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Background: Vonoprazan fumarate is a potassium-competitive acid blocker that was
developed as a novel acid-suppressing drug for multiple indications. As a potential
alternative to proton-pump inhibitors, the determination of the drug-drug interactions is
vital for further applications. Probe drug cocktails are a type of rapid, economical, and
efficient approach for evaluating cytochrome P450 enzyme activities. Since vonoprazan is
metabolized partly by cytochrome P450, cocktails were used to study CYP-based drug-
drug interactions.

Methods: This study was conducted both in vitro and in vivo. In the in vitro study of rat
liver microsomes, ultra-performance liquid chromatography coupled to tandem mass
spectrometry was utilized to assess the reversible inhibition of cytochrome P450 by
vonoprazan by determining the concentration of probe drugs (phenacetin, bupropion,
tolbutamide, dextromethorphan, midazolam, chlorzoxazone). The differences in the levels
of probe drugs between the rat groups with or without vonoprazan administration were
also tested in the rats.

Results: In vitro analysis revealed that the IC50 values of midazolam, tolbutamide,
dextromethorphan, and bupropion in rat microsomes were 22.48, 18.34, 3.62, and
3.68 mM, respectively, while chlorzoxazone and phenacetin displayed no inhibition. In vivo
analysis revealed that midazolam, bupropion, dextromethorphan, and tolbutamide
showed significant (P < 0.05) differences in distinct pharmacokinetic parameters after
vonoprazan administration, while those of chlorzoxazone and phenacetin were not
significantly different.

Conclusion: The in vitro and in vivo results indicated that vonoprazan can inhibit
CYP3A4, CYP2C9, CYP2D6, and CYP2B6, suggesting that the coadministration of
vonoprazan with cytochrome P450 substrates should be performed cautiously in
clinical settings.
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INTRODUCTION

Vonoprazan fumarate (TAK-438) is a potassium-competitive
acid blocker (P-CAB) that was developed as a novel acid-
suppressing drug and launched in 2015 (Garnock-Jones, 2015).
As a potential alternative to proton-pump inhibitors (PPIs),
vonoprazan has been verified to be superior to conventional
PPIs or even more effective in distinct gastric acid-related clinical
indications. A phase III multicenter study demonstrated that
there was no significant difference between vonoprazan and
lansoprazole in treating erosive esophagitis (Xiao et al., 2020).
In terms of preventing the recurrence of low-dose or long-term
aspirin-associated ulcers, vonoprazan has proven to be as
effective as lansoprazole (Kawai et al., 2018). The superior
effect to rabeprazole was observed in healing artificial ulcer
after endoscopic submucosal dissection (Yamasaki et al., 2018).
Since PPIs play a vital role in helping to eradicate Helicobacter
pylori infection, vonoprazan has been applied in similar trails
and is considered to be a substitute for PPIs in resistant groups
(O'Connor et al., 2019).

Additionally, regarding the pharmacokinetic profile,
vonoprazan exhibits some advantages over PPIs e.g., it takes
effect more quickly, suppresses acid secretory more potently, and
exhibits better tolerability (Jenkins et al., 2015). Specifically, 20
mg of vonoprazan once daily equals 60 mg of omeprazole b.i.d.,
which is also equivalent to esomeprazole 40 mg b.i.d. (Graham
and Tansel, 2018). It has been reported that vonoprazan is
metabolized in two ways: the oxidative part by cytochrome
P450 (CYP) enzyme isoforms and the nonoxidative part by
sulfotransferase (SULT2A1) (Yamasaki et al., 2017).

Cytochrome P450 (CYP), which represents a diverse group of
enzymes found in liver microsomes, is significantly indispensable
in biological metabolism (Wilkinson, 2005) by metabolizing a
large group of clinically used drugs (van Dyk et al., 2018).
Because these enzymes can facilitate the elimination of various
drugs, or modify their pharmacologic activities, the inhibition of
these enzymes caused by drug coadministration or drug abuse
can account for the increasing risk of adverse reactions (Vazquez,
2018). Human CYP includes 18 families and 44 subfamily
members, which are categorized by amino acid similarities.
Although the functions of genes in human cytochrome clusters
contained differ from those of mice (Barzi et al., 2017), human
CYP have their functional counterparts in mice, providing us
with efficient approaches for further drug-drug interaction
(DDI) studies.

Thus, probe drug cocktails were developed to evaluate CYP
activities and the potential of DDIs (Frye et al., 1997). After years
of modification, the use of these cocktails is now a rapid,
economical, and efficient approach for evaluating different CYP
enzymes simultaneously but independently (Rowland et al.,
2016). To our best of our knowledge, no comprehensive DDI
study of vonoprazan both in vitro and in vivo using the cocktails
approach. Additionally, the existing results of vonoprazan DDIs
were constrained to limited types of CYPs or were contradictory
(Kagami and Furuta, 2018). Vonoprazan has not yet been
launched in many countries, however, considering its
effectiveness and safety, it has substantial potential to be widely
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utilized. Therefore, determining its DDIs will be beneficial for
future clinical applications. Hence, in the present study, we
explored the latent drug-drug interactions of vonoprazan. We
chose phenacetin (CYP1A2), bupropion (CYP2B6), tolbutamide
(CYP2C9), dextromethorphan (CYP2D6), midazolam (CYP3A),
and chlorzoxazone (CYP2E1) as the core cocktail probe drugs,
and ultrahigh-performance liquid chromatography coupled with
triple quadrupole electrospray tandem mass spectrometry
(UPLC-MS/MS) was performed to determine the results
sensitively and reliably.
MATERIALS AND METHODS

Chemicals and Reagents
Phenacetin, bupropion, tolbutamide, dextromethorphan,
midazolam, chlorzoxazone, and the diazepam (all purity> 98%)
that used as internal standards (ISs) were purchased from J&K
Scientific Ltd. (Beijing, China). Vonoprazan was purchased from
Bei j ing Sunflower Scient ific Ltd . (Bei j ing , China) .
Hydroxybupropion and hydroxymidazolam were purchased
from Sigma-Aldrich (St Louis, USA). Dextrorphan,
hydroxytolbutamide, hydroxychlorzoxazone, and 4-
acetamidophenol were purchased from Toronto Research
Chemicals (Toronto, Canada). Reduced nicotinamide adenine
dinucleotide phosphate (NADPH) was acquired from Roche
Pharmaceuticals Ltd. (Basel, Switzerland). Ultra-pure water
was produced by Milli-Q, a reagent-standard water purification
system (Millipore, Bedford, USA). Acetonitrile and methanol
that of high performance liquid chromatography (HPLC) grade
were obtained from Merck Company (Darmstadt, Germany).

Instrumentation and Analytical Conditions
The UPLC-MS/MS conditions were established as described
previously (Ma et al., 2015) and were modified by adding
c h l o r z o x a z o n e a n d r e p l a c i n g me t o p r o l o l w i t h
dextromethorphan in the probe drug system. Chromatographic
separation was performed using the Acquity UPLC system
(Waters Corp., Milford, MA, USA) and Acquity BEH C18
column (2.1 mm × 50 mm, 1.7 mM) at 40°C. The mobile phase
comprising acetonitrile (A) and 0.1% formic acid water (B) was
set with a 0.40-ml/min flow rate. The gradient program was
applied as follows: 0–0.6 min, 10–50% A; 0.6–1 min, 50–80%; 1–
2 min, 80–95% A; 2–2.5 min, 95% A; 2.5–2.6 min, 95–10% A;
2.6–3 min, 10% A. XEVO TQD triple quadrupole mass
spectrometer was equipped with electrospray ionization (ESI),
and multiple-reaction monitoring (MRM) mode was selected for
quantitation. The transitions are shown in Table 1. MassLynx 4.1
software (Waters Corp., Milford, MA, USA) was used for data
acquisition, and the UPLC-MS/MS chromatogram of blank
plasma that was spiked with probe drugs and metabolites is
shown below (Figure 1).

Preparation of Rat Liver Microsomes
The pooled rat liver microsomes (RLMs) obtained from eight
rats, which were weighed and homogenized with cold 0.01 mM
phosphate-buffered saline (PBS), containing 0.25 mM sucrose.
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After centrifugation for 15 min at 11,000 rpm, the supernatants
were separated and transferred into new tubes for another 15-min
centrifugation at 11,000 rpm. Next, ultracentrifugation was
performed at 10,000 rpm at 4°C for 1 h., and the microsomal
pellets were resuspended with cold 0.01 mM PBS and stored at
−80°C (Wang et al., 2015). The protein concentration of RLMs was
determined using the Bradford Protein Assay Kit (Thermo
Scientific, Waltham, MA, USA).

In Vitro Interaction Studies in Rat Liver
Microsomes
Next, vonoprazan was applied as the inhibitor to determine the
half maximal inhibitory concentration (IC50). The incubation
Frontiers in Pharmacology | www.frontiersin.org 3
mixture in a total volume of 200 ml contained 0.5 mg/ml of
RLMs, 1 mM potassium phosphate buffer (pH 7.4), the probe
drug mixture that dissolved by dimethyl sulfoxide (40, 20, 10,
100, 20, and 5 mM for phenacetin, bupropion, tolbutamide,
dextromethorphan, chlorzoxazone, and midazolam,
respectively), vonoprazan (1, 2.5, 5, 10, 25, 50, and 100 mM)
and 1 mMNADPH (Stoetzer et al., 2015). After preincubation in
a shaking water bath at 37°C for 5 min, an NADPH-regenerating
system was added to initiate the reaction in a final volume of
200 ml. The reaction was performed for 30 min, and was stopped
by cooling to −80°C immediately. Next, 20 ml of internal
standard (IS) working solution and 200 ml of acetonitrile were
added. Centrifugation was performed at 13,000 rpm for 5 min
after vortexing for 1 min. The supernatant mixture (2 ml) was
injected into the UPLC–MS/MS system for analysis.

Pharmacokinetic Study of Vonoprazan
Ten specific pathogen-free (SPF) grade Sprague–Dawley rats
(male, 220 ± 20 g) were provided by Wenzhou Medical
University Laboratory Animal Research Center. This study was
carried out in accordance with the principles of the Basel
Declaration and recommendations of Wenzhou Medical
University Administration Committee of Experimental
FIGURE 1 | UPLC-MS/MS chromatograms, blank plasma spiked with chlorzoxazone, midazolam, diazepam (IS), dextromethorphan, tolbutamide, bupropion, and
phenacetin.
TABLE 1 | The transitions of probe drugs.

Compound Parent Daughter Cone (V) Collision (V)

Phenacetin 180.05 109.94 35 20
Bupropion 240.13 184.09 24 12
Tolbutamide 271.2 155.1 30 15
Dextromethorphan 272.19 147.01 45 30
Diazepam 285.1 193.1 35 30
Midazolam 326.02 290.99 50 28
Chlorzoxazone 168.09 132.05 48 20
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Animals. The protocol was approved by the Wenzhou Medical
University Administration Committee of Experimental Animals
(ID Number: wydw2019-650). Ten rats were randomly divided
into two groups: the vonoprazan group (n = 5) and control group
(n = 5). Both groups were fasted overnight before experiments
but were allowed water all the time. The six probe drug mixtures
and vonoprazan were dissolved in 0.5% carboxy methyl cellulose
sodium (CMC-Na), respectively. The vonoprazan group was
administered 5 mg/kg of vonoprazan for 14 days. The control
group was administered 0.5% CMC-Na. After 30 min of
vonoprazan or 0.5% CMC-Na, on the 14th day, the two groups
were treated by gavage at a single dosage of 10 mg/kg for
bupropion, dextromethorphan, phenacetin, midazolam, and
chlorzoxazone, and of 1 mg/kg for tolbutamide.

Sample Collection and Preparation
Blood samples (300 µl) were collected via the tail vein at the time
points of 0.083, 0.25, 0.5, 1, 2, 3, 4, 6, 8, 12, and 24 h. after gavage.
Next, the samples were collected into 1.5-ml centrifuge tubes and
were immediately centrifuged for 10 min at 4,000 rpm speed. For
every 100µlof rat plasmawas addedwith 200µl of acetonitrile in0.5
mg/ml of IS was added, followed by vortex mixing for one minute.
After centrifugation at 13,000 rpm for 15 min, 5 µl of supernatant
was prepared for UPLC-MS/MS system to analysis. In vitro DDI
detection system, the pH was 7.4 and the component of buffer was
consisted of 100 mM potassium phosphate.
Frontiers in Pharmacology | www.frontiersin.org 4
Statistical Analysis
The GraphPad (version 7.0; GraphPad Software Inc., San Diego,
CA, USA) was applied to calculate IC50 values and plot plasma
concentration-time curves. The pharmacokinetic parameters
using noncompartmental analysis was calculated by DAS
(version 3.2.8; Wenzhou Medical University, China). Statistical
comparisons within groups were conducted by SPSS (version
25.0; SPSS Inc., Chicago, IL, USA), using Student's t-test. A
P-value <0.05 was considered statistically significant.
RESULTS

Effects of Vonoprazan on the Metabolism
of Probe Drugs In Vitro
Following vonoprazan addition, the metabolism of the four
probe drugs midazolam, tolbutamide, dextromethorphan, and
bupropion were inhibited to various degrees (Figure 2). Their
IC50 values in rat microsomes were 22.48 µM (Figure 2A),
18.34 µM (Figure 2B), 3.62 Mm (Figure 2C), and 3.68 µM
(Figure 2D), respectively. By contrast, chlorzoxazone
(Figure 2E) and phenacetin (Figure 2F) displayed no
inhibition. The results illustrated that vonoprazan can inhibit
the metabolism of midazolam, tolbutamide, dextromethorphan,
and bupropion in rat microsomes.
FIGURE 2 | The inhibitory effect of vonoprazan on midazolam (A), tolbutamide (B), dextromethorphan (C), bupropion (D), chloraoxazone(E), and phenacetin (F) for
IC50 values in RLMs (values are Mean ± SD, n = 3).
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Effects of Vonoprazan on the Metabolism
of Probe Drugs In Vivo
The statistical analysis results of the mean pharmacokinetic
parameters are demonstrated in Tables 2–4, which were
analyzed by DSA 3.2.8. The mean plasma concentration versus
time curves of each probe drug in the vonoprazan and control
groups are presented in Figure 3.

Midazolam, bupropion, dextromethorphan, and tolbutamide
showed significant differences (P < 0.05) in distinct
pharmacokinetic parameters compared with the control group,
while the parameters of chlorzoxazone and phenacetin were not
significantly different. The AUC0!t values of midazolam,
bupropion, dextromethorphan, and tolbutamide were all
increased greatly, by 1.17-fold, 2.17-fold, 1.52-fold, and 0.86-
fold, respectively, compared with that of the control group.
Additionally, the AUC0!∞ values were elevated by 1.25-fold,
2.30-fold, 1.50-fold, and 0.83-fold, respectively. Specifically,
the addition of vonoprazan significantly increased the Tmax
of midazolam and the Cmax values of bupropion,
dextromethorphan, and tolbutamide by 1.50-fold, 2.33-fold,
1.87-fold, and 0.67-fold, respectively. Additionally, vonoprazan
significantly decreased the CLz/F of midazolam, bupropion,
dextromethorphan, and the Vz/F of bupropion by 54.7, 70.6,
61.0, and 53.3%, respectively.

These results indicate that vonoprazan has an inhibitory
effect on the metabolism of midazolam, bupropion,
dextromethorphan, and tolbutamide in rats, agreeing with the
results obtained in vitro.
DISCUSSION

Vonoprazan, a P-CAB drug, was approved for application in the
treatment of acid-related diseases in Japan on December 26, 2014
Frontiers in Pharmacology | www.frontiersin.org 5
(Takeda, 2014). Previously, proton pump inhibitors (PPIs) were
considered the first-in-class available drug to treat acid-related
diseases, such as gastroesophageal reflux disease and
gastroduodenal ulcers (Spechler et al., 2019), and has been
widely utilized in the eradication therapy of H. pylori (Crowe,
2019). The unmet clinical needs of PPIs promote new drug
development. Because the high acidic environment in the
stomach is established by the gastric H+ and K+-ATPase
(Yamamoto et al., 2019), classical PPIs have been produced
previously. P-CABs can both block the H+ and K+-ATPase
enzyme and reversibly bind K+ ion (Abe et al., 2018), enabling
vonoprazan to show long duration and good bioavailability that
can be less affected by the pH in the stomach (Hori et al., 2011).
The better are the physicochemical characteristics, the more
frequent are well-designed controlled clinical trials conducted.
Thus, vonoprazan has been gradually applied in triple or
quadruple regimens as a substitute for PPIs to enhance the
antimicrobial effect against H. pylori because drug resistance to
classical strategies has increased annually (Fallone et al., 2019).
Vonoprazan was confirmed to be superior in the secondary
prevention of nonsteroidal anti-inflammatory drug-induced
peptic ulcers (Mizokami et al., 2018). Vonoprazan is also
thought to potentially show superiority over PPIs in patients
who are difficult to treat, given that it can reliably achieve a
therapeutically required intragastric pH (Tansel and
Graham, 2017).

Concerning the pharmacodynamics of vonoprazan, before it
entered the market, in vitro studies demonstrated that it is
mainly metabolized by CYP3A4 and partially by CYP2C19,
CYP2B6, CYP2D6, and SULT2A1 (Echizen, 2016). At that
time, its inhibitory effect on any CYP isozymes were
considered would not to emerge in clinical settings. However,
though the distinct CYP2C19 genotypes showed no appreciable
correlation with its metabolism in initial study (Kagami et al.,
2016), subsequent trials exhibited dissimilar results (Funakoshi
et al., 2019), indicating there may be other possible DDIs. Thus,
intending to explore as much DDIs as possible, we chose those
six probe drugs for wider coverage: phenacetin (CYP1A2),
b u p r o p i o n (CYP 2B 6 ) , t o l b u t am i d e ( CYP 2C 9 ) ,
dextromethorphan (CYP2D6), midazolam (CYP3A), and
chlorzoxazone (CYP2E1). Those similar enzymes also have
been detected in other clinical trials (Gravel et al., 2019). We
utilized the system we established before, which is more
convincing and reliable. But as rats do not have CYP2C19, the
results are limited and it should be paid attention to this, if the
trials on human were to be conducted.

This study investigated the potential DDIs in vitro by using
rat liver microsomes and in vivo using performing ultra-
per formance l iqu id chromatography-tandem mass
spectrometry to detect the metabolites of probe drugs in rat
plasma. The in vitro results indicated that vonoprazan has direct
inhibitory effects on CYP3A4 (IC50 = 22.48 µM), CYP2C9
(IC50 = 18.34 µM), CYP2D6 (IC50 = 3.62 µM), and CYP2B6
(IC50 = 3.68 µM), but no effect on CYP1A2 and CYP2E1. These
findings partially confirm the results produced using making use
of human liver microsomes (HLMs) (Nishihara et al., 2019).
TABLE 2 | Pharmacokinetic parameters of probe drugs (midazolam and
bupropion) from control group and vonoprazan group rats (mean ± SD, n = 5).

Parameters Unit Midazolam Bupropion

Vonoprazan
+

midazolam

Midazolam Vonoprazan
+

bupropion

Bupropion

AUC (0-t) ug/
L*h

1,355.69 ±
539.80*

625.40 ±
194.16

767.76 ±
374.15*

241.87 ±
105.87

AUC (0-∞) ug/
L*h

1,480.79 ±
577.29*

656.94 ±
198.31

804.11 ±
384.27*

243.45 ±
106.60

MRT (0-t) h 2.35 ± 0.39 1.90 ± 0.60 2.93 ± 0.59 2.72 ± 0.51
MRT (0-∞) h 3.11 ± 0.68 2.34 ± 1.12 3.49 ± 1.33 2.78 ± 0.57
t1/2z h 2.31 ± 0.48 1.85 ± 1.18 2.43 ± 1.13 1.38 ± 0.25
Tmax h 0.45 ± 0.11* 0.18 ± 0.09 0.40 ± 0.14 0.37 ± 0.36
Vz/F L/kg 24.50 ± 7.07 39.36 ±

20.44
48.17 ±
19.58

99.13 ±
53.70

CLz/F L/h/
kg

7.65 ± 2.95* 16.90 ±
7.15

15.24 ±
7.66*

51.79 ±
32.61

Cmax ug/L 622.13 ±
420.88

335.42 ±
190.55

323.44 ±
197.10*

97.08 ±
55.54
*P < 0.05 indicates statistical difference between the two groups.
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TABLE 3 | Pharmacokinetic parameters of probe drugs (dextromethorphan and tolbutamide) from control group and vonoprazan group rats (mean ± SD, n = 5).

Parameters Unit Dextromethorphan Tolbutamide

Vonoprazan +
dextromethorphan

Dextromethorphan Vonoprazan +
tolbutamide

Tolbutamide

AUC (0-t) ug/L*h 804.16 ± 205.63* 318.68 ± 107.33 462,333 ± 103,203* 248,799 ± 122,431
AUC (0-∞) ug/L*h 842.68 ± 199.30* 336.61 ± 95.30 484,776 ± 126,240* 264,335 ± 138,164
MRT (0-t) h 3.14 ± 0.47 3.47 ± 0.65 7.92 ± 0.29 7.65 ± 1.24
MRT (0-∞) h 3.77 ± 1.04 4.35 ± 1.99 8.88 ± 1.04 8.72 ± 2.10
t1/2z h 2.57 ± 0.94 2.61 ± 1.47 4.83 ± 1.27 4.99 ± 1.56
Tmax h 0.45 ± 0.33 0.75 ± 0.77 3.60 ± 1.34 3.00 ± 1.00
Vz/F L/kg 46.04 ± 19.59 125.47 ± 88.46 0.0140 ± 0.0020* 0.03 ± 0.01
CLz/F L/h/kg 12.44 ± 3.12* 31.91 ± 9.87 0.002 ± 0.001 0.01 ± 0.00
Cmax ug/L 275.76 ± 63.90* 95.96 ± 55.77 36,407 ± 6,755* 21,791 ± 3,736
Frontiers in Pharmacology
 | www.frontiersin.o
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*P < 0.05 indicates statistical difference between the two groups.
TABLE 4 | Pharmacokinetic parameters of probe drugs (chlorzoxazone and phenacetin) from control group and vonoprazan group rats (mean ± SD, n = 5).

Parameters Unit Chlorzoxazone Phenacetin

Vonoprazan +
chlorzoxazone

Chlorzoxazone Vonoprazan +
phenacetin

Phenacetin

AUC (0-t) ug/L*h 73,080.1 ± 12,891.2 89,528.9 ± 10,455.3 4,873.1 ± 2,596.0 5,037.1 ± 2,108.7
AUC (0-∞) ug/L*h 73,138.9 ± 12,884.3 89,629.8 ± 10,476.8 4,891.2 ± 2,581.9 5,043.6 ± 2,107.0
MRT (0-t) h 2.16 ± 0.37 2.69 ± 0.79 1.06 ± 0.20 1.12 ± 0.20
MRT (0-∞) h 2.17 ± 0.37 2.70 ± 0.80 1.10 ± 0.25 1.13 ± 0.21
t1/2z h 0.93 ± 0.33 0.93 ± 0.28 0.68 ± 0.31 0.60 ± 0.06
Tmax h 0.75 ± 0.35 1.50 ± 1.00 0.30 ± 0.11 0.30 ± 0.11
Vz/F L/kg 0.19 ± 0.08 0.15 ± 0.05 2.86 ± 2.41 1.97 ± 0.81
CLz/F L/h/kg 0.14 ± 0.03 0.11 ± 0.01 2.65 ± 1.52 2.25 ± 0.80
Cmax ug/L 27,449.6 ± 8,245.7 28,500.0 ± 5,519.9 4,798.2 ± 3,104.8 3,865.3 ± 1,020.4
lu
FIGURE 3 | The pharmacokinetic profiles of midazolam (A), dextromethorphan (B), bupropion (C), chlorzoxazone (D), tolbutamide (E), and phenacetin (F) in control
group and vonoprazan group rats (n = 5).
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Nevertheless, the IC50 values in previous studies via HLMs were
much higher than the maximum plasma concentrations of
vonoprazan after therapeutic oral doses; therefore,
theoretically, few clinical restraint effects should be considered.
However, actual situations are more complex than expected. A
previous study reported a reference maximum plasma
concentration level in rats of 17 ng/ml (Kogame et al., 2017),
indicating that the threshold value of vonoprazan could be
reached and that the metabolism of these four probe drugs
could be extended in rats in vivo.

The re fo r e , t o fu r the r conso l ida t e our r e su l t s ,
pharmacokinetic interaction studies in rats in vivo were
implemented. The main pharmacokinetic parameters
(AUC0!t and AUC0!∞) of midazolam, bupropion,
dextromethorphan, and tolbutamide were e levated
significantly following vonoprazan, indicating vonoprazan
indeed constrained their metabolism. Specifically, the oral
clearance (CLz/F) of midazolam was decreased while the
Tmax was increased, indicating vonoprazan affected
midazolam by postponing the exposure and reducing the
clearance. Regarding bupropion and dextromethorphan,
vonoprazan may lessen the clearance and resulted in a rise
in the maximum plasma concentration (Cmax). Regarding
tolbutamide, the apparent volume of distribution (Vz/F)
declined, implying that the vonoprazan approximately can
enhance its binding ability, thus increasing Cmax. Similar to
the in vitro findings, chlorzoxazone and phenacetin was not
affected by vonoprazan. Because the diverse probe drugs
represent corresponding CYP enzymes, considering all of the
data, the results in vitro and in vivo were coherent: the
vonoprazan can inhibit CYP3A4, CYP2C9, CYP2D6, and
CYP2B6 to a distinct extent.

Drug interactions of PPI have been studied a lot and results
are quite specific (Xie et al., 2019). As a feasible substitute in
future, the vonoprazan's DDIs deserve explorations. Thus far,
the DDI investigation of vonoprazan mainly concerned
CYP3A4 and CYP2C19, with unconvincing consequences. In
the triple regimens to eradicate H. pylori infection, whether
the coadministration of vonoprazan and clarithromycin
(CYP3A4 inhibitor) would have a mutual effect remains
debatable (Jenkins et al., 2017; Sugimoto and Yamaoka,
2018). Additionally, Kagami et al. (2018) observed that
vonoprazan could attenuate the function of clopidogrel, not
depending on the CYP2C19 or CYP3A4 genotypes. Other CYP
types were also confirmed to not be associated with reducing
the antiplatelet effectiveness of both clopidogrel (Nishihara
and Czerniak, 2018) and prasugrel (Nishihara, 2019). It seems
the relationship between anti-acid and antiplatelet agents is
more intricate. The controversial findings could be due to the
heterogeneity of different studies or influenced by other type
enzymes noted in this study. The potential inhibitory effects of
vonoprazan on CYP2C9, CYP2D6, and CYP2B6 have
been revealed in our results but didn't be paid much
attention in other studies. Considering various common
drugs are metabolized by these pathways: warfarin by 3A4
Frontiers in Pharmacology | www.frontiersin.org 7
and 2C9 (Vazquez, 2018), tricyclic antidepressants by 2D6
(Gaedigk et al., 2017), nicotine by 2B6 (Tomaz et al., 2019), it
has significant value to verify the authentic DDIs in
clinical settings.

Owing to limited condition, we have not applied it to human
beings yet. But it is necessary for further study and we will
consider to perform it in future, basing on the present results that
we get from rats. Furthermore, other inhibitory mechanisms can
be explored (Yasumuro et al., 2018). Thus, stricter clinical trials
will be needed to further confirm these findings.

In summary, our study investigated CYP-based drug-drug
interactions both in vitro and in vivo. The results demonstrated
that the vonoprazan could inhibit CYP3A4, CYP2C9, CYP2D6,
and CYP2B6, suggesting that the coadministration of
vonoprazan and CYP substrates should be performed
cautiously in clinical settings.
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