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The significance of microbiology and immunology with regard to caries and periodontal

disease gained substantial clinical or research consideration in the mid 1960’s. This

enhanced emphasis related to several simple but elegant experiments illustrating the

relevance of bacteria to oral infections. Since that point, the understanding of oral

diseases has become increasingly sophisticated and many of the original hypotheses

related to disease causality have either been abandoned or amplified. The COVID

pandemic has reminded us of the importance of history relative to infectious diseases

and in the words of Churchill “those who fail to learn from history are condemned to

repeat it.” This review is designed to present an overview of broad general directions of

research over the last 60 years in oral microbiology and immunology, reviewing significant

contributions, indicating emerging foci of interest, and proposing future directions based

on technical advances and new understandings. Our goal is to review this rich history

(standard microbiology and immunology) and point to potential directions in the future

(omics) that can lead to a better understanding of disease. Over the years, research

scientists have moved from a position of downplaying the role of bacteria in oral disease

to one implicating bacteria as true pathogens that cause disease. More recently it has

been proposed that bacteria form the ecological first line of defense against “foreign”

invaders and also serve to train the immune system as an acquired host defensive

stimulus. While early immunological research was focused on immunological exposure as

a modulator of disease, the “hygiene hypothesis,” and now the “old friends hypothesis”

suggest that the immune response could be trained by bacteria for long-term health.

Advanced “omics” technologies are currently being used to address changes that occur

in the host and the microbiome in oral disease. The “omics” methodologies have shaped

the detection of quantifiable biomarkers to define human physiology and pathologies. In

summary, this review will emphasize the role that commensals and pathobionts play in

their interaction with the immune status of the host, with a prediction that current “omic”

technologies will allow researchers to better understand disease in the future.
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THE ROLE OF MICROORGANISMS IN
DISEASE

Introduction
In the context of homeostatic balance between the host and its
microbial content, it has been proposed that the commensal
microbiota plays a critical role in maintaining health (Lloyd-
Price et al., 2016). Disruption of this homeostatic balance, is
known as dysbiosis, defined as perturbations in the composition
of commensal communities relative to that found in health
(Petersen and Round, 2014; Lloyd-Price et al., 2016; Hooks and
O’Malley, 2017). Dysbiosis can occur as a result of a change in the
microbiota or the host’s ability to respond to its microbiota. This
delicate balance between homeostasis and dysbiosis is in part now
seen as the early training of local and systemic immune regulation
(both innate and acquired regulators) (Alm et al., 2002; Rook
et al., 2013; Cox et al., 2014). Conceptually, this concept can be
illustrated in germ-free animals where a lack of exposure to a
typical commensal microbiota leads to an immature/untrained
immune system (Falk et al., 1998; Macpherson and Harris, 2004;
Round and Mazmanian, 2009; Sommer and Backhed, 2013;
Kennedy et al., 2018). In contrast, early exposure and immune
training as seen in immune competent humans, has been termed
the “old friends” hypothesis, which describes the manner by
which the host responds to microbial challenges (Rook, 2010;
Cox et al., 2014; Rook et al., 2014). The disturbance of training
of the immune system, also seen in humans, has been illustrated
by challenging the infant commensal microbiota with antibiotics,
which can disrupt this homeostatic balance (Dominguez-Bello
et al., 2019). Moreover, antibiotics given to infant mice can
change their gut (and likely oral) microbiota, suppress the normal
(eubiotic) commensal microbiota, and add weight (obesity) and
height to these antibiotic-treated mice (Cox et al., 2014; Lamont
et al., 2018).

Further substantiation of this need for training and balance
has been shown by removal of intestinal microbial contents
from non-antibiotic treated mice followed by transplantation
of the intestinal microbiota from antibiotic treated infant mice
as compared to non-antibiotic treated mice (Cox et al., 2014;
Ellekilde et al., 2014). When challenged, these two transplanted
populations were shown to produce distinctive responses in the
mice receiving the transplants. The newborn mice receiving the
transplants from antibiotic treated mice produce heavier and
larger mice as compared to those mice receiving the “normal”
non-antibiotic manipulated microbiota (Cox et al., 2014). In
experiments by Ellekilde et al. (2014) the ultimate goal was to
develop a system designed to circumvent the need for germ
free mice in order to document microbiome development and
its effect on the host. Colonization of transplanted mice was
assessed comparing donors from either lean or obese mice. The
transplantation effect, in these experiments, although stable for
only 6 weeks, was sufficient to train the immune system and allow
for the study of pathogenesis in murine models of disease.

The importance of this “early” commensal gut microbiota
in brain development has also been described in both studies
with mice and humans (Lu et al., 2018; Lu and Claud, 2019).
Proper neurological development appears to be intimately tied

to maintenance of a healthy microbiome, and alternations
or dysbiosis appear to be linked to schizophrenia, autism
spectrum disorders, and hyperactivity disorders (Hsiao et al.,
2013; Kong et al., 2019; Lu and Claud, 2019). Gnotobiotic
mice humanized with transplanted early fecal microbiota from
preterm infants with either good or poor growth, and mouse
brain, liver, fecal, and serum samples were obtained to analyze
histology, protein, fatty acid, and RNA expression levels in
these transplanted mice (Lu et al., 2018). Mice that were
colonized by poor-growth microbes showed decreased levels
of markers of early development in the brain, and delayed
oligodendrocyte development and myelination, indicating a
delay in neuronal development. Furthermore, in the poor-
growth mice, neurotransmitter levels were altered and animals
developed neuroinflammation. There was a subsequent change
in the short chain fatty acids from the gut microbiota. This study
demonstrated the profound effect the colonizingmicrobiome had
on early brain development, validating many of the theories and
prior data linking the gut-brain axis in neuronal development (Lu
et al., 2018).

Are Microbes Alone Responsible for Health
or Disease?
This “old friends” mechanism coupled with the important
work of Casadevall and Pirofski clearly point out that it is
inadequate and misleading to define disease based solely the
virulence capability of specific microbes and the so-called
“pathogenic microbiota” (Casadevall and Pirofski, 2015, 2018).
Concomitantly, health should be defined in terms of the influence
of the commensal microbiota (“old friends”) on its host response
capabilities. Therefore, the host as well as the microbiota should
be included when assessing health or disease (Dominguez-Bello
et al., 2019). From the perspective of disease, this is best explained
in the Damage/Response Framework that demands that we
define disease in the context of the host (Casadevall and Pirofski,
2003; Pirofski and Casadevall, 2008). Thus, typically harmless
bacteria can become opportunistic or pathogenic, and are capable
of inducing disease when introduced into an organ system that
is not its normal ecological niche especially in immunologically
compromised individuals (Casadevall and Pirofski, 1999). From
the perspective of health, one should consider the importance
of the commensal microbiota and how its absence or alteration
can undermine immune surveillance and influence growth,
development, and resistance to disease (Dominguez-Bello et al.,
2019). As mentioned in the Damage/Response Framework a
defective immune system can have severe clinical implications
in disease. This was illustrated initially in the case of HIV/AIDS
(Casadevall and Pirofski, 1999). In the Framework proposed
in this conceptualization of disease, microbes such as the
opportunistic pathogen Cryptococcus sp., or commensals like
Candida sp. or Staphylococcus sp., that are ordinarily controlled
by immune competence, now become the cause of morbidity and
mortality. Thus, in the Damage/Response Framework generally
“harmless” bacteria, fungi, and viruses now run rampant and
cause fulminating infections that cannot be controlled at either
the local of systemic level (Casadevall and Pirofski, 1999).
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How Does the Commensal Microbiota
Evolve?
Higher order organisms acquire their microbiomes from their
immediate environment upon birth initially through oral feeding.
Mammals are known to be colonized initially by organisms
present in the birth canal and passively from primary caregivers
during rearing (Berkowitz and Jones, 1985; Lamell et al., 2000;
Mueller et al., 2015). Barring any disruption from outside
influences (i.e., antibiotics while in utero or early in the
colonization process) or imbalances in the maternal microbiome,
offspring will acquire their healthy commensal microbiome early
in their development (Cho and Blaser, 2012). Commensals,
our “old friends,” play an important role in homeostasis,
disease control through competition (i.e., for nutrients) and
exclusion (i.e., inhibitory compound production) of pathogens,
maintaining health at local sites through adequate colonization
rates, metabolic activity, and immune training (Relman, 2012;
Abt and Pamer, 2014). The importance of the commensal
microbiota in the protection from potentially pathogenic species
is well-illustrated in the case of commensal Neisseria species of
the oro-nasopharynx (Dorey et al., 2019). Neisseria, which are
regarded as benign common colonizers of the mouth and nasal
cavities are generally able to manage pathogenic or pathobiotic
Neisseria species. For instance, indigenous Neisseria can kill the
potential pathogenic Neisseria gonorrhoeae, or likely outcompete
the pathobiont Neisseria meningitidis (Pandey et al., 2018; Dorey
et al., 2019; Kim et al., 2019).

It has now become clear that there is a selective process
that determines the colonizing order and distribution of
microorganisms that gather on epithelial and hard surfaces
forming the microbiome of humans and other mammals
(Shafquat et al., 2014; Lloyd-Price et al., 2016). Previous theories
suggested that microorganisms were ubiquitous, completely
surrounding and inhabiting us based on selection preferences
that were poorly defined. Concisely put, the prevailing theory was
that “everything is everywhere” (O’Malley, 2007). Overtime this
concept has evolved into a more precise definition of ecological
selection (Costello et al., 2012; Foster et al., 2017). Currently,
the local environment still forms a key element in the selection
process. However, contemporary concepts now indicate that both
the niche microbiota and the host response to that microbiota
serve as a filter for microbial selection and the successional
development of specific habitats (Human Microbiome Project,
2012; Foster et al., 2017).

STUDIES POINTING TO THE IMPORTANCE
OF MICROBIAL AND HOST INVOLVEMENT
IN INFECTIOUS DISEASES

Interest in the Prominence of Dysbiotic
Microbial Communities
In a natural state, most niches are filled by a climax community
that has unique physiological and/or metabolic demands that
therefore can restrict invasion or colonization of non-niche
or transient species. However, successful disruption of this
community (“patch or domain”) will permit shifts in the

established inhabitants that can lead to dysbiotic behavior and
potentially pathogenic communities (Relman, 2012). Microbial
species that are original occupants of a specific niche are
functionally fit for that ecological niche (Polechová and Storch,
2019). Interconnecting food chains allow for a multitude
of physiological functions that permit microbial diversity in
a “climax community” (Jorth et al., 2014). Dispersal, local
diversification, environmental selection, or, ecological drift can
allow for subtle or not so subtle shifts in the climax community
(Costello et al., 2012).

Chemical and/or Physical Causes of Ecological

Disruption
To illustrate this more specifically either chemical or physical
disruptions can lead to microbial community imbalances or
dysbiosis. Chemically induced environmental dysbiosis can
be seen in the overuse of antibiotics, which creates an
ecological catastrophe, particular within the gastrointestinal (GI)
microbiota (Relman, 2012; Dominguez-Bello et al., 2019; Cullen
et al., 2020).

In the past, Clindamycin had the highest association with
GI disturbance and serious consequences among antibiotics
studied (Sullivan et al., 2001; Brown et al., 2013). In addition,
older patients appeared to be more susceptible to the effect
of Clindamycin in its ability to disrupt intestinal equilibrium
(Loo et al., 2011). The overall consequence was the overgrowth
of Clostridium difficile, and suppression of microbes that could
counter its effect and thus disrupt homeostasis. In a mouse model
a single dose of clindamycin was able to render the animals
susceptible to C. difficile-induced colitis (Buffie et al., 2012).
This is just one example of chemically induced environmentally
initiated dysbiosis resulting from the misuse of antibiotics, which
creates an ecological catastrophe.

Recent work addressing the impact of orally administered
prophylactic antibiotics on the gut microbiota of hematology
patients was observed (Willmann et al., 2019). Patients
were immunocompromised due to their malignancies and
were administered either ciprofloxacin or co-trimoxazole daily
depending on the study site. Baseline laboratory tests were
performed to assess liver function andmarkers of infection. Study
participants gave stool samples prior to antibiotic treatment,
days 1 and 3 post-initiation of treatment, and in the final
antibiotic dosage period, which had a 6-day median time period.
The samples were evaluated by shotgun sequencing, whereby
in addition to speciation, the resistome and plasmidome could
be analyzed. In both groups there was an observed decline in
the Shannon diversity at a phylum level over the course of the
treatment, which showed specific microbial species depending
on the antibiotic. Antibiotic resistance genes increased over the
course of the study, but the specific genes were dependent on
the antibiotic. Interestingly, the patient’s laboratory findings also
correlated with alternations in the microbiota, pointing to the
role the host has in shaping the gut microbiome.

Another example of the importance of the normal commensal
microbiota and a consequence of its disruption can be shown
by the homeostatic microbial imbalance and immune disruption
caused by overuse of antibiotics (Dethlefsen et al., 2008;
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Willing et al., 2011). Recent studies observed the change in
the microbiota and an alteration of cytokine release in 3-
week-old female C57BL/6 mice (Sun et al., 2019). Mice were
given sterile water, enrofloxacin, vancomycin, or polymyxin
B for 3 weeks. Their colons were removed and analyzed
for histology, cytokine gene expression profiles, 16S rRNA
sequencing, and metabolome analyses. Histology was largely
unremarkable between samples. However, all three antibiotic
treatments significantly up-regulated the gene expression of
pro-inflammatory (IFN-γ, TNF-α, IL-1β, and IL-6) and anti-
inflammatory cytokines (IL-4, IL-17, IL-23, and IL-10), but varied
in fold-change depending on the treatment. Both vancomycin
and enrofloxacin decreased the species richness and diversity
indices of the colon microbiota. Further changes in fatty acid
and amino acid metabolites were seen, which correlated with the
presence of select microbial taxa.

In light of these illustrations we suggest that the oral cavity
is no different from other ecological systems in the sense
that it will build its microbial climax community based on its
environmental components.

The Oral Cavity and Microbiome Analysis
Our oral microbiota is acquired at birth and over time from
our primary care givers (Berkowitz and Jones, 1985; Lamell
et al., 2000). The microbiome of the oral cavity has been studied
since the 1960 where researchers began to appreciate that the
supra and subgingival microbiota was composed of a complex
consortium (Socransky et al., 1987; Fine, 2006). From the 1990s
on there was a push to define all microorganisms present, and
one could argue that the oral cavity was one of the original
human-associated microbiomes to be characterized (Socransky
and Manganiello, 1971; Socransky and Haffajee, 1991, 1994;
Socransky et al., 1998). There was an appreciation for the fact
that the oral cavity consisted of a consortium that is associated
with disease, complicating the way in which infections were
described. This new appreciation pushed for a revision of Koch’s
postulates, reformulated by oral microbiologists as Socransky
revision of Koch’s postulates (Socransky, 1979; Socransky and
Haffajee, 1991).

Distinctive oral sites appear to be packed with commensals
and these commensal can change from birth to senescence
based on environmental changes in salivary flow and content,
tissue rigor, hormonal conditions, diet, etc. Immediately after
tooth brushing a succession of events occur on a tooth
surface (Socransky and Manganiello, 1971). Pioneer colonizers,
consisting mostly of Gram-positive bacteria, collect on the
enamel surface in parallel arrays extending from the tooth
surface (Kolenbrander, 2000; Kolenbrander et al., 2002, 2006;
Li et al., 2004; Hojo et al., 2009; Esberg et al., 2020). These
pioneers are succeeded by secondary and tertiary species all of
which are commensal members of the oral microbiota (“normal”
inhabitants of the oral cavity). The pioneer species, the hardiest of
the oral microbial species, attach avidly to salivary-coated enamel
surfaces (salivary pellicle) and form a resistant/adherent band of
microbes. Astonishingly, these microbes were first identified in
1678 by Antonie van Leeuwenhoek as tiny “animalcules” (James,
1994; Lane, 2015). The pioneer primary colonizers followed

by secondary and tertiary colonizers to a large extent make
up our protective commensal microbiota, while also harboring
potential pathobionts. Pathobionts are natural members of the
human microbiota that have pathogenic potential under certain
conditions (Mazmanian et al., 2008; Cugini et al., 2013).

Overall, there have been over 1,000 species identified that have
the potential to make up the oral microbiome and we suspect
that 70–100 species are present in any one individual (Dewhirst
et al., 2010; Park et al., 2015; Xu et al., 2015). These numbers
consist of the high abundance commensals as well as the lower
abundance pathobionts and microbes of unknown function or
role in disease. For disease either a physical assault or chemical
biofilm induced-irritation, can result in a pathogenic biofilm that
is characterized by out-growth of select species, which can give
rise to many of the infections that arise in the oral cavity.

The Oral Microbiome: A Brief Historical
Overview
Given that the oral microbes have been studied since the times of
von Leuwenhoek, many of the early microbiologists were keen to
study these bacteria and devised ways to study them ex vivo. One
of the first intensive studies of oral microbes involved in disease
was performed in the laboratories of Dr. Robert Koch by W. D.
Miller, a visiting dentist from the United States. Miller, in a series
of detailed experiments, clearly demonstrated the preference of
oral microbes for carbohydrates and their relationship to acid
production and caries (Miller, 1890). However, the main caries-
culprit was first identified as Streptococcus mutans by Clarke, an
English microbiologist in 1924. His description went largely un-
noticed and therefore the relationship between these acid-loving,
acid-producing oral microbes and caries was not totally accepted
until the elegant experiments of Paul Keyes in 1964 (Clarke, 1924;
Englander and Keyes, 1964). Keyes whowas working on the effect
of diet on caries made the serendipitous discovery that golden
hamsters had caries while albino hamsters had none (Fitzgerald
and Keyes, 1963; Englander and Keyes, 1964). After isolation of
the microbes from the mouth of golden hamsters, inoculating
pure cultures into the caries-free albino hamster, he showed how
caries evolved. Keyes then did a series of experiments to show this
microbe/host relationship in many well-designed experiments of
experiment of which one in particular is worth highlighting. In
this experiment, Keyes took albino pups delivered by Cesarean
section in a germ-free chamber and housed these pups with
golden hamster surrogate mothers, demonstrating that the
caries-producing microbes could be passed from golden hamster
mom to the albino pups and that the pups now showed carious
lesions (Fitzgerald and Keyes, 1960; Keyes and Fitzgerald, 1962).
In contrast, he took golden hamster pups and placed them in the
cage with the albino mom. He showed that the golden hamster
pups did not get caries and that the caries-producing organism
could not be recovered from either the mom or the pups. These
elegant experiments focused attention on Streptococcus mutans
and led to many experiments attempting to show that caries was
an infection caused by a specific microbes.

The microbiota associated with periodontal disease also
served as an area of research. In the earlier studies, Rosebury and
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colleagues in the 1930’s and others (e.g., Kritchevsky and Seguin)
made efforts to isolate microbes from periodontal pockets and
showed how they provoked infections in a guinea pig groin
model (Kritchevsky and Seguin, 1918; Rosebury et al., 1929,
1934). They concluded that a mixture of microbes was required
and no single bacteria could provoke infection, but that a
pathogenic quartet of microbes appeared to result in disease.
These studies were challenged by Rosebury’s graduate student
J. B. MacDonald who pointed to Bacteroides melaninogenicus
as the prominent pathogen related to the cause of periodontal
disease (Macdonald et al., 1956). These controversies led to a
series of alternative hypotheses developed by Dr. Walter Loesche,
a former student of the MacDonald group (Table 1; Loesche,
1976), He introduced two hypotheses: (1) The Non-Specific
Plaque Hypothesis (NSPH), and (2) Specific Plaque Hypothesis
(SPH). The NSPH stated that disease was unrelated to specific
microbes but rather was related to an accumulation of products
derived from masses of microbes. In contrast, the SPH stated
that a particular microbe provoked disease. These alternative
hypotheses provided a window into the way in which infectious
periodontal diseases could evolve. In time, these hypotheses
evolved into the Ecological Plaque Hypothesis which states that
the environment dictates the microbiota and must therefore be
considered in terms of disease (Marsh, 1994). This theory is
closest to how we understand microbial induced dental diseases
today and in many ways illustrates a hypothesis that parallels the
Damage/Response Framework (Casadevall and Pirofski, 1999).

EXAMPLES OF COMMENSALS AND
PATHOBIONTS IN ORAL DISEASE

For dental disease to occur we propose that either a physical
assault, chemical biofilm induced-irritation, and/or biological
induced changes can result in a “pathogenic or disease promoting
biofilm” (Figure 1). This putative “pathogenic” biofilm is
characterized by outgrowth of select species, which we suggest
can give rise to the most prevalent infections (periodontitis and
caries) that arise in the oral cavity.

Periodontal Disease
In a microbiome at homeostasis there are delicate interspecies
interactions driven by the maintenance of intricate physical and
metabolic associations. These associations exert control over
the host innate immune defenses in their effort to detoxify
the environment. In periodontal disease there is a breakdown
of this homeostasis that is characterized by the formation of
a dysbiotic biofilm, plaque, and outgrowth of key pathobionts
in the microbiome, which leads to host tissue destruction
and ultimately, formation of periodontal pockets and bone
loss. These chronic inflammatory diseases begin as reversible
gingival inflammation (gingivitis), and if not managed, leads
to advanced periodontal disease (Moore and Moore, 1994).
Periodontitis results in increased bone resorption around the
tooth and root area, which leads to eventual tooth loss. In
chronic periodontal disease the host’s oral microbiome shifts
from a predominately Gram-positive healthy plaque biofilm to a

pathogenic and primarily anaerobic dysbiotic consortium (Marsh
and Zaura, 2017). The initiating events are poorly understood
but it is likely a physical irritation that causes initial changes
in the local environment, which allows for nutrient sources and
an alteration in the local innate immune response. The Gram-
negative pathobionts, while previously existing as low-abundance
species begin to proliferate (Haffajee et al., 2008; Dewhirst et al.,
2010; Uzel et al., 2011; Chen et al., 2018; Lamont et al., 2018;
Curtis et al., 2020).

Physical Assaults That Can Result in Dysbiosis
Periodontal wounds can be caused by overhanging restorations,
which can result in ulcerations of soft tissue leading to
inflammatory changes in the underlying tissues. Early studies
by Waerhaug (1956) clearly showed that roughly surfaced
dental restorations placed below the gingival margin created
histological changes in the underlying gingival tissue. In a
dramatic illustration of this iatrogenic effect, one study took 9
dental students who needed mesio-distal inlay restorations (Lang
et al., 1983). The restorations were place in the student’s mouths
and they were followed for tissue changes, inflammation, and
microbiology over time (Figure 2). In one group, the restoration
was perfectly fitted so that no tissue irritation would occur
below the gum margin. The other group had a restoration
that was designed to have a poorly constructed restoration
with an “overhanging” metal margin that served to irritate
the underlying tissue. The restoration was kept in place for
19–23 weeks, during which time the clinical condition was
recorded as was bleeding on palpation every 2–3 weeks. The
area below the gum was also sampled for predominant types of
bacteria, which were determined by culture analysis of anaerobic
bacteria. The restoration was then removed and redesigned such
that the side that was perfectly fitted now had the “overhang”
while the other side now had a well-fitted restoration, and
the clinical and microbiological observations were continued
as described. Bleeding on probing always was preceded by the
presence of black-pigmented “Bacteroides” types of microbes,
now known as Porphyromonads, microbes associated with
gingivitis and periodontitis. These microbes were also associated
with the overhanging margins, which were directly related to
a change in the clinical condition, which led to the emergence
of the Bacteroides type microbes. These changes document the
potential for iatrogenic factors (poor dentistry) as an initiator
of gingivitis and periodontitis causing a periodontal wound.
Clinically this can be seen as an altered gingival sulcus now called
a periodontal pocket.

This physical change can result in an alteration in microbial
succession as compared to what typically takes place in an
unadulterated environment. These changes can lead to bleeding
and a change in the nutritional contents of the wound
environment. Inflammation provides a specific set of nutritional
factors, while bleeding provides red blood cells, hemin, and
fibrin, factors that are useful nutritional and signalingmetabolites
for Bacteroidetes, Spirochetes, and Porphyromonads (Page and
Schroeder, 1976). In the transition from health to disease the
pocket deepens, anaerobiosis increases, available carbon sources
decrease, and inflammation and pH changes occur which induce
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TABLE 1 | Criteria for defining disease causation.

Criteria for defining disease

causation

Date Novelty Focus References

Koch’s postulates 1893 Initial efforts to identify disease causation Microbes Koch, 1893

Loesche’s criteria 1976 Efforts to examine microbial causes of dental

diseases

Microbes Loesche, 1976

Socransky modification of Koch’s 1991 Efforts to include host in Koch’s postulates Microbes and Host Socransky and Haffajee, 1991

Marsh ecological criteria 1994 Efforts to establish ecological influences on

dental diseases

Microbes with ecological

consideration

Marsh, 1994

Casadevall and Piroski

Damage/Response

1999 Effort to understand host’s participation in

infectious diseases

Microbes in relationship to Host Casadevall and Pirofski, 1999

FIGURE 1 | Illustration of a shift in the homeostatic balance that favors dysbiosis in favor of disease. Influences on the right side that favor disease can include;

physical, chemical, or biological influences that can disrupt the balance. Factors such as iatrogenic dentistry, nutrition (excess carbohydrates; type of diet), lack of

salivary flow, changes in local pH, defects in enamel mineralization, inadequate immune responsiveness, leukocyte adhesion defects, etc. all can have a profound

influence on dental disease at the local level.

temperature changes. These changes contribute to a fluctuating
ecology in the context of the semi-delineated periodontal
pocket environment (Loesche, 1993). When the intact delineated
epithelial barrier is broached or ulcerated, oral bacteria can
escape from the pocket and enter the blood stream (Fine et al.,
1996). Here colonies from the subgingival biofilm invade the
circulation. The first bacteria to appear in the circulation can
aptly be termed pathobionts (or amphibionts), which now can
invade a foreign territory, by moving through the blood stream,
where they can settle on an irregular vascular niche. Now either
single or multiple species that move away from their natural
habitat course through the bloodstream and settle on damaged
vessels or tissues (i.e., streptococci, Fusobacteria, Aggregatibacter,
Bacteroidetes, porphyromonads, etc.).

Chemical Assaults That Can Result in Dysbiosis
A good example of the influence of antibiotics on the interference
with natural microbiome homeostasis is illustrated by an
experiment where specific classes of antibiotics were applied to
tooth surfaces after thorough debridement (Loe et al., 1967).
Since the sequence of events in early tooth related biofilm
development was known it was possible to select antibiotics
that would interfere with that progression. It was shown that

streptococci in the oral cavity were known to be the first to
interact with salivary-coated enamel surface immediately after
debridement. After forming parallel arrays perpendicular to
enamel the interstices between these parallel arrays was colonized
by Veillonella, a Gram-negative facultative anaerobe. This was
followed by a mixture of both Gram-positive and negative
bacteria that formed a complex biofilm community in a 10-
day period after abstinence from tooth brushing. Application of
vancomycin, which inhibited Gram-positive bacteria, resulted in
a thinner less dense biofilm; while application of polymyxin B,
which inhibited Gram-negative bacteria, showed less of an overall
effect, but the specific composition of the biofilmwas significantly
altered. The most dramatic effect was seen when tetracycline
(a broad spectrum antibiotic) was painted onto cleaned tooth
surfaces whereby an overall reduction in plaque biofilm was seen
over this 5-day period of brushing abstention. This elegant but
simple experiment demonstrated the potent effect of antibiotics
on a change in the homeostatic balance in natural biofilm
formation on tooth surfaces.

In clinical settings it has become apparent that a better
understanding of antibiotics is imperative in the balance
between health and disease (Sharma et al., 2019). Antibiotic
sensitivity and resistance have to be taken into consideration
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FIGURE 2 | Illustration of experiment showing how an overhanging dental

restoration can influence homeostatic balance by influences on tissue integrity,

inflammatory responsiveness etc. As such a physical change in the local

environment that can produce a local inflammatory response that can lead to

increased presence of red blood cells and cause an ecological shift in the

microbial balance influencing the overgrowth of an anaerobic, heme

dependent subgingival microbiota. Adapted from Lang et al. (1983).

(Marcinkiewicz et al., 2013). Effects of short-term antibiotic
therapy have been questioned because the long-term clinical
effect is not significantly superior to non-antibiotic therapy
in efforts to reduce the pathogenic or dysbiotic microbiota
(Hagenfeld et al., 2018).

Biological Assaults That Can Result in Dysbiosis
This example is seen mostly in what is thought to be genetically
modified host response diseases, one example of which is
Leukocyte Adhesion Deficiency (LAD). In LAD patients have
a defect in leukocyte adhesion to endothelial cells resulting in
defective transmigration of leukocytes into tissues (Hanna and
Etzioni, 2012; Silva et al., 2019). Defects in CD18 expression
result in a lowered B2 integrin expression on endothelial cells
and leukocytes fail to migrate into the adjacent connective
tissue. As a result, tissues are challenged by microbes that do
not get removed, become infiltrated with these microbes, and
patients succumb to progressive periodontal disease and tooth
loss (Moutsopoulos et al., 2015). Recent evidence suggests that
a dysregulated host response results in upregulation of IL-17 a
bone modulating cytokine (Hajishengallis and Moutsopoulos,
2014, 2016). A less dramatic case of a biological assault can be

seen in Localized Aggressive Periodontitis whereby a leukotoxin
produced by Aggregatibacter actinomycetemcomitans can result
in limited success for polymorphonuclear leukocytes (PMNs),
lymphocytes and macrophages in the modulation of bacteria
resulting in overgrowth of bacteria that could ordinarily remain
under control. Thus host protective lymphocytes and leukocytes
are affected at the local level producing an aggressive form of
disease (Fine et al., 2013).

Caries
A second example of the prominent influence of the host on
local oral disease can be seen in a description of caries. Caries
(commonly called cavities) occur as a result of demineralization
of enamel due to acid end-products generated by sugar
consumption of oral bacteria that reside in dental plaque biofilm
that collects on the enamel surface (Takahashi and Nyvad,
2011; Mira et al., 2017). Ultimately, there are key low-level
acidogenic and aciduric pathobionts that reside in the cavity
and due to a combination of tenacious biofilm formation,
insufficient host innate response (i.e., saliva is not sufficient),
and environmental factors (i.e., diet) these key organisms are
allowed to survive in an otherwise inhospitable environment
to other commensals. As the previously described chemically
initiated environmental dysbiosis, these acidogenic and aciduric
bacteria cause a dysbiosis of the local microbiome where only
the most acid tolerant survive (Takahashi and Nyvad, 2011).
In a healthy microbiome, the pioneer colonizers, in large
part streptococci, form one’s protective commensal microbiota
and attachment sites for subsequent colonizers. Moreover,
these organisms, in concert with other species create mutually
beneficial environments for the colonizers (Kreth et al., 2005;
Kolenbrander et al., 2006; Jakubovics et al., 2008a,b; Treerat et al.,
2020). In rare instances these Streptococci species are responsible
for extra-oral second site infections, such as endocarditis or
abscess, hearkening back to Casadevall and Pirofski and the
need to understand both the nature of the microbe and
the host.

Here again we wish to stress the importance of homeostasis
or more specifically the disruption of microbial and host
homeostasis, which we term dysbiosis. As in the case of
periodontitis we will divide these dysbiotic mechanisms into
three categories; Physical, chemical, and biological factors that
can influence a shift away from homeostasis to dysbiosis.

Physical Changes That Can Result in Dysbiosis
A physical constraint that encourages dysbiosis in the oral
cavity occurs during tooth formation. The biting surfaces of
molar teeth, called the occlusal surfaces, consist of pits and
fissures, which are grooves and depressions in the top surface
of teeth. The depth and tortuous anatomy of these surfaces
play a role in how they contribute to the caries process. A
deep pit or fissure in an occlusal surface can contribute to the
accumulation of bacteria and forceful the packing of bacteria
into these deep crevasses. As a result of this impaction, the
bacteria residing in the depth of these recesses can rest in a
protected domain and metabolize carbohydrates to produce acid
and demineralize these surfaces (Fine, 1995). This process is
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different than what happens in smooth surface decay of enamel
where the microbes attach by means of protein adhesins found
on the surface of the pioneer bacteria or to glycan receptors
due to salivary binding to enamel surfaces. For occlusal decay
bacteria such as Lactobacillus sp. that do not attach on their
own, can establish a home in the occlusal pit without a need
for adhesins. Here the bacteria can metabolize carbohydrates
to reduce the biofilm pH to below 5.5 and thus produce decay
(Fine et al., 1996). To counter-act this issue researchers have
developed sealants made of thin plastic that fill in the occlusal
pits and fissures to prevent the penetration of bacteria into these
deep crevasses.

Another example of a physical change that can contribute to
dysbiosis is in tooth root induced by exposure to bacteria due to
gingival recession. The root is composed of a less mineralized
cementum containing more irregular surfaces that becomes
exposed due to a receding gum-line resulting from periodontal
disease or trauma to the gingiva. Here we find an exposed
cemental surface that has anomalies providing opportunities for
colonization by bacteria, in particular those that would otherwise
not colonize as they lack adhesive properties, to lodge in these
areas and produce root surface decay (Takahashi and Nyvad,
2016). These conditions allow for bacteria to remove organic and
inorganic material from root surfaces leading to physical changes
that make the root more vulnerable to decay.

Chemical Changes That Result in Dysbiosis
Stephan showed that acid formation resulting from ingestion
of carbohydrates resulted in a sharp drop in the biofilm
pH immediately adjacent to the enamel surface (Stephan and
Miller, 1943). It was shown that with repeated exposure to
carbohydrates, members of the commensal microbiota that thrive
at a low pH overgrew and these reputed causative microbes
thrived at a low pH, which caused environmental selection
that reduced diversification and changed microbial homeostasis
(Marsh, 1994). Thus low pH favors the growth and survival of
acid tolerant and acid producing microorganisms that thrive at
a low pH, in this manner limiting diversification in this local
patch or domain (Kianoush et al., 2014). Thus, carbohydrate-
consuming species multiplied became profligate and produced
lactic and formic acid as an end product of their metabolism
(van der Hoeven and Franken, 1984; Duguid, 1985; Dashper and
Reynolds, 1996). The patch or landscape in which the now low
pH-favoring microbiota lives is typically influenced by salivary
flow. By virtue of the buffering capacity of bicarbonate and
other elements, the saliva buffers this sugar-induced pH decline
returning the area to a neutral pH (Vila et al., 2019). However,
in keeping with the Damage/Response Framework we now
recognize that even in the case of infusion of sugar, that creates
dramatic ecological changes favoring the outgrowth of acid
tolerant/acid producing microbes, the microbiota is constrained
by its environment, which is partially controlled overtime by
salivary influences.

Biological Changes That Result in Dysbiosis
In caries as mentioned above, a critical element in the carious
process is pH, and once the pH in a biofilm drops below 5.5

enamel demineralization begins (Dawes, 2003). The influence of
saliva (a local Damage/Response regulator) on this process is
critical due to its buffering capacity (Local Response), which if
lacking can be catastrophic. This has been illustrated in several
ways. In one case, in the absence of salivary flow, it is clearly
shown that the pH drop will continue unaltered and disease
or tissue damage will occur. An example of this occurs in
patients who have had irradiated salivary glands that gives rise to
reduced function and limited salivary flow resulting in excessive
and uncontrollable caries on the side of the irradiated gland
(Pinna et al., 2015). Without the buffering capacity of saliva
a selective group of low pH acidophilic commensal microbes
(microbial diversification has been reduced) have free reign.
In addition to buffering, salivary antimicrobials that include
but are not limited to lactoferrin, lactoperoxidase, lysozyme,
IgA, as well as salivary flow itself, are severely reduced and
therefore this landscape (the enamel surface) is much more
vulnerable to the activity of low pH adaptive members of the
commensal microbiota.

In a second simple demonstration of the importance of saliva,
subjects who abstained from brushing for a short period in order
to accumulate tooth associated plaque, were asked to rinse with a
10% sucrose solution (Abelson and Mandel, 1981). An antimony
electrode was placed on tooth-surface-associated-plaque-biofilm
in order to measure the pH of the biofilm in real time. A dramatic
rapid decline in the pH was seen immediately after the sucrose
rinse. Thus, the plaque/biofilm pH dropped from a neutral pH
of 7.0 to <6.0; however, shortly thereafter salivary buffering
forced the pH to rise again, protecting the enamel surface of
the tooth from demineralization due to acid production. To
demonstrate the prominence of host related saliva on this plaque
pH effect, the salivary ducts of the subjects were blocked prior
to the sucrose rinse, which prevented saliva from contacting
the tooth associated biofilm. This interference with salivary
flow allowed for the immediate pH drop but prevented salivary
buffering and as such the subsequent pH rise failed to occur. As
a consequence, the pH of the plaque/biofilm dipped below the
5.5 critical pH such that demineralization could take place. This
simple experiment is another clear example of the prominence
of the host in Damage/Response Framework determination of
oral disease.

Summary of Causes of Dysbiosis and
Dental Diseases
In summary, we have shown how classical common dental
disease occur in the event of dysbiosis of the commensal
microbiota initiated by an environmental stimulus that can cause
a shift in the landscape ecology to the detriment of the host. In
these examples there is no need for the addition of an exogenous
pathogenic microbial species to cause disease. Rather classical
dental “diseases” are more than likely to occur as a result of a shift
in the activity and/or proportion of members of the commensal
microbiota as a consequence of environmental changes. Thus, as
in the case of most current infections, microbial interactions that
have a damaging effect on the host are associated with the way in
which the host manages the damage that can occur.
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MICROBIAL AND IMMUNE INTERACTIONS
IN HEALTH, INFLAMMATION, AND
AUTOIMMUNE DISEASES

Brief Historical Prospective: General
Immunology
Interest in immunology began in the late 1700’s when small pox
was raging as an epidemic in Europe. In 1796, Edward Jenner
inoculated James Phipps with a scraping he obtained from a small
pox lesion he removed from the arm of a dairy maiden who
was infected by working with cows who had cowpox. This idea
was derived from Benjamin Jesty who took scrapings from a cow
(vacca) with a similar virus and inoculated his wife (Riedel, 2005).
In 1875, Robert Koch inoculated the ear of a rabbit with blood
of an animal that had anthrax. Shortly thereafter, Koch learned
how to grow bacteria, validated the germ theory of disease, and
began to establish the most advanced microbiology laboratory in
the world (Williams et al., 2008).

Completely independently, Pasteur in 1879 began studying
chicken cholera. In a serendipitous accident, Pasteur left nutrient
broth intended to grow cholera toxin unattended in his
laboratory over the summer. He then used the unattended broth,
but left in his flask as an attenuated inoculum for chickens and
found that they failed to get sick with cholera. In honor of
Jenner, he called the process vaccination, but it was not until
1893 that Ehrlich identified the biological attributes as an anti-
toxin material. In a contentious collaboration with von Behring
and Shibasaburō, Ehrlich recognized that the anti-toxin for
diphtheria was due to a soluble serum factor (Kaufmann, 2017).

In 1882, Eli Metchnikoff opened the door for research
into white blood cells, phagocytosis, and innate immunity
sparking the interest in cellular immunology (Gordon, 2008,
2016). Skipping ahead to 1939, Elvin Kabat, then at Columbia
University, discovered that antibodies were gamma globulins
(Kabat, 1983). In the 1960s, antibody structure was elucidated by
Porter and Edelman, while Miller and Mitchell discovered B and
T cell collaboration in functional antibody production in 1968
(Miller and Mitchell, 1968; Mitchell and Miller, 1968a,b; Raju,
1999; Sprent, 2017). A significant discovery of the activation of
the innate immunity was made in the early 2000s by Beutler,
Hoffman, and Steinman (Beutler, 2013).

Brief Historical Prospective: Immunology
Related to Oral Disease
The work describing immunology in oral diseases paralleled the
work done in medicine. The pathogenesis of dental infections
received a great deal of attention when the emphasis shifted
from pyorrhea as a local disease to a disease directly related
to causes of systemic diseases of unknown etiology (Hunter,
1900). A link between oral infections and arthritis, colitis, heart
disease, and cancer of unknown etiology was made and received
a great deal of attention (Colyer, 1902). This theory was known
as the “focal theory of infection” and was supported by several
prominent dental andmedical researchers and academicians, one
of which was R. L. Cecil, author of the well-known Cecil and
Loeb “Textbook of Medicine,” first published in 1927 (Hunter,

1900, 1911; Billings, 1912; Cecil, 1929; Cecil and Angevine,
1938). During that period Rosenow, a prominent microbiologist,
performed scientific experiments using animal models in efforts
to show how microbes from the oral cavity provoked systemic
infections (Rosenow, 1919, 1930). After several instances related
to “extreme treatment” of human “dental infections,” whereby
treatment resulted in extraction of all teeth, it was determined
that the extreme treatment failed to result in any changes in
overall systemic health. This approach put an end to the belief
in this theory and the practice of “extreme treatment” was
fortunately abandoned.

As for vaccinations related to pyorrhea, Beckwith et al. (1929)
made efforts to inoculate animals with organisms isolated from
pyorrheatic pockets (Beckwith et al., 1925, 1929). He compared
reactions to heat attenuated plaque derived from humans to
boiled plaque samples then inoculated into humans and rabbits.
Several of the animals died in the heat-attenuated samples as
opposed to the boiled samples suggesting some semi-viable toxic
material (Beckwith et al., 1929). A series of studies were also
initiated by Rosebury to develop caries vaccines although the
investigators focused on lactobacillus as opposed to streptococci
(Rosebury et al., 1929, 1934).

Major contributions to the study of oral immunology were
made by the Alabama dental research group consisting of Drs.
J. McGhee, Mestecky, and Michalek, also involving Dr. Per
Brandtzaeg and Frederick Kraus. As prominent contributors to
our understanding of the common immune mucosal system
(CIMS), the group clearly illustrated the unification of IgA
pathways when antigens were provided via vaccines to mucosal
surfaces as compared to intramuscular inoculations (Mestecky
et al., 1972, 1978, 2008; McGhee et al., 1987; Moldoveanu et al.,
1995). Studies from this group revolved around development
of a caries vaccine against S. mutans, which provided a unique
understanding of mucosal immunity and ultimately showed
differences in IgG, IgM, and IgA responses. Kiyono, also part of
this group, provided a new method for separating dendritic cells
and macrophages as antigen presenting cells in Peyer’s patches
and showed that oral delivery of antigens produced Ig isotype
subset of Th2 type helper cells that induced IgA responsiveness
(Kiyono and Fukuyama, 2004; Kiyono and Azegami, 2015).

Recognition of Pathogens by the Innate
Immune System
The vital observation that the induction of a strong immune
response against purified proteins was dependent on the presence
of microbial constituents, such as killed bacteria or bacterial
extracts, famously called “the immunologist’s dirty little secret”
by Janeway (1989), gave birth to the term adjuvant (which in
Latin means adjuvare, for “to help”). In the absence of infection,
it is clear that adjuvants are partially required to activate innate
receptors on sensor cells to aid T cells (lymphocytes). Sensor cells
that detect infection and drive the production of inflammatory
mediators include macrophages, neutrophils, and dendritic cells.
Such cells express a number of innate recognition receptors
that enable them to detect pathogens or the damage caused
by them. These receptors are known as pattern recognition
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receptors (PRRs) and recognize simple molecular structures
termed pathogen-associated molecular patterns (PAMPs), also
called microbe-associated molecular patterns (MAMPs), which
are components of many microorganisms, but not of the body’s
own cells (Yu et al., 2017; Negi et al., 2019). PAMPs come
in various flavors and are expressed by different classes of
bacteria, which engage several pattern recognition receptors
(PRRs) (Table 2).

While the first line of innate immune defense involves
detection of PAMPs or MAMPs, danger-associated molecular
patterns (DAMPs) are endogenous factors released upon cellular
damage or tissue disruption (Kay et al., 2019). DAMPs released
from oral and salivary tissue play an important role in
progression of inflammatory and autoimmune disease. The
signaling pathways of PAMPs and DAMPs intersect in the
manifestation of diseases of the oral cavity, particularly in
periodontal disease, oropharyngeal candidiasis, and Sjögren’s
Syndrome (De Lorenzo et al., 2018; Kay et al., 2019).

Immunologic Signals Induced by Pathogen
Recognition
Chemokines are chemotactic cytokines whose function is critical
for the positioning of immune cells in tissues. They control
release of innate immune cells from the bone marrow, as
part of normal homeostasis, and as a result of infection and
inflammation. They play a critical role in guiding innate immune
effectors out of the circulation and into sites of injury or
inflammation. In doing so, chemokines promote, and coordinate
interactions between the innate and adaptive immune systems,
thus ensuring optimal adaptive immune responses (Hao et al.,
2010; Sokol and Luster, 2015). Neutrophils are the first cells to
arrive at sites of infection, and they provide a front line of defense
against bacterial infection. While most bacteria are readily killed
by neutrophils, some bacterial pathogens have the capacity to
circumvent destruction by these host leukocytes (Teng et al.,
2017; Kobayashi et al., 2018). There is an elaborate cellular and
cytokine presence at the gingival tissue interface and supporting
oral mucosa, where an increased amount of neutrophils are
recruited to the gingival crevice during inflammation, such
as conditions found in gingivitis or periodontitis (Dutzan
et al., 2016; Moutsopoulos and Konkel, 2018). Under normal
conditions these neutrophils play an important role in microbial
surveillance as well as in coordinating the overall immune
response, in order to maintain oral health.

Evidence suggests that bacteria in biofilms, including those
found in the supra- and subgingival plaque biofilm, are
more resistant to the phagocytic activities of neutrophils and
macrophages than non-biofilm bacteria (Ebersole et al., 2017; Liu
et al., 2017). As a result, the sentinel cells that mediate the first
line of the adaptive immune response, comprising dendritic cells,
macrophages and mast cells, are called in for battle, scanning
for the foreign invaders. The initial response is to destroy the
invaders, followed by distress signals that are sent via cytokines
and chemokines that recruit reinforcement of other effector cells
to eliminate the remaining threat.

The adaptive immune system of the gastrointestinal tract has
unique features that distinguish it from those of other organ
systems. The most important adaptive immunity in the gut is
humoral and is geared toward keeping the microbes of the
lumen under control. This property is mediated by dimeric IgA
antibodies, which are secreted into the lumen of the gut or
found in the colostrum of mother’s milk ingested by infants
(Macpherson et al., 2018; Bryant and Thistle, 2020). IgA in
the gut is critical in preventing commensals and pathogens
from invading via the epithelial barrier of the mucosa. The
preponderance of IgA in mucosal secretions is due to the fact
that activated B cells in the gut undergo class switching to
IgA producing B cells, which home to the gut. Cell mediated
immunity against gut microbes are mediated by helper T cells,
of which Th17 cells are the most abundant, even though Th1
and Th2 cells are also found. Regulatory T cells (Tregs) are most
committed tomaintaining tolerance to food antigens (Tordesillas
and Berin, 2018), and to commensal microbial antigens (Nutsch
and Hsieh, 2012).

Resident macrophages and dendritic cells are normally
present in the gingiva and are important in defending the tissue
barrier against bacterial insult. In response tomicrobial dysbiosis,
the numbers of these cells increase (Delima and Van Dyke,
2003). In health, lymphocytes in the gingiva comprise few B
cells and more prominent T cells. During disease, various B-cell
and T-cell subsets increase significantly, where Th17 cells may
promote pathogenesis. While little is known about specialization
of Treg cells in the gingiva, it is clear that Tregs play critical
roles in maintaining periodontal homeostasis (Glowacki et al.,
2013; Moutsopoulos and Konkel, 2018). Unlike homeostatic oral
Th17 cell accumulation, in a commensal-independent and IL-6-
dependent manner, periodontitis-associated expansion of Th17
cells was dependent upon the local dysbiotic microbiome and
required both IL-6 and IL-23 (Silva et al., 2015; Dutzan et al.,
2018). Th17 cells secrete the IL-17 cytokines, which have pro-
inflammatory activities in common with IL-1β, TNFα, and IL-22,
and are important for immunity against extracellular bacteria
(Miossec, 2009). Th17 cells are involved in the pathogenesis
of several autoimmune and inflammatory disorders; in fact
three IL-17 inhibitors have been approved for the treatment of
psoriasis, psoriatic arthritis, and ankylosing spondylitis (Beringer
and Miossec, 2019). As it relates to the oral cavity, IL-17A
has been shown to stimulate the development of osteoclasts
(osteoclastogenesis) in the presence of osteoblasts (Zhang et al.,
2011), and expression of IL-17 has been observed in gingiva
from patients with periodontitis (Cardoso et al., 2009). In an
A. actinomycetemcomitans-induced rat model for periodontal
disease prior to onset of bone resorption, upregulation of IL-17
in CD4+ T cells (2.8-fold) and B cells (2-fold) in lymph nodes
from A. actinomycetemcomitans-infected rats was observed, as
compared to control rats (Li et al., 2010; Tsiagbe and Fine, 2012).

The Th17/IL-17 response has been investigated as a
therapeutic target. Resolvin E1 (RvE1), a product of the ω-3
polyunsaturated fatty acid eicosapentaenoic acid is known
to be a potent pro-resolving lipid mediator that prevents
chronic inflammation, osteoclastogenesis, and bone resorption
by inhibiting IL-17-induced RANKL expression in osteoblasts
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TABLE 2 | Pattern recognition receptors (PRRs) and the associated pathogen-

associated molecular patterns (PAMPs).

PRR PAMP References1

Gram positive TLR2, NOD2 Peptidoglycan (PGN) a, d

TLR2 Teichoic acid (TA) b, c, d, e, i,

TLR2/6 Lipoteichoic acid (LTA) e, f, g

TLR5, NAIP5,

NAIP6, NLRC4

Flagella d, zc

Gram negative TLR4 Lipopolysaccharide

(LPS)

d, h

TLR2, NOD1,

NOD2

PGN d, j

TLR5, NAIP5,

NAIP6, NLRC4

Flagella d, h

TLR2 Porins k, l

NAIP2, NLRC4 Rod protein of Type III

secretion system

(T3SS)

m, n

Genus-specific

Mycobacteria TLR2,

MARCO,

MINCLE

Trehalose dimycolate

(TDM)

o, p

TLR2/4 Mycolic acid (MA) q, r

TLR2 Lipoarabinomannan

(LAM)

s, t, u

TLR2 Arabinogalactan (AG) v

TLR2, NOD2 Peptidoglycan (PGN) w

TLR4 Phosphatidylinositol

mannose (PIM)

x

Mycoplasma TLR2/6 Macrophage

activating lipopeptide

M161 antigen

d, y

Other TLR9 CpG-DNA z, za, zb

1a, Rosenzweig et al. (2011); b, Ribeiro et al. (2010); c, Kumar et al. (2013); d, Kumar

et al. (2011); e, Takeuchi et al. (2000); f, Krutzik et al. (2003); g, Takeuchi et al. (2000); h,

Takeuchi et al. (2002); i, Echchannaoui et al. (2002); j, Clarke et al. (2010); k, Singleton

et al. (2005); l, Mukherjee et al. (2014); m, Kofoed and Vance (2011); n, Karki et al. (2018);

o, Bowdish et al. (2009); p, Martinez et al. (2016); q, van Crevel et al. (2002); r, Harding

and Boom (2010); s, Strohmeier and Fenton (1999); t, Hook et al. (2020); u, Gilleron et al.

(2003); v, He et al. (2019); w, Girardin et al. (2003); x, Abel et al. (2002); y, Nishiguchi et al.

(2001); z, Peter et al. (2009); za, Adamus and Kortylewski (2018); zb, Hausmann et al.

(2020); zc, Lai et al. (2013).

and RANKL-induced osteoclast differentiation (Funaki et al.,
2018). Its activities have made RvE1 a new therapeutic target
of rheumatoid arthritis. Additionally, resolvins hold promise
for treatment of periodontal disease and other inflammatory
diseases, including type 2 diabetes and cardiovascular disease
(Van Dyke, 2017).

Mucosal tissues, which are colonized by a dense and
diverse microbiota of commensal bacteria, are often the initial
sites of interaction with pathogenic microorganism (D’Aiuto
et al., 2004; Ebersole et al., 2017). Macrophages efficiently
recognize unique classes of microorganism-associated molecular
patterns (MAMPs), which facilitate the avid uptake of the
microbes by pattern recognition receptors (PRRs) (Lauvau and
Glaichenhaus, 2004; Ebersole et al., 2017). In the “classical

activation” (M1), the macrophages display an inflammatory
function that leads to cytotoxicity, tissue injury, and fibrosis
(Locati et al., 2013). The differentiation into M1 macrophage
phenotype relates to host-derived IFN-γ , as an autocrine
or paracrine factor, and lipopolysaccharide (Labonte et al.,
2017). The “alternative activation” (M2a,b) process is driven by
IL-4 and IL-13, which can be autocrine or paracrine, and is
immunomodulatory in its control of tissue repair and cellular
regeneration (Mantovani et al., 2013). Macrophage activation
plays a large role in periodontal diseases. The outcome of antigen
recognition is dependent on which functional subpopulations of
macrophages are engaged. The oral pathogens P. gingivalis andA.
actinomycetemcomitans were observed to induce M1-type cells,
whereas oral commensal bacteria primarily elicited macrophage
functions consistent with an M2 phenotype (Huang et al., 2016).
The presence of relatively more M1 macrophages, compared to
M2 macrophages in gingival tissue may be responsible for the
development and progression of inflammation-induced tissue
destruction, and modulating macrophage function may be a
potential strategy for periodontal disease management (Zhou
et al., 2019).

Immature dendritic cells (i.e., Langerhans’s cells), which are
endowed with the ability to capture antigen, are normally located
in the gingival epithelium, while mature dendritic cells, which
specialize in antigen presentation, tend to infiltrate specifically
the lamina propria of the gingiva, an area enriched for CD4+ T
cells (Jotwani et al., 2001). While much work is still needed to
elucidate the role of dendritic cell subsets in periodontal disease,
it is established that immature dendritic cells weremore prevalent
in aggressive periodontitis than chronic periodontitis (da Motta
et al., 2016).

Molecular Mimicry and Its Pathologic
Consequences
The process of aging is characterized by quantitative
modifications of the immune system, described as
“immunosenescence,” which leads to increased susceptibility
to infections, neoplasias, and autoimmune manifestations,
primarily due to persistent antigenic stimulation and/or stress
responses across the life span (Weng, 2006; McElhaney et al.,
2012; Ebersole et al., 2016; Mancuso et al., 2018). This diminution
in the ability to withstand antigenic stimuli or stressors is often
accompanied by enhanced proinflammatory state, known as
“inflammaging” (Ebersole et al., 2016; Fulop et al., 2018). This
enhanced proinflammatory state is shared by the elderly who age
with minimal morbidities (i.e., no comorbidities) and those who
do not (Mari et al., 1995; Ebersole et al., 2016). This observation
led to the hypothesis that a threshold exists beyond which an
individual is driven toward unsuccessful aging (Shanley et al.,
2009). The mechanisms that underlie inflammaging are not
well-elucidated. One explanation put forward is that it is driven
by changes in the numbers and frequencies of innate immune
cells, or alteration in the expression of or signaling via PRRs
(Baggio et al., 1998). A generalized age-associated decreased in
toll-like receptor (TLR)-induced cytokine production has been
observed (Canaday et al., 2010). With respect to periodontal
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disease, age-related decline in IL-6 induction in macrophages
by P. gingivalis has been observed (Liang et al., 2009). In some
individuals, age-related decline in TLR-dependent expression of
costimulatory molecules CD80 and CD86 has been observed in
monocytes, myeloid dendritic cells, and plasmacytoid dendritic
cells (Qian et al., 2011; Sridharan et al., 2011; Ebersole et al.,
2016).

Knowledge about age-related changes in the composition and
phenotype of cells in the periodontium, which lead to alveolar
bone resorption, gave birth to the concept of “osteoimmunology”
(Feng and McDonald, 2011; Schett, 2016; Terashima and
Takayanagi, 2018; Okamoto and Takayanagi, 2019). Age-related
increases in RANK expression on osteoblast progenitors and
RANKL expression in supporting mesenchymal stromal cells
has been noted to result in a pro-osteoclastic environment,
which potentially promotes bone resorption (Chung et al.,
2014; Ebersole et al., 2016). While age-related enhancements in
proinflammatory cytokines, such as prostaglandin E2, TNF-α, IL-
1β, IL-6, and IL-17 are suggested to play significant roles in in
enhancing osteoclastogenesis (Boyle et al., 2003; Ebersole et al.,
2016), other molecules such as IFN-β, IL-4, IL-10 and chemokine
axis of CCR4 and CCL22 dampen bone loss by a molecular
feedback mechanism (Araujo-Pires et al., 2015; Ebersole et al.,
2016).

Molecular mimicry of host proteins is an established strategy
adopted by bacterial pathogens to interfere with and exploit host
processes. Mimics within pathogens arise via two evolutionary
mechanisms: (1) pathogen genomes can obtain host genes
directly through lateral transfer or (2) through convergent or
parallel evolution of a pathogenic protein toward resemblance
of a host protein (Koonin et al., 2001; Stebbins and Galán, 2001;
Elde and Malik, 2009; Doxey and McConkey, 2013). The Gram-
negative bacterium Helicobacter pylori is a common bacterial
pathogen that is responsible for widespread gastrointestinal
morbidity worldwide and employs of a number of mechanisms
of molecular mimicry (Kamboj et al., 2017). H. pylori colonizes
the gastric mucosa in humans, and increases the risk of serious
diseases such as gastric and duodenal ulcers, stomach cancers,
and mucosa-associated lymphoid tissue lymphoma. H. pylori
employs antigenic mimicry and possible deleterious effects due to
the induction of immune response to the components common
to these bacteria and the host (Chmiela and Gonciarz, 2017).
H. pylori-related growth retardation in children is a noted
phenomenon, however, it is poorly understood. Gastrointestinal
microbiota, includingH. pylorimay produce antigens that mimic
appetite-regulating peptides, resulting in the production of auto-
antibodies, which modify the actions of key appetite-regulating
peptides, such as alpha-melanocyte-stimulating hormone (α-
MSH) (Fetissov et al., 2008). Polymorphisms of the host
interleukins, including IL-1β, TNF-α, and cyclooxygenase-2
(COX2) have been suggested to increase the risk of infection and
its severe consequences (Machado et al., 2003).

There is increasing support to the idea that gut dysbiosis,
with an imbalanced state of microbiota, might be associated with
the pathogenesis of autoimmune diseases, including rheumatoid
arthritis (RA), systemic lupus erythematosus (SLE), ankylosing
spondylitis (AS), and inflammatory bowel disease (IBD) (Kim

et al., 2016). Tetracycline derivatives, such as doxycycline and
minocycline, are safe and moderately effective disease modifying
anti-rheumatic drugs in the treatment of early RA patients
(Smith et al., 2011; Kim et al., 2016). Probiotics, which are live
microorganisms that confer health benefits to the host and which
have the potential to maintain a healthy microbial balance in
the gut, have been tested. Clostridium consortium, F. prausnitzii,
and Bifidobacterium have been tested to ameliorate IBD in the
colitis model by inducing Treg cells and anti-inflammatory effects
(Atarashi et al., 2011; Kim et al., 2016).

CURRENT AND FUTURE
METHODOLOGIES FOR THE EVALUATION
OF HEALTHY AND DYSBIOTIC
COMMUNITIES

The imbalance in the composition of oral microbiome can be
directly linked to disease conditions. However, because of the
overlap in the microbial communities, the difference between
the healthy and disease states cannot be solely explained by
the differences in the microbial composition. Thus, additional
elements such as the functional activities of the microbiomes are
needed to fully characterize and define the dysbiotic process. In
this regard, recent omics studies have analyzed gene expression
changes to analyze the functional activities and will be discussed
below in detail.

Omics Technologies
The omics approach encompasses various technologies applied
to fields of research including genomics (and epigenomics),
transcriptomics, proteomics, and metabolomics. The ultimate
goal of these approaches is to design diagnostics to predict an
individual’s risk to develop disease and/or to determine whether
or not specific treatments are suitable for the individual patient.
A genomics approach has been widely used, especially in cancer
diagnoses. Recently, genome-wide association studies (GWAS),
and next generation exome and genome sequencing data have
amassed a large set of DNA sequence variants that can be
associated with diseases in humans (Olivier et al., 2019).

Genome-Wide Association Studies and
Periodontitis
Although GWAS have had modest success, (Offenbacher
et al., 2016) supplemented the clinical data with biological
intermediates of microbial burden and the local inflammatory
response [gingival crevicular fluid (GCF) IL-1β] to derive
periodontal complex traits (PCTs) for chronic periodontitis.
Six PCTs were derived. PCT1 (loci CLEC19A, TRA, GGTA2P,
TM9SF2, IFI16, and RBMS3) was characterized by a uniformly
high pathogen load; PCT3 genetic variants of diacylglycerol
kinase and inositol polyphosphate phosphatase, which are
critically involved with regulating neutrophil function; and
PCT5 (loci SLC15A4, PKP2, and SNRPN) were dominated
by Aggregatibacter actinomycetemcomitans and Porphyromonas
gingivalis. Several studies aiming to explore the distinct gene
expression profiles and pathways unique to periodontitis
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have indeed confirmed the anticipatory differential expression
involved in inflammation or bone resorption (Zhang et al., 2020).
For example, pathways involved in cytokine and chemokine
activities, B-cell receptor signaling, and defense and immunity
proteins in both innate and adaptive immune responses, were
reported to be among those most upregulated in periodontic
gingival tissues when assessed using RNA sequencing.

It is unclear at present, despite much thought in to the
subject of “Infectogenomics,” as to how host genetics helps
to shape the healthy or dysbiotic microbiome in periodontitis
(Kellam and Weiss, 2006). Recently, groups have been exploring
how host genetic variants affect the colonization of bacteria,
which affects the genetics-associated dysbiosis (Nibali et al.,
2014, 2016). In a model proposed to explain this dysbiosis, it
has been suggested that single-nucleotide polymorphism (SNP)
variants may compromise genes that are associated with host
pathways of bacterial sensing and recognition (Zhang et al.,
2020). The advent of 16S ribosomal RNA gene sequencing has
allowed the evaluation of phylogenetic relatedness of bacterial
species. If the bacterial sensing and recognition pathways are
affected and result in a dysbiotic biofilm, could this lead to
a shift in the microbial taxa wherein the health-associated
species are suppressed and periodontitis-associated bacteria
dominate subgingival communities (Diaz et al., 2016)? Using 16S
pyrosequencing of the microbiome of periodontitis patients and
healthy controls, Griffen et al. (2012) reported the enrichment
of 123 species abundant in periodontitis compared to only
53 species in the healthy state. This microbial shift in the
proportion of existing species might result in a succession process
of emergence of disease bacteria without replacing the health-
associated species. As described below, it is possible that the
shift in microbiota may also result in a metabolic shift in
periodontitis patients.

Metatranscriptomics
This omics method is a technology designed for the functional
characterization of microbiomes using microarray or RNA
sequencing technologies that reveals the taxonomic composition
and active functions of a complex microbial community. It
is unlike metagenomics, which shows the microbial DNA
composition, and with an added bonus over previous methods
since there is no PCR or primer/probe bias (Socransky et al.,
1994; Kumar and Gupta, 2003; Colombo et al., 2009). With
the well-characterized human microbiome, metatranscriptomics
has facilitated many studies about the dysbiosis and disease.
Discussed below are some such studies, which have helped us to
understand the functional characterization of the microbiome.

Metatranscriptome and Caries
In an earlier study, focusing on the metatranscriptome during
biofilm formation and before and after meal ingestion, the
authors set out to identify the transcriptionally active portion
of the supragingival microbial community in relation to
the metagenome (Benitez-Paez et al., 2014). Clearly, from
one individual the three most abundant genera from the
metatranscriptome analysis of 24-hr plaque corresponded to
Actinomyces, Corynebacterium, and Neisseria, whereas the

most abundant genera from the metagenome were Veillonella,
Streptococcus, and Leptotrichia. In the same study, the authors
also analyzed the gene expression during plaque development
and compared the genera during early (6–12 h) and mature
biofilm (24–48 h) formation times. Interestingly, there was
significantly (p < 0.0118) fewer genera in the early compared to
the mature biofilm. Both Streptococcus and Actinomyces, known
partners of coaggregation were found predominantly in the early
time point (Kolenbrander et al., 1983). The bacterial activity
during biofilm formation in healthy subjects was found to be
person-specific. While in the early plaque samples, up regulation
of genes involved in the carbohydrate metabolism, energy,
vitamins, and amino acids were observed, in the mature biofilm
the functional categories included ABC transporters, chemotaxis,
and pilus assembly. One aspect of the study suggested that
at least in some individuals there was no difference in the
microbiota before or after a meal thus maintaining homeostasis
and promoting dental health (Benitez-Paez et al., 2014).

Metatranscriptome and Periodontitis
The microbiota associated with periodontitis, a disease resulting
in part from polymicrobial synergy and dysbiosis, has been
classified into color coded complexes depending upon their
accumulation in the periodontal pocket (Socransky et al., 1998;
Lamont and Hajishengallis, 2015). Although the mean species
(beta) diversity changes drastically between the disease and
healthy states, higher alpha (average species) diversity and
biomass appear to be associated with the disease community
when the subgingival plaque was analyzed from chronic
periodontitis patients and healthy subjects (Abusleme et al.,
2013). In spite of the emergence of dominant taxa, the
original health-associated community did not get replaced.
Subsequent statistical analysis of two existing data sets,
however, revealed a reduced alpha diversity associated with
disease (Duran-Pinedo et al., 2014b; Yost et al., 2015; Ai
et al., 2017). In a recent metatranscriptomic analysis, notably,
the functional comparisons between healthy and generalized
aggressive periodontitis sites revealed that upregulation of lysine
fermentation, histidine degradation, and pyruvate metabolism
is common among diseased individuals (Jorth et al., 2014).
However, three metatranscriptomic surveys into the metabolic
activity of chronic periodontal disease progression provided
further insight that the conservation of the community
functionality rather than the specificmicrobial effecters of disease
exists (Duran-Pinedo et al., 2014a,b; Yost et al., 2015). A very
recent work, examining the existing metatranscriptome datasets
(Duran-Pinedo et al., 2014b; Jorth et al., 2014; Yost et al., 2015)
to identify the commonly differentially expressed transcripts
from both chronic and aggressive periodontitis patients and
potential underlying RNA regulatory mechanisms behind the
metabolic shifts, has revealed that many ncRNAs (both known
and putative) may facilitate the metabolic shifts associated with
periodontitis (Ram-Mohan and Meyer, 2020). Some of the
notable highlights of this new analysis are: (1) Only a fraction of
the differentially expressed transcripts originate from red/orange
complex; (2) The differentially expressed transcripts from these
Red/Orange complexes show the greatest magnitude of change;
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(3) Enrichment of genes generally grouped into the biological
process of localization could be important in the establishment
of red complex pathogens in the periodontal pocket to drive
pathogenesis; (4) Most metabolic pathways enriched in disease
state have multiple contributing species fulfilling the metabolic
niche; and (5) By applying de novo pipelines on the differentially
expressed genes, the authors identified several putative sense
and anti-sense regulators of bacterial ribosomal proteins that
could be associated with periodontitis. Additionally, seven novel
antisense ncRNAs targeting ribosomal proteins may be involved
in maintaining ribosomal protein stoichiometry during the
disease associated metabolic shift (Ram-Mohan and Meyer,
2020). In summary, metatranscriptomics analyses suggest a
common shift in metabolic signatures in disease vs. healthy
communities with up-regulated processes including pyruvate
fermentation, histidine degradation, amino acid metabolism, and
TonB-dependent receptors.

Proteomics
Simply put, proteomics is the methodology wherein proteins
are identified in a sample. The key technology in proteome
analysis is mass spectral analysis, although classical approaches
have also utilized gel electrophoresis, liquid chromatography,
and microarray. Mass spectrometry (MS)-based proteomics is
a large-scale, high-throughput, systematic study, allowing for
the comprehensive characterization of total protein in a sample,
even with a limited sample volume or mass. Recent advances
in the mass spectrometry platform utilize selective, multiple,
and reaction monitoring to quantify precisely and reproducibly
even low abundance proteins, which makes the technology even
suitable for clinical use (Uzozie and Aebersold, 2018). Many of
the current analyses also include protein-network analysis for
enhancing the analytical outcome.

Proteomics and Caries
For caries research, the proteome of early pellicle (3min) samples
isolated from 12 caries-free and 12 caries-active patients was
analyzed (Trautmann et al., 2019). Among the 1,188 proteins
identified, there were 68 that were ubiquitous regardless of
disease state. Quantitative analysis suggested that 23 proteins are
potential caries-specific biomarkers. A higher extent of protein
identifications might facilitate the future large-scale analyses to
identify discrimination factors for the development of caries
susceptibility tests (Trautmann et al., 2019).

In another study involving children with and without caries,
using multiple reaction monitoring, unstimulated saliva from
three groups of 10 children each with no, low, and high
caries were analyzed (Wang et al., 2018). Among the 244
differentially expressed proteins, the authors selected 53 proteins,
including mucins, histatin 1, cystatins, and basic salivary proline-
rich protein 2, for further verification using multiple reaction
monitoring assays. An interesting conclusion from this study is
that there might be synergistic action among the proteins for
caries resistance and for carcinogenicity. Unlike other proteome
studies, this type of analysis might be used in the development
of biomimetic, therapeutic peptides with preventive benefits for
childhood caries (Wang et al., 2018).

Proteomics and Periodontitis
Recently, proteomics approaches have been applied to the
diagnosis of periodontitis through the identification of protein
biomarkers by comparing complete protein profiles in health vs.
disease conditions using tandem mass spectrometry (Antezack
et al., 2020). This study was designed to evaluate the protein
profiles exclusive of the potential risk factors such as age, gender,
hypertension, smoking habits, or diabetes by using a principal
component analysis of top-ranking peaks and epidemiological
data from a medical questionnaire from 141 subjects (67
periodontal and 74 control subjects). Samples from saliva, GCF,
and plaque were used in the analysis, which showed that the
composition in these samples reflected important differences in
correlation with disease population (Papapanou et al., 2018).
Although GCF showed a strong ability to distinguish periodontal
patients with a sensitivity of 79.6 (0.188) and a specificity
equal to 75.7 (0.195), saliva can be used as a simple diagnostic
fluid for screening potential periodontal patients [sensitivity =

70.3% (0.211) and specificity = 77.8% (0.165)]. While other
studies based on bacterial composition 16S rRNA analysis have
shown Prevotella to be overabundant in healthy subjects, salivary
microbiota such as Porphyromonas, Tannerella, Desulfobulbus,
Eubacterium, Phocaeicola, and Mogibacterium were associated
with periodontitis patients (Chen et al., 2018). One of the major
outcomes of this mass spectral study is that periodontal diagnosis
does not depend on a unique biomarker and that patients who
are symptom-free can be screened at the early stage of disease
without the need of clinical measurements such as pocket depth,
plaque index and radiography (Papapanou et al., 2018). Thus,
the mass spectroscopy analysis could be used as a simple, non-
invasive, and rapid screening method on a large population
within a short period of time to results (24–48 h).

In another study, Hartenbach et al., using a hybrid mass
spectrometer LTQ Orbitrap Velos for proteomic analysis to
obtain greater resolution, mass accuracy and sensitivity, were
able to improve the qualitative and quantitative analyses of the
salivary proteome (Hartenbach et al., 2020). The authors showed
that a large range of salivary proteins with protective functions
and associated with oral homeostasis were down-regulated
in chronic periodontitis patients compared to individuals
presenting periodontal health. In contrast, very few specific
proteins such as salivary acidic proline-rich phosphoprotein,
a submaxillary gland androgen-regulated protein, histatin-1,
fatty acid binding protein, thioredoxin, and cystatin-SA were
increased in chronic periodontitis or related to periodontal tissue
destruction and inflammation. It is possible that a decrease of
several proteins related to innate immune response and tissue
integrity may determine the disease profile. These differences
in salivary proteome profiles between periodontal health and
periodontitis may contribute to the identification of disease
indicators, and to the improvement of periodontal diagnosis
and treatment.

What is the clinical relevance of these studies? While it
could be argued that routine MS analysis might be useful, this
technique also requires specialists for the analysis and might be
time consuming. However, identifying a small subset of reliable
changed proteins from these proteomic studies could lead to

Frontiers in Microbiology | www.frontiersin.org 14 March 2021 | Volume 12 | Article 617485

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Cugini et al. Dysbiosis in Oral Health

consistent identification of salivary proteins that could then be
used in a chair-side test. In this regard, some recent studies have
shown that S100A8 and S100A9 in GCF and saliva could be
candidate biomarkers for periodontitis (Preiano et al., 2016; Shin
et al., 2019). Fine et al., has shown that MIP1-α levels were 50-
fold higher in aggressive periodontal patients’ in saliva and can be
used as a predictive marker for site-specific disease progression
(Fine et al., 2009, 2014). MIP1-α has also been shown to be
predictive in chronic periodontitis patient’s GCF or saliva, as well
as being one of a set of cytokines that influence the bacterial
composition at the periodontal pocket, indicating a potential
relationship to dysbiosis (Al-Sabbagh et al., 2012; Syndergaard
et al., 2014; Zhou et al., 2017). Interestingly, this potential
biomarker is elevated in many inflammatory and disease
conditions that exhibit bone resorption, such as periodontitis,
multiple myeloma, Sjögren syndrome, and rheumatoid arthritis
(Bhavsar et al., 2015). Thus, a rapid, point-of-care test-kit using
salivary MIP1-α, S100A8, and/or S100A9 could be a practical
tool for diagnosis and reducing the risk of periodontitis and
promotion of periodontal health (Buzalaf et al., 2020).

These studies provide a small sample of the potential of
proteomics in diagnosing periodontal patients early on and to
continue to follow the progress of the disease with minimal
intervention and could become part of the routine dental visits.
It should be noted, however, that the samples collected during a
routine visit should be tested immediately after collection since
storage of samples at −20◦C for 2–3 months has been shown to
alter the protein profiles (Preiano et al., 2016).

Metabolomics
The high throughput analysis and biological understanding
of how metabolites contribute to disease processes through
metabolomics is an emerging field.We can appreciate the value of
sequencing technologies in study of health and disease, however
if one was interested in developing a bed or chair side point of
care diagnostic device or test, metabolites would be a desirable
analyte for detection.

Are There Bacterial Contributions to the Salivary

Metabolome?
The salivary metabolomic studies are rapidly advancing and
in this regard, it is prudent to understand the host-bacterial
contributions when saliva is used as the diagnostic fluid. NMR
has been utilized specifically for this purpose. For example,
saliva is a diagnostic fluid that has been used in the metabolic
profiling of various oral diseases such as caries. In this regard
Gardner et al., have shown that there is significant contribution
from the oral microbiota in unstimulated whole mouth saliva
(Gardner et al., 2019). Specifically, when saliva samples of healthy
volunteers were analyzed, using 1H-NMR, CFU enumeration,
and principal component analysis, it was shown that whole
saliva metabolites were positively correlated with bacterial load
suggesting that the metabolite composition of whole saliva is
more reflective of the oral microbiota than the underlying
host metabolism, which was determined from plasma levels
and parotid saliva. The whole saliva contained abundant short-
chain fatty acids (acetate, propionate, butyrate, and formate)

compared to parotic saliva or plasma. The authors conclude
that whole saliva might be particularly useful in conjunction
with NMR analysis to diagnose conditions reflective of dysbiosis.
A comparative study of subjects with dental diseases might be
useful for future dysbiosis studies (Gardner et al., 2019).

Metabolomics and Periodontitis
Like mass spectrometry, 1H-NMR has increasingly becoming a
tool to study the metabolites associated with disease conditions.
In a study that analyzed the NMR profiles of healthy control (n=
52) and post-treatment chronic periodontitis patients (n = 62)
using un-stimulated saliva, 100 metabolites were characterized
(Singh et al., 2019). Distinctive differences in the spectral
data were subjected to multivariate analysis, which showed
that there is an elevation in the concentration of statistically
discriminant metabolites between control and diseased patient
profiles. Among the 100 metabolites studied, 20 new metabolites
indicate a bacterial population shift along with change in
homeostasis, which might disturb the biofilm composition.
Decreasing levels of N-acetylglucosamine along with pyruvate,
glutamate, and ethane sulfonate support a shift from homeostatic
to anaerobic conditions, a defining characteristic of the severity
of chronic periodontitis (Aimetti et al., 2012). The Singh and
Aimetti studies suggest that decreased levels of pyruvate and N-
acetylglucosamine may be a signature in chronic periodontitis
(Aimetti et al., 2012; Singh et al., 2019).

CONCLUSION

Here in this review, we have presented how dysbiosis that occurs
within host domains, and in particular the oral cavity, can affect
disease. We have also outlined the current “omic” technologies
that will allow researchers to examine the system as a whole
in the future. Our particular emphasis has been on the role
that commensals and pathobionts play in their interaction with
the immune status of the host. It is apparent when considering
the progress made in characterizing the oral microbiome and
the oral immune environment that we are poised to begin to
synthesize accurate models of the relative contributions of these
components to disease.

While we have presented historical and new/advanced
technologies that have been and will continue to be used to
diagnose and assess the two most common dental diseases, caries
and periodontal diseases we feel compelled to provide several
cautionary notes worthy of comment. First, no technology can
advance our understanding of disease until we have a unified,
accepted, and clearly defined definition of health and disease. No
matter how sophisticated the technology, poor and inconsistent
definitions of disease will continue to lead to confusion rather
than clarity. This is especially true since both microbial and host
dysbiosis is so critical to shifts from health to disease in the
oral cavity. Second, whatever technology we choose to utilize,
we should make every effort to include data that is coordinated,
comprehensive, and includes microbiology, host responsiveness,
and disease progression or resolution. Since it is becoming clearer
that oral disease has a relationship to overall health and well-
being we need to extend our concerns related to how local oral
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diseases can effect overall general well-being. Third, since the
diseases we study go through spurts of activity that vary from
time to time, longitudinal rather than cross-sectional studies
are preferred.

In this age of advanced technology there are several issues that
need to be addressed if we are to advance the field of infectious
diseases. In our field key issues relate to sampling, sample storage,
analyte extraction and processing, data analysis, presentation and
interpretation of results. As reports are published, the methods
section has to be explicit in the description of the processes if we
are to compare data and make meaningful conclusions among
these large data sets. As an example to consider the level of detail
needed the following must be addressed: when samples are taken
is there a separation of supragingival and subgingival plaque, is
the plaque collected by curette or paper point or some other
device, are samples pooled or kept in independent vials, is there
mention of the time of plaque collection, is it before, during
or after disease has occurred? For analyte extraction what are
the methods, has bead beating, sonication, biochemical methods
been performed and for what time period, has the cell wall has
been breached? Has the volume of analyte been standardized?
With what technology platform are the samples analyzed? What
pre and post-data analysis programs are used? Is data generated
compared to a standardized database and if so which? What data
analysis and statistical analysis is being conducted? Is Principal
Component Analysis used as an initial determinant? How much
is data tied to alpha and beta diversity, Shannon Diversity?
Network Analysis of what kind? Linear Discriminant Analysis?
These are a cross-section of questions that need to be described

in each publication to reassure standardization of methodologies
such that comparison of data is possible.

Finally, while we recognize that these criteria are demanding
and difficult to accomplish our hope is that this review and the
technologies presented herewith will inspire new ways of tackling
persistent uncertainties. These obstinate questions have left us
with huge gaps in our knowledge base in our efforts to both
diagnose and treat oral diseases. While oral biologists do not
stand alone in this dilemma perhaps this overview will be of some
assistance in efforts to advance our understanding in the future.
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