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Abstract: High refractive index nanoparticle material was applied as a scattering layer on the
inner side of a glass substrate of a bottom emission organic light emitting diode (OLED) device
to enhance light extraction and to improve angular color shift. TiO2 and YSZ (Yttria Stabilized
Zirconia; Y2O3-ZrO2) were examined as the high refractive index nanoparticles. The nanoparticle
material was formed as a scattering layer on a glass substrate by a coating method, which is generally
used in the commercial display manufacturing process. Additionally, a planarization layer was
coated on the scattering layer with the same method. The implemented nanoparticle material and
planarization material endured, without deformation, the subsequent thermal annealing process,
which was carried out at temperature ranged to 580 ◦C. We demonstrated a practical and highly
efficient OLED device using the conventional display manufacturing process by implementing the
YSZ nanoparticle. We obtained a 38% enhanced luminance of the OLED device and a decreased
angular color change compared to a conventional OLED device.

Keywords: OLED; light extraction; outcoupling; nanoparticle; high refractive index; scatter; efficiency;
display; YSZ

1. Introduction

In flat-panel display devices, organic light emitting diodes (OLEDs) are widely used, from mobile
phones to large size TVs because OLED has excellent electro-optical properties for display products
compared to widely used liquid crystal displays (LCDs). Among the properties, the efficiency of OLED
devices is an important factor for practical OLED display products.

There are many studies on enhancing the efficiency of OLEDs in various technology fields, such
as materials, device structures, fabrication processes, circuit design, and circuit driving. The efficiency
of OLEDs has been enhanced by improving the characteristics of organic materials comprised in OLED
devices and by optimizing the structures of OLED devices [1–4]. However, other approaches for
finding solutions for the improvement of the outer structures of OLED devices have been studied in
order to enhance the efficiency of OLED devices [5,6].

As shown in Figure 1, 20% of emitted light is extracted outside of OLED devices; however, 80% of
emitted light is trapped inside OLED devices and dissipated, which is caused by the difference of the
refractive index of each layer comprised in OLED devices [5,7]. Various ways were tried to extract the
trapped light from the OLED devices [5–7]. Several methods have been proposed to enhance the light
extraction from OLEDs, including mesh structures on the glass substrate [8], silica micro spheres [9],
scattering layers [10], embedded low-index grids [11], photonic crystals [12,13], micro pyramids [14],
and micro lens arrays [15–18]. However, these methods could be used for limited applications such
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as illumination products without pixels. Most methods for enhancing the efficiency of OLED are
implemented on the outer side of the glass substrate, where the distance between the light source and
the emitting structures is relatively long, due to the thickness of the glass substrate. In display products
with many pixels, these methods cause image blurring, which is a mixture of light from adjacent pixels
and poor image quality by a diffusion effect. Other approaches have been studied to enhance the light
extraction of OLEDs, adopting nano sized structures to OLEDs. By the scattering effect of the nano
structures, such as gratings [19,20], metallic nanoparticles [21–25], and buckled substrates [24,26,27],
the light trapped in glass substrate can escape. However, nano structures have limited application in
OLEDs due to the complicated process, requiring high cost. Additionally, their size limitation impedes
their implementation in practical OLED products. Hence, the nanoparticles fabricated by easy methods
or by methods compatible with conventional manufacturing processes suitable for large areas are more
beneficial for practical OLEDs devices.

In this study, we applied high refractive index nanoparticle material as a scattering layer on the
inner side of the glass substrate of the bottom emission OLED device to enhance light extraction and to
improve angular color shift. The nanoparticle scattering layer is located near the emitting layer of the
OLED device, compared to previous approaches mentioned above, so it rarely affects the image quality
of the OLED display. We demonstrated a practical highly efficient OLED device using the conventional
display manufacturing process by implementing the YSZ nanoparticle as the high refractive index
scattering layer. We obtained a 38% enhancement of luminance of the OLED device and a white
angular dependency (WAD) of 0.005 at 60 degrees from normal direction.
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Figure 1. Schematic diagram of multi-layer OLED structure and optical ray diagram of light propagation
via various modes, i.e., substrate escape, substrate wave guided mode, and ITO/Organic wave
guided mode.

2. Materials and Methods

TiO2 and YSZ (Yttria Stabilized Zirconia; Y2O3-ZrO2) were investigated as high refractive index
nanoparticle materials for scattering layer. The refractive index of TiO2 nanoparticles is 2.5 and that
of YSZ is 2.13, respectively. Both TiO2 and YSZ nanoparticles are suitable for high refractive index
materials compared to that of glass substrate. The size of the TiO2 nanoparticle was 250–300 nm, while
the size of the YSZ nanoparticle was 100–150 nm. The nanoparticles were dispersed in propylene
glycol methyl ether acetate (PGMA) solvent for applying to the slit coating method, which is used
in the conventional display manufacturing process for large areas. The nanoparticle suspension
was coated on the glass substrate, forming the high refractive index scattering layer, followed by
a thermal curing process at 300–500 ◦C in a furnace for 30 min. The curing temperature can be
controlled according to the state of the coating layer, without any deformation. A SiO2 solution,
which was normally used at spin-on glass (SOG), was used as a planarization material, which was
coated on the nanoparticle scattering layer. The refractive index of the SiO2 planarization layer was
1.45, which was similar to that of the glass substrate. The planarization layer was formed on the
scattering layer with the same method as the scattering layer. It was cured at 500 ◦C in a furnace
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for 30 min. The planarization layer had a flat surface covering the roughness of the scattering layer
caused by the distribution of nanoparticles. Therefore, subsequent manufacturing process can be
performed easily, like on the glass substrate surface. Next, the conventional low temperature poly
silicon (LTPS) thin film transistor (TFT) manufacturing process was performed on the planarization
layer. In the LTPS TFT manufacturing process, the thermal annealing process is required at the highest
temperature, approaching 580 ◦C, which can cause deformation of the nanoparticle scattering layer
and the planarization layer. The proposed materials should endure the high temperature during LTPS
TFT manufacturing process without any deformation.

A conventional bottom emission white OLED display device was used to investigate the effect
of the high refractive index nanoparticle scattering layer, as represented in Figure 2. On the glass
substrate, the nanoparticle scattering layer, the planarization layer, and the TFT layer were fabricated
sequentially. Next, a color filter and an over coat layer were formed to reproduce color images on
the OLED display device. On the indium tin oxide (ITO) anode electrode, the white OLED device,
comprised of blue, green, and red emitting layers stacked up, were deposited by a thermal evaporation
process. The device was finalized with an aluminum cathode and a top glass substrate. The size of the
glass substrate was 370 × 470 mm. Additionally, an OLED device without a nanoparticle scattering
layer and a planarization layer was also fabricated as a reference device.
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Figure 2. Schematic diagram of the bottom emission white OLED device with the scattering layer on
the inner side of glass substrate.

Measurements of OLED properties were performed by recording current–voltage characteristics
as well as electro-luminescence (EL) spectra. The current–voltage was acquired using a Keithley
236 voltage source unit, while the EL intensity and spectral characteristics of the devices were measured
with a calibrated silicon photodiode (Hamamatsu Photonics, Hamamatsu, Japan, S5227-1010BQ),
a photomultiplier tube, and a spectroradiometer (Minolta, Osaka, Japan, CS-1000).

3. Results and Discussion

3.1. Properties of the Nanoparticle Scattering Layer

The scattering layer with embedded TiO2 nanoparticles was fabricated using the conventional
slit coating method. However, TiO2 nanoparticles are hard to disperse in PGMA solvent, therefore
they were not dispersed uniformly. The coating thickness of the TiO2 nanoparticle scattering layer was
1.5 µm, then 1 µm thick SiO2 was coated as the planarization layer. Table 1 shows the optical properties
of the TiO2 nanoparticle scattering layer, such as transmittance and haze. We observed 70% of total
transmittance at 550 nm wavelength and 55–82% of haze. The surface of the TiO2 nanoparticle layer
was rough, even though the planarization layer was applied on it. Considering its surface roughness,
it would cause poor characteristics in the subsequent LTPS TFT process. Due to poor dispersivity of
TiO2 nanoparticles in the PGMA solvent, the curing temperature was limited to 300 ◦C, which was
lower than the annealing process temperature of 580 ◦C in the subsequent LTPS TFT process. Despite
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the high refractive index of TiO2 nanoparticles, the use of conditions such as particle size, sorts of
solvent, and better dispersion of TiO2 nanoparticles is required.

Table 1. Transmittance and haze of the TiO2 nanoparticle scattering layer.

Layers Total Transmittance (%) Scattering Transmittance (%) Haze

Scattering layer (1.5 µm) 70.18 57.54 82%

Scattering layer (1.5 µm)
/Planarization layer (1 µm) 68.28 37.55 55%

On the other hand, the scattering layer with embedded YSZ nanoparticles was successfully
fabricated using the conventional slit coating method. ZrO2, comprising YSZ has a monoclinic crystal
structure at room temperature. It changes to a tetragonal crystal structure and a cubic crystal structure
as temperature increases. YSZ comprised of Yttria doped ZrO2 has a stable crystal structure even
when temperature increases. YSZ has characteristics of chemical stability, thermal resistance, low
thermal conductivity, and high strength. It has similar optical properties to ZrO2, including a high
refractive index. The YSZ nanoparticle scattering layer was coated with various thicknesses of 1.5 µm,
2.5 µm, 4.0 µm, and 7.0 µm, respectively, and then was cured at 500 ◦C. Next, 1 µm of SiO2 was coated
as the planarization layer. Figure 3 illustrates the morphology of the YSZ nanoparticle scattering
layer and the planarization layer including a cross sectional view, measured by scanning electron
microscopy (SEM). The surface of the planarization layer was flat with small defects, like the glass
substrate. Moreover, the density of the YSZ nanoparticle scattering layer was lower than that of the
planarization layer. The change of thickness of the planarization layer from 1 µm at the coating step to
0.6 µm after the curing step means that the coated SiO2 solution permeated into the vacancies of the
nanoparticle scattering layer. The large difference between refractive index of the YSZ nanoparticles
(2.13) and the SiO2 material (1.45) within the interpenetrating areas enhanced the scattering effect.
Table 2 shows optical properties of the YSZ nanoparticle scattering layer. We obtained 58–78% of total
transmittance of the YSZ nanoparticle scattering layer at 550 nm wavelength and 24–55% of haze.
It was observed that transmittance decreased and haze increased as the thickness of scattering layer
was increased. This means that the thick scattering layer enhances the scatter effect due to increasing
light diffusion during its propagation. Therefore, the scatter effect and transmittance can be controlled
by modulating the thickness of the scattering layer. Moreover, the YSZ nanoparticle scattering layer
and the planarization layer have a uniform surface and a high curing temperature of 500 ◦C, so the
subsequent LTPS TFT process can be performed easily.
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Table 2. Transmittance and haze of the YSZ nanoparticle scattering layer.

Thickness of Scattering
Layer (µm)

Thickness of Planarization
Layer (µm)

Total
Transmittance (%)

Scattering
Transmittance (%) Haze

1.5 1.0 78.43 19.13 24%
2.5 1.0 74.63 20.06 27%
4.0 1.0 65.84 25.47 39%
7.0 1.0 58.43 32.15 55%

3.2. Performance of the OLED Device with High Refractive Index Nanoparticle Scattering Layer

A conventional bottom emission white OLED device for flat-panel display products was fabricated.
The characteristics of the OLED devices with and without the YSZ scattering layer are illustrated as
Figure 4. The OLED devices had three peaks at red, green, and blue color wavelengths. The OLED
devices were used as the light sources to investigate the enhancement of light efficiency of the OLED
with an embedded YSZ scattering layer.
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Figure 4. Characteristics of OLED devices with and without the YSZ scattering layer. The thickness
of the YSZ scattering layer is 2.5 µm: (a) Electroluminescence spectrum of the OLED devices.
The spectrum data are normalized at 1mA/cm2; (b) Characteristics of luminance for different voltages;
(c) Characteristics of current density for different voltages; and (d) Characteristics of current efficiency
for difference luminance.

In the previous study, employing a scattering layer to OLED devices as a layer or film coated
on outer surface of the glass substrate reported enhanced light efficiency of OLEDs [10]. However,
the distance from the light emitting layer to the scattering layer was very long, including the thickness
of the glass substrate 0.5 mm compared to the pixel pitch 80 µm. Therefore, the light scatter effect
caused mixing colors among pixels and led to image blur on the display screen. In this work, we
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implemented the scattering layer on the inner surface of the glass substrate. The distance from the
light emitting layer to the scattering layer was short, about half of the pixel pitch, so a good image
quality without image blur could be achieved by the proposed method. The emitted light at the OLED
device between the anode electrode and the cathode electrode propagated to various directions while
it passed the scattering layer. The scattered light changed the direction of propagation through the
glass substrate, which limited the total internal reflection. Therefore, the light from the OLED substrate
wave guided mode could be extracted, which enhanced the light efficiency of the OLED device.

Table 3 shows the relative luminance of OLED devices with the implemented YSZ nanoparticle
scattering layer compared to the control device without the scattering layer. In the presence of the
scattering layer, the total luminance and luminance in normal direction of the OLED device enhanced,
compared to the reference device without the scattering layer. At the thickness of scattering layer,
2.5 µm, a 29% enhancement of total luminance and a 38% enhancement of luminance in normal
direction were achieved. As the result, the optimal thickness of the scattering layer was observed
at 2.5 µm. Moreover, the luminance enhancement is not proportional to the increase of the scatter
effect. As the thickness of scattering layer was increased, the luminance decreased. This means that
the transmittance of the thick scattering layer lowers as the thickness increases. To analyze optimal
thickness of the scattering layer implemented in the OLED device, the luminance change was simulated
using a geometrical optics tracing method. The LightTools program (Synopsys, Mountain View, CA,
USA) was used for the simulation. As Figure 5a shows, the simplified device structure used for the
simulation also approximated constant values of parameters such as the refractive index and the
thickness of each layer. The maximum luminance enhancement was calculated as 32% enhancement
at a thickness of 2.5 µm, in good agreement with the experimental result. Moreover, the maximum
luminance enhancement in normal direction was calculated as 42% at the center of the device. Figure 5
shows the simulation result of luminance change in the OLED device.

Table 3. Ratio of the luminance of OLED devices with the YSZ scattering layer to the luminance of the
reference OLED without the scattering layer, for various layer thickness.

Thickness of Scattering Layer (µm) Changed Ratio of Total
Luminance

Changed Ratio of Normal
Direction Luminance

0 (without scattering layer) 100% 100%
1.5 123% 131%
2.5 129% 138%
4.0 126% 135%
7.0 119% 128%
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Figure 6 illustrates the relative angular luminance distribution of the OLED device with the
implemented YSZ nanoparticle scattering layer as a function of thickness of the scattering layers.



Nanomaterials 2019, 9, 1241 7 of 9

Compared to Lambertian distribution, for the reference device it was observed that the luminance at
high angles was larger than that at normal direction. The OLED devices with implemented scattering
layers showed enhanced luminance distribution at all the angles. Moreover, at the scattering layer
thickness of 2.5 µm, the most enhanced luminance was achieved. Consequently, the YSZ nanoparticle
scattering layer enhanced the light extraction efficiency to all angular directions by the optimized
scatter effect. Moreover, enhanced light extraction at high viewing angles improved the angular
color change of the OLED device. As Figure 7 shows, the white angular dependency (WAD), which
represents color change by angular viewing direction, decreased significantly. The color coordinate
change (∆u’v’) of the reference device at 60◦ was 0.028, while that of the OLED device with the 2.5 µm
thick scattering layer was 0.005, which is an 82% decrease of color change. Hence, due to the scatter
effect of the YSZ nanoparticle scattering layer, we achieved not only enhanced light extraction efficiency
but also improved angular color change of the OLED device.
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4. Conclusions

The implemented YSZ nanoparticle material and planarization material endured, without
deformation, the subsequent thermal annealing process at the temperature ranged to 580 ◦C. Highly
efficient OLED devices can be manufactured using the conventional display manufacturing process by
implementing YSZ nanoparticles. A 38% enhancement in luminance of the OLED device was achieved
by the scattering layer with a thickness of 2.5 µm, compared to the device without the scattering layer.
Moreover, the decreased angular color change was obtained by implementation of the nanoparticle
scattering layer, where the white angular dependency (WAD) ∆u’v’ was reduced to 0.005 at 60 degrees
from normal direction. Thus, we believe that this study can provide a simple, practical, and low-cost
method for improving the performance of OLED display products.
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