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Abstract:
Introduction: Many patients suffer from discogenic low back pain. However, the mechanisms, diagnosistic strategy, and

treatment of discogenic low back pain all remain controversial. The purpose of this paper was to review the pathological

mechanisms of discogenic low back pain.

Methods: Many authors have investigated the pathological mechanisms of discogenic low back pain using animal models

and examining human patients. Central to most investigations is understanding the innervation and instabilities of diseased

intervertebral discs and the role of inflammatory mediators. We discuss three pathological mechanisms of discogenic low

back pain: innervation, inflammation, and mechanical hypermobility of the intervertebral disc.

Results: Sensory nerve fibers include C-fibers and A delta-fibers, which relay pain signals from the innervated outer lay-

ers of the intervertebral disc under normal conditions. However, ingrowth of these sensory nerve fibers into the inner layers

of intervertebral disc occurs under disease conditions. Levels of neurotrophic factors and some cytokines are significantly

higher in diseased discs than in normal discs. Stablization of the segmental hypermobility, which can be induced by in-

tervertebral disc degeneration, suppresses inflammation and prevents sensitization of sensory nerve fibers innervating the

disc.

Conclusions: Pathological mechanisms of discogenic low back pain include sensory nerve ingrowth into inner layers of

the intervertebral disc, upregulation of neurotrophic factors and cytokines, and instability. Inhibition of these mechanisms is

important in the treatment of discogenic low back pain.
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Introduction

Low back pain affects much of the world’s population,

and has significant adverse socioeconomic implications. The

one-time occurrence of low back pain is about 15%-30% of

the population; the one-month prevalence is 19%-43% of the

population; and the lifetime prevalence is up to 60%-80% of

the population1).

Low back pain may arise from different sites, such as an

intervertebral disc, facet joint, or the sacroiliac joint(s). Sev-

eral authors have reported on the prevalence of different ori-

gins of chronic low back pain. By injecting lidocaine into

different structures in patients with chronic low back pain,

the intervertebral disc was reported as the source in 39%-

41%, facet joint 15%-32%, and sacroiliac joint 13%-

18.5%2-4). Age distribution of discogenic low back pain was

thought to be 36-47 years old, which is significantly

younger than that in patients suffering low back pain from a

facet joint or sacroiliac joint origin2-4).

We have previously reported that animal models and

specimens from humans have revealed sensory innervation

of lumbar intervertebral discs and sensory nerve ingrowth

into the inner layer of intervertebral discs, causing painful

conditions5). Cytokines such as tumor necrosis factor-α and

interleukins induce this ingrowth. Nerve growth factor has

also been recently identified as an inducer of ingrowth6). Fi-

nally, disc degeneration induces several collagenases; their

action results in hypermobility and pain7).
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Figure　1.　Pathomechanisms of discogenic low back pain. In-

nervation: animal model and specimens from humans revealed 

sensory nerve innervation of lumbar intervertebral discs (IVDs) 

and sensory nerve ingrowth into the inner layer (deep nerve in-

growth) of the degenerated IVD. Inflammation: many researchers 

have identified various proinflammatory molecules. Hypermobil-

ity: hypermobility of motion segment is usually induced in de-

generated IVD. These factors are thought to be the major factors 

that induce discogenic low back pain.

Innerva

In a Mechanical 
lity

LOW BACK PAIN

ry Nerve Ingr wth

In at ry Cyt Disc Degenera

In this paper, we review innervation, inflammation, and

mechanical hypermobility of discogenic low back pain from

studies of animal and humans (Fig. 1).

Innervation

The vertebra, disc, facet joint, posterior longitudinal liga-

ment (PLL), and dura mater are innervated segmentally by

the dorsal ramus and the sinu-vertebral nerves branching

from the spinal nerve of the corresponding levels8-12). Many

studies have described the existence of sensory nerve end-

ings in the annulus fibrosus13,14). It is believed that such nerve

endings originate from the sinu-vertebral nerves branching

from the ventral ramus of the spinal nerve and the ramus

communicans of the corresponding level9,10). However, the

level of the spinal cord or dorsal root ganglia (DRG) inner-

vating the intervertebral disc has not been elucidated.

Takahashi et al. have reported direct evidence for groin

pain corresponding to the L2 dermatome referred from the

L4/5 intervertebral disc using an animal model15). Using an-

other animal study, sensory nerve fibers from the lower in-

tervertebral disc are thought to be innervated by DRGs at

the corresponding level and in multiple segments by DRGs

at upper levels. In nonsegmental innervation, sensory nerve

fibers are thought to enter the paravertebral sympathetic

trunks and reach the L2 DRGs16-19).

Human sensory innervation to intervertebral disc.

Patients who have degenerated lumbar discs in lower seg-

ments (L4-L5 or L5-S1) occasionally report groin pain20,21).

Yukawa et al. reported that 21 of a total of 512 patients

(4.1%) with groin pain were diagnosed with singular lower

lumbar disc herniation (L4-L5 and L5-S1), and concluded

that the sinu-vertebral nerve that innervates the posterior an-

nulus fibrosus, the posterior longitudinal ligament, and the

dura was the afferent nerve of the groin pain21). We have re-

ported the efficacy of an L2 spinal nerve block for disco-

genic pain patients22,23). Finally, we have reported efficacy of

lumbar interbody fusion surgery for groin pain without low

back pain24). The patients suffered from groin pain and

showed disc degeneration only at one level on magnetic

resonance imaging (MRI). Patients did not show any hip

joint abnormality on radiography or MRI. Anterior lumbar

interbody fusion surgery resulted in a significant decrease in

groin pain24). These results suggest L2 DRG innervation to

lower intervertebral discs in human.

Pathogenesis of sensory nerve ingrowth into intervertebral
discs causing painful conditions.

Some investigators disagree with the notion that nerve

endings are present in the intervertebral disc and thereby

deny the possibility of pain originating from discs them-

selves25,26). There is evidence to support the idea that sensory

fibers are present in the outer layers of the annulus fibrosus

under normal conditions7). Some reports have suggested that

the presence of sensory nerve fibers in the deeper layer of

the annulus fibrosus and the production of inflammatory

mediators in the degenerated nucleus pulposus lead to disco-

genic low back pain in patients with degenerated intervete-

bral discs5,27). Burke et al. reported that intervertebral discs

from patients with discogenic low back pain contained more

inflammatory mediators than did intervetebral discs from pa-

tients with intervertebral disc herniation6). These reports

strongly suggest an association between sensory nerve in-

growth, inflammatory mediators, and discogenic low back

pain.

In animal models, the inflammatory mediators in the discs

may promote CGRP-IR axonal ingrowth and may, at least in

part, explain the mechanism of nerve ingrowth into the inner

annulus28). It is also possible that nerve ingrowth is induced

as a consequence of reduction of the barrier provided by

proteoglycan and the human cartilage large aggregating pro-

teoglycan, aggrecan, to axonal growth after degeneration of

the lumbar intervertebral discs29,30). In fact, animal models of

disc degeneration showed the induction of nerve ingrowth in

association with a depletion of proteoglycan30). Considering

our present and these previous reports, ingrowth of sensory

nerve fibers might be closely associated with the pathogene-

sis of discogenic low back pain.

Inflammation

Human samples

Multiple authors have reported pain-related molecules, in-

cluding tumor necrosis factor (TNF) alpha, Interleukin (IL)-

1 beta, IL-4, IL-6, IL-8, IL-12, prostaglandin E2 (PGE2),
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interferon-gamma, and nitric oxide (NO) are up-regulated in

herniated intervertebral discs resected during surgery6,30-33).

Kepler et al. has reported pain-related molecules including

chemokine regulated upon activation in normal T cells, ex-

pressed, probably secreted (RANTES) and its promoter, IL-1

beta, were significantly elevated in painful discs compared

to painless discs34). In addition, Burke et al. documented that

discs from patients with low back pain produced signifi-

cantly more pain-related molecules than discs from patients

with sciatica6). These findings suggested that there is persis-

tent inflammation in painful discs, and that the production

of these molecules may be a major factor in discogenic low

back pain.

In vivo studies

Several animal models of intervertebral disc degeneration

have been used as animal models of discogenic low back

pain. Disc injury models including disc puncture by needles

and disc stab by blade have been reported, and several pain-

related molecules have been detected in the injured discs. In

their study of disc puncture models in rabbits, using a 16-

gauge needle, Sobajima et al. reported that disc injury in-

duced the upregulation of IL-1 and nitric oxide synthase

(iNOS) transiently (within 3 weeks)35). In our study using a

disc puncture model, nerve growth factor and TNF-alpha

levels (over 1 week) and IL-6 levels (over 4 days) were sig-

nificantly increased in the injured disc, but the upregulation

of these molecules resolved within 2 weeks after disc in-

jury36). This type of disc injury induces transient inflamma-

tion, but degenerated discs in humans show persistent in-

flammation. This discrepancy might be one of the limita-

tions of animal models of disc injury. Several authors have

attempted to solve this discrepancy between animal models

and human samples. Ulrich et al. reported repeated disc in-

jury induced inflammatory response with elevated levels of

TNF-alpha, IL-1 beta, and IL-8 up to 28 days after injury37).

Lotz et al. developed a different animal model of disc de-

generation, and reported disc static compression induced

disc cell death depending on the magnitude and duration of

spinal loading38). We modified this disc compression model

and reported that the combination of disc dynamic compres-

sion and disc injury induced long-lasting upregulation of in-

flammatory mediators, including TNF-alpha, IL-1 beta, IL-6,

and NGF39). This indicates that not only disc injury but also

repetitive trauma or mechanical stress are important for rep-

resentative animal models of disc degeneration in humans.

In vitro studies

Several authors have evaluated the role of pain-related

molecules found in human samples or in vivo. Goupille et

al. reported TNF-alpha is known to promote irreversible

degradation of aggrecan; disc catabolism; and expression of

inflammatory mediators and NGF40). In their in vitro study,

Hoyland et al. reported that IL-1 beta was up-regulated in

discs clinically associated with chronic low back pain and

that IL-1 beta antagonists inhibited matrix degradation. They

concluded that IL-1 is a key cytokine mediator in degener-

ated discs and therefore a therapeutic target41).

The role of immune cells

Despite controversy surrounding which cells produce

pain-related molecules, it has been reported there were sev-

eral immune cells including macrophages, T-cells, B-cells,

and natural killer cells in degenerated discs42,43). In addition,

inflammatory cytokines studies have reported that pain-

related molecules are expressed by immune cells, including

macrophages33,44,45). Takata et al. demonstrated that interaction

between disc tissue and macrophages is necessary for

upregulation of IL-6 production44). However, whether macro-

phages exist in normal healthey disc was still unclear. Ner-

lich et al. reported that the intact nucleus pulposus contains

a high number of resident macrophages46). On the other

hand, it has been reported that the healthy normal interverte-

bral disc was an immunologically privileged environment47).

One hypothesis for the possible entry pathway of immune

cells is that the injury of annulus fibrosus, the leakage of

nucleus pulposus, and deep nerve and vessels ingrowth into

the disc might be a trigger of immune cell supply in discs48).

Therapeutic targets for discogenic low back pain

These inflammatory mediators are potential targets for

discogenic low back pain. In a rat disc injury model, intra-

discal injection of etanercept (TNF-alpha inhibitor) sup-

pressed pain-related neuropeptide expression in DRGs inner-

vating injured discs49). Clinical studies have revealed the effi-

cacy of these inhibitors in discogenic low back pain. Tobin-

ick et al. reported that TNF-alpha inhibition by etanercept

delivered by perispinal administration may offer clinical

benefit to patients with chronic, treatment-resistant disco-

genic pain50). Sainoh et al. reported the efficacy of etanercept

and anti-IL6 antibody for disc pain patients compared to

placebo51,52). Tanezumab is a humanized monoclonal antibody

that specifically inhibits nerve growth factor as a treatment

for chronic pain. In a study where patients (n = 1,347) re-

ceived intravenous tanezumab, naproxen, or placebo, tanezu-

mab provided significantly greater improvement in pain,

function, and global scores vs. placebo and naproxen in pa-

tients with chronic low back pain53).

Mechanical Hypermobility

Segmental hypermobility is considered another major fac-

tor associated with discogenic low back pain54-56). Hypermo-

bility is induced through disc degeneration because the lum-

bar intervertebral discs have a major load-bearing role in hu-

mans56), but disc degeneration itself is reported not to be as-

sociated with hypermobility57). Of course, not all degenerated

discs are symptomatic, and symptomatic and asymptomatic

degenerated intervertebral discs show similar structural and

biochemical features58,59). Disc degeneration is markedly

common, but a definitive and widely accepted definition re-

mains unclear. In clinical studies using MRI, disc degenera-
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tion has been suggested to be one of the most remarkable

risk factors for discogenic low back pain60-63). Many papers

identified genetic influences and unidentified factors, which

include complex and unpredictable interactions for the pres-

ence of disc degeneration, besides, disc degeneration might

not be induced by most environmental factors64-68). Even

more, several mechanisms have sought to explain how de-

generative changes in the disc cause pain. In 1989, Nachem-

son suggested in a presentation at the AAOS, that environ-

mentally or genetically induced premature aging changes

may render the disc mechanically incompetent, creating ab-

normal motion patterns that subject various spinal structures

to undue stress, causing pain64).

Some studies have reported instability for mild degenera-

tion65,66,69), while other studies have showed increasing spinal

stiffness with progressing degeneration70,71). Some papers in-

dicated that hypermobility between flexion and extension is

associated with degenerative disc disease72,73). Fujiwara et al.

evaluated 110 lumbar motion segments from 44 human ca-

davers, and reported that segmental motion increased with

increasing severity of disc degeneration to grade IV and de-

creased in grade V, as classified by MRI. Also, such seg-

mental motion changes were greater in axial rotation com-

pared with the other motion as lateral bending, flexion and

extension65). Tanaka et al. evaluated 114 lumbar spine seg-

ments taken from 47 fresh cadavers and suggested that lum-

bar spine angular mobility is related to disc degeneration,

and angulation was greater in grades III and IV degenera-

tion, in which radial tears of the annulus fibrosus are found

in Thompson’s grading system69). Several animal studies ad-

vocated that torsional loads are important factors for the de-

generation of the motion segments74-76). In cadaveric study, a

relationship between the severity of disc degeneration and

increases of the torsional movement was reported77). Al-

though, it is consensus in previous papers that severe loss of

height in the intervertebral disc, sclerosis in the endplate,

and osteophyte formation around bone structure were in-

duced in the final stage of disc degeneration, resulting in

stabilization of the motion segments, as first reported in

1980s by Kirkaldy-Willis55,69,78-80).

Histologically, based on the loss of differentiation be-

tween the annulus fibrosus and nucleus pulposus, as well as

changes in collagen content from Type II to Type I and de-

creased proteoglycan, hypermobility at the specific lumbar

segment is induced by the loss of structural integrity, insuffi-

cient hydration, and the lack of tolerance against motion of

lumbar spine67,81-86). At the next stage, decreased hydration

within the nucleus pulposus results in decreased disc pres-

sure and reduced disc height, and at that time, degeneration

is characterized by a fibrotic nucleus pulposus and an annu-

lus fibrosis with many clefts or fissures86). As the inner part

of the annulus fibrosus increases in size and the interface

between the nucleus pulposus and annulus fibrosus becomes

unclear, segmental hypermobility is gradually stabilized with

a disc height narrowing55).

To create a model of discogenic low back pain, puncture

incision of discs has been widely used in various ani-

mals37,87,88). Using this puncture-induced discogenic low back

pain model, stabilization established by lumbar postero-

lateral fusion, inhibited sensory nerve ingrowth into punc-

tured intervertebral discs and upregulation of CGRP expres-

sion in DRG neurons innervating intervertebral discs in rats,

suggests that stabilization itself can reduce discogenic low

back pain89). It is still unclear how hypermobility of the seg-

ment is related to the development of discogenic low back

pain, but at least, pain induced by the puncture of the in-

tervertebral disc was suppressed by stabilization of the af-

fected segment. This may suggest that transient or persistent

inflammation in the disc, which is induced by hypermobility

of the lumbar spine, is suppressed, resulting in pain relief.

However, there is evidence in human studies that suggests

that histomorphological features, instability of the lumbar

spine, and low back pain bear no relationship to one an-

other90), and that the clinical outcome of lumbar fusion sur-

gery is highly variable91). This suggests that many factors,

including patient selection or background, may affect the

surgical outcome. Definite evidence of stabilization efficacy

remains elusive. Further studies should be undertaken to

shed light on the difference between symptomatic and as-

ymptomatic degenerated discs, and the pathological mecha-

nisms of discogenic low back pain.

Conclusions

Animal models and samples from humans have revealed

that sensory nerve innervation of lumbar intervertebral discs

and increases in levels of cytokines such as TNF-alpha, in-

terleukins, and NGF, may be accelerated by disc degenera-

tion and hypermobility. In this regard, it is important to pre-

vent sensitization of sensory nerve fibers innervating the

disc, suppress increases of cytokines, and possibly decrease

disc hypermobility for the treatment of discogenic low back

pain.
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