioNet: Components of a
New Research Resource for Complex Physiologic Signals. Circulation 2000, 101, e215–e220. [CrossRef]
[PubMed]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/S0167-7152(00)00111-5
http://dx.doi.org/10.1109/78.157221
http://dx.doi.org/10.1109/18.382012
http://dx.doi.org/10.1161/01.CIR.101.23.e215
http://www.ncbi.nlm.nih.gov/pubmed/10851218
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Anomaly Detection and Data Discovery Based on Description Length
	Alternative Approaches

	Minimum Description Length Methods
	Sufficient Statistic Method (SSM)
	Normalized Likelihood Method (NLM)
	Examples

	Scalar Signal Processing Methods
	Iid Gaussian Case 
	Linear Transformations

	Linear Prediction
	Filterbanks and Wavelets

	Vector Case
	Vector Gaussian Case with Unknown Mean
	Vector Gaussian Case with Unknown 
	Vector Gaussian Case with Unknown Mean and 
	Sparsity and DFT

	Experimental Results
	Transient Detection Using Hydrophone Recordings
	Anomaly Detection Using Holter Monitoring Data

	Conclusions
	Linear Prediction
	Vector Gaussian Case: Unknown 
	Vector Gaussian Case: Unknown Mean and 
	References

