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Transcranial magnetic (TMS) and motor point stimulation have been used to determine

voluntary activation (VA). However, very few studies have directly compared the two

stimulation techniques for assessing VA of the elbow flexors. The purpose of this

study was to compare TMS and motor point stimulation for assessing VA in non-

fatigued and fatigued elbow flexors. Participants performed a fatigue protocol that

included twelve, 15 s isometric elbow flexor contractions. Participants completed a

set of isometric elbow flexion contractions at 100, 75, 50, and 25% of maximum

voluntary contraction (MVC) prior to and following fatigue contractions 3, 6, 9, and

12 and 5 and 10 min post-fatigue. Force and EMG of the bicep and triceps brachii

were measured for each contraction. Force responses to TMS and motor point

stimulation and EMG responses to TMS (motor evoked potentials, MEPs) and Erb’s

point stimulation (maximal M-waves, Mmax) were also recorded. VA was estimated

using the equation: VA% =
(

1− SIT force/PT force
)

× 100. The resting twitch

was measured directly for motor point stimulation and estimated for both motor

point stimulation and TMS by extrapolation of the linear regression between the

superimposed twitch force and voluntary force. MVC force, potentiated twitch force and

VA significantly (p < 0.05) decreased throughout the elbow flexor fatigue protocol and

partially recovered 10 min post fatigue. VA was significantly (p < 0.05) underestimated

when using TMS compared to motor point stimulation in non-fatigued and fatigued

elbow flexors. Motor point stimulation compared to TMS superimposed twitch forces

were significantly (p < 0.05) higher at 50% MVC but similar at 75 and 100% MVC.

The linear relationship between TMS superimposed twitch force and voluntary force

significantly (p < 0.05) decreased with fatigue. There was no change in triceps/biceps

electromyography, biceps/triceps MEP amplitudes, or bicep MEP amplitudes throughout

the fatigue protocol at 100% MVC. In conclusion, motor point stimulation as opposed
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to TMS led to a higher estimation of VA in non-fatigued and fatigued elbow flexors. The

decreased linear relationship between TMS superimposed twitch force and voluntary

force led to an underestimation of the estimated resting twitch force and thus, a

reduced VA.

Keywords: interpolated twitch technique,motor evoked potential, biceps brachii, triceps brachii, fatigue, isometric

contractions

INTRODUCTION

Voluntary activation (VA) is the level of neural drive from the
central nervous system to produce a given force output from
a muscle. Examining how VA is estimated is important for
quantifying the presence of central fatigue in clinical populations
and for multiple research purposes (Taylor et al., 1996; Newham
and Hsiao, 2001; Todd et al., 2003, 2005; Prasartwuth et al.,
2005; Hunter et al., 2008; Cahill et al., 2011; Pearcey et al., 2015,
2016). The Interpolated Twitch Technique (ITT) was developed
as a way to estimate central VA (Merton, 1954). The amplitude
of an evoked superimposed twitch (SIT) force via an electrical
stimulus to a nerve during a muscle contraction was expressed as
a percentage of the amplitude of an evoked twitch force following
the contraction when the muscle was at rest and in a potentiated
state (Belanger and McComas, 1981). Transcranial magnetic
stimulation (TMS) has also been used to estimate VA (Gandevia
et al., 1996; Todd et al., 2003, 2004; Sidhu et al., 2009a). Due to
recruitment of very few motor units (Hess et al., 1987; Ugawa
et al., 1995; Di Lazzaro et al., 1998), TMS evokes a low amplitude
potentiated twitch (PT) at rest following a muscle contraction.
Therefore, a method was developed by linearly extrapolating
the regression between TMS evoked SIT forces of submaximal
voluntary contractions and MVCs to estimate a TMS-induced
resting PT (Todd et al., 2003). Central and, in part, cortical VA
can then be estimated by expressing a TMS evoked twitch force
during a contraction as a percentage of the estimated PT at rest
(Todd et al., 2003, 2004; Goodall et al., 2009; Sidhu et al., 2009a;
Hunter et al., 2016).

Studies have directly compared the estimation of VA via nerve
stimulation to TMS and have yielded comparable results (Todd
et al., 2003; Sidhu et al., 2009a,b; Bachasson et al., 2016). However,
they also differ for several reasons. TMS may activate motor
units of synergist muscles leading to greater joint torque, whereas
nerve stimulationmay fail to activate all motor units, thus leading
to differences in SIT force. VA and force forms a curvilinear
relationship from 0 to 100% MVC with nerve stimulation (Todd
et al., 2003; Shield and Zhou, 2004) as opposed to a linear
relationship from 50 to 100% MVC with TMS (Todd et al., 2003,
2004; Lee et al., 2008; Goodall et al., 2009; Bachasson et al.,
2016). There is a non-equivalent TMS estimated twitch force
and the nerve stimulation PT force amplitudes for both the
elbow flexors (Todd et al., 2003, 2004, 2005; Smith et al., 2007;

Abbreviations: VA, Voluntary Activation; CSE, corticospinal excitability; TMS,

transcranial magnetic stimulation; MEP, motor evoked potential; MVC, maximum

voluntary contraction; Mmax, maximal muscle compound action potential; EMG,

electromyography; PT, potentiated twitch, ITT, interpolated twitch technique; SIT,

superimposed twitch; RMS, root mean square.

Kennedy et al., 2013), and knee extensors (Goodall et al., 2009,
2012, 2014; Sidhu et al., 2009b; Klass et al., 2012). Fatigue in
the central and peripheral nervous systems (Enoka and Stuart,
1992; Gandevia, 2001; Kent et al., 2016) reduces force production,
alters SIT forces during submaximal voluntary contractions and
MVCs and decreases estimated or resting PT forces (Todd et al.,
2003; Goodall et al., 2009; Kennedy et al., 2013; Keller-Ross et al.,
2014; Pearcey et al., 2015, 2016). The linear relationship between
voluntary force and TMS evoked SIT force also decreases with
fatigue resulting in an altered estimated resting twitch force and
subsequently an over or underestimation of VA (Hunter et al.,
2006, 2008; Kennedy et al., 2013; Yoon et al., 2013). There are
also other technical challenges as described elsewhere (Shield and
Zhou, 2004; Todd et al., 2016) with nerve stimulation and TMS
for optimizing the estimation of VA.

There are few studies directly comparing nerve stimulation to
TMS for estimating VA of the elbow flexors prior to, throughout
and following bouts of fatiguing contractions especially in the
elbow flexors. This is especially important because TMS and
nerve stimulation are the two most commonly used stimulation
techniques for indirectly measuring VA in the elbow flexors
and whether or not one stimulation type is superior to
another, especially during fatigue, warrants further investigation.
Therefore, the purpose of this study was to compare nerve
stimulation to TMS for estimating elbow flexor VA and how this
estimation changes throughout and following a series of fatiguing
MVCs. We hypothesized that nerve stimulation and TMS would
estimate VA: (1) similarly in non-fatigued elbow flexors and (2)
differently during and following fatigue.

MATERIALS AND METHODS

Participants
Based on prior research (Taylor et al., 2000), a statistical power
analysis determined that six participants were necessary to
achieve an alpha of 0.05 with a power of 0.8. Ten resistance-
trained males (183.1 ± 5.9 cm, 92.5 ± 12.1 kg, 25.5 ± 4.9
years) from the university population were recruited for the
study. Participants were considered resistance trained because
they had all trained on average ≥3 sessions a week for ∼an
hour each session for at least 1 year. Participants were verbally
informed of the procedures to be used during testing, and all gave
informed written consent and completed a magnetic stimulation
safety checklist to screen for potential contraindications with
magnetic stimulation procedures (Rossi et al., 2009). The study
was approved by the Memorial University of Newfoundland
Interdisciplinary Committee on Ethics in Human Research
(#20161806-HK) and was in accordance with the Tri-Council
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guidelines in Canada with full disclosure of potential risks to
participants.

Elbow Flexor Force
Participants were seated in a custom-built chair (Technical
Services, Memorial University of Newfoundland) in an upright
position, with hips and knees flexed at 90◦, and head strapped in
place to minimize movement (see Figure 1A). Both arms were
slightly abducted with elbows resting on padded support at an
angle of 90◦. The forearms were held horizontal in a position
midway between neutral and supination, and placed in a custom-
made orthosis that was connected to a load cell (Omegadyne Inc.,
Sunbury, Ohio, USA). The load cell detected force output, which
was amplified (x1,000) (CED 1902, Cambridge Electronic Design
Ltd., Cambridge, UK) and displayed on a computer screen. Data
was sampled at 2,000 Hz. Participants were asked to maintain
the upright position during contractions. Verbal encouragement
and visual feedback were given to all participants during all
contractions.

Electromyography
Electromyography (EMG) activity was recorded from the biceps
brachii and lateral head of the triceps brachii muscles on
the dominant arm using surface EMG recording electrodes
(MediTrace Ag-AgCl pellet electrodes, disc shaped and 10
mm in diameter, Graphic Controls Ltd., Buffalo, N.Y., USA).
Electrodes were placed length wise over the middle of the
muscle belly with an interelectrode (center-to-center) distance
of 2 cm and in accordance with SENIAM recommendations
(Hermens et al., 2000). A ground electrode was placed over
the lateral epicondyle of the dominant knee. Skin preparation
for all recording electrodes included shaving to remove excess
hair and cleaning with an isopropyl alcohol swab to removal of
dry epithelial cells. An interelectrode impedance of <5 k� was
obtained via a standard multimeter prior to recording to ensure
an adequate signal-to-noise ratio. EMG signals were amplified
(×1,000) (CED 1902) and filtered using a 3-pole Butterworth
filter with cutoff frequencies of 10–1,000 Hz. All signals were
analog-digitally converted at a sampling rate of 5 kHz using a
CED 1401 (Cambridge Electronic Design Ltd., Cambridge, UK)
interface.

Stimulation Conditions
Brachial Plexus (Erb’s Point) Stimulation
Stimulation of the brachial plexus (i.e., Erb’s point) was used to
induce a maximal compound muscle action potential (Mmax).
Erb’s point was electrically stimulated via a cathode on the skin
in the supraclavicular fossa and an anode on the acromion
process. Current pulses were delivered as a singlet (200 µs
duration, 100–250 mA) via a constant current stimulator
(DS7AH, Digitimer Ltd., Welwyn Garden City, UK). The
electrical current was gradually increased untilMmax of the biceps
brachii was observed. To ensuremaximal stimulation throughout
the experiment, a supramaximal stimulation current (i.e., 130%
greater than that required to elicit Mmax) was used (Todd et al.,
2003; Goodall et al., 2012; Aboodarda et al., 2015; Pageaux et al.,
2015).
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FIGURE 1 | (A) Picture of the experimental set-up to measure elbow flexors

submaximal and maximum voluntary contractions (MVC), voluntary activation

(VA), and electromyography (EMG) and placement of EMG electrodes,

transcranial magnetic stimulation (TMS), motor point stimulation and Erb’s

point stimulation. (B) Participants’ performed an experimental protocol that

consisted of a set of pre-fatigue voluntary contractions (100, 75, 50, 25%

MVC, VA-pre), 4 sets of fatiguing contractions and 4 sets of voluntary

contractions (100, 75, 50, 25% MVC, VA 1–4) and a set of voluntary

contractions (100, 75, 50, 25% MVC) at 5- and 10-min post-fatigue (VA-post 5

and 10). A set of VA contractions was always performed following a set of

fatiguing contractions. The VA contraction sets were performed in order to

derive an estimated potentiated resting twitch (see Materials and Methods for

details) to estimate VA. The black arrows indicate that the participant received

several stimuli. The blue boxes indicate VA set contractions and the red bars

represent fatiguing set contractions. (C) For each contraction (25–100% MVC)

in the VA set, participants received TMS and motor point stimulation (at 2 and

4 s, respectively) and motor point stimulation and Erb’s point stimulation (at 2

and 3 s, respectively) following the contraction when the elbow flexors were at

rest. The blue trace represents one contraction in the VA set.

Motor Point Stimulation
Electrical stimulation was delivered via a cathode placed on the
skin over the biceps motor point and an anode on the brachii
distal tendon (Smith et al., 2007; Khan et al., 2011; Monks et al.,
2016; Pearcey et al., 2016). Current pulses were delivered as
a doublet (10 ms apart, 100 µs duration, 100–225 mA) via a
constant current stimulator (DS7AH, Digitimer Ltd., Welwyn
Garden City, UK). The electrical current was gradually increased
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until there was no longer an increase in the twitch force of the
elbow flexors. A supramaximal stimulation current (i.e., 130%
greater than that required to elicit a maximum twitch force) was
used for the remainder of the experiment (Allen et al., 1998).

Transcranial Magnetic Stimulation (TMS)
TMS (transcranial magnetic stimulator; Magstim 200, maximal
output 2.0 Tesla) was delivered through a circular coil (13
cm outside diameter) placed directly over the vertex (Todd
et al., 2003, 2004; McNeil et al., 2011; Forman et al., 2014;
Pearcey et al., 2014; Philpott et al., 2015). The vertex was located
by marking the measured halfway points between the nasion
and inion and tragus to tragus. The intersection of these two
points was defined as the vertex. Electrical currents flowed in
an anticlockwise direction through the circular coil. The coil
was placed horizontally over the vertex so that the direction of
the current flow in the coil preferentially activated the right or
left motor cortex (A side up for right side, B side up for left)
for the activation of the dominant elbow flexors. Stimulation
intensity (50–90%MSO) was adjusted to elicit a large MEP in the
biceps brachii (>50% of Mmax) and a small MEP in the triceps
brachii (<22% of the raw biceps brachii MEP amplitude) in the
triceps brachii during elbow flexor MVCs (Todd et al., 2016).
This stimulation intensity was used for the remainder of the
experiment.

Experimental Set-Up
Participants completed a familiarization and an experimental
session, which was separated by at least 48 h. During the
familiarization session participants received the stimulation
conditions (TMS, brachial plexus, and motor point stimulation)
to ensure they were comfortable with each stimulation.
Participants then performed maximal elbow flexor isometric
contractions, with 2 min in between each contraction, until they
were able to reach peak force within 2 s. Next, they practiced
elbow flexor contractions at the various percentages of the highest
MVC (25, 50, 75%). Finally, the participants completed three
fatiguing contractions (15 s long) similar to those to be performed
in the experimental session.

During the experimental session participants were prepped
for the stimulation conditions and EMG. Next, maximal twitch
force and Mmax were obtained at rest through motor and Erb’s
point stimulation, respectively. Participants then completed a
series of brief (2–3 s) elbow flexor MVCs. During the MVCs the
participants received TMS to determine the necessary intensity
to elicit a MEP amplitude that was >50% of the Mmax which
wasmeasured from the biceps brachii during the resting twitches.
Following each of the brief MVCs, motor point stimulation was
administered once again in order to evoke a PT force and to
ensure maximal potentiation (Kufel et al., 2002).

The participants then started the experimental protocol.
The protocol consisted of two different types of elbow flexor
contractions; contractions to determine VA and contractions to
induce fatigue. All of the contractions to determine VA included
a MVC followed by randomly performing 25, 50, and 75% of the
MVC. Each contraction was ∼5 s in duration. The submaximal
contractions (25, 50, and 75% ofMVC) were always made relative
to the 100% MVC in each set. All forces were displayed on a

computer screen, which enabled the participants to match the
target force. During each maximal and submaximal contraction
participants received TMS and motor point stimulation at 2 and
4 s, respectively. Two and three seconds following the completion
of the 5 s contraction, when the elbow flexors were at rest,
participants received another motor point stimulation and an
Erb’s point stimulation, respectively. The fatigue contractions
consisted of 3, 15 s sustained elbow flexor MVCs with 5 s
rest between each sustained MVC. Although participants force
declined during each 15 s MVC due to fatigue, they were verbally
encouraged to maximally contract the elbow flexors throughout
the entire 15 s contraction.

Initially, participants performed a set of VA elbow flexor
contractions. Following the VA contractions, they started
the fatigue contractions. After the completion of 3 fatigue
contractions they immediately completed another VA set. This
process was repeated 3 times. Additional sets of VA contractions
were performed at 5 and 10 min post-fatigue contractions. In
total participants completed 4 sets of fatigue contractions (12
sustained MVCs) and 7 sets of the VA contractions at pre-fatigue
(VA-pre), following fatigue sets 1, 2, 3, and 4 (VA 1–4) and at
5- and 10-min post-fatigue (VA-post 5 and 10; see Figure 1 for
experimental set-up).

Data Analysis
The Interpolated Twitch Technique (ITT) was utilized as a
measure of the central nervous system’s ability to fully activate
the contracting muscle (Shield and Zhou, 2004). VA was
calculated by comparing the amplitude of the SIT force with
the actual or predicted PT force with the following equation:
VA% =

(

1− SIT force/PT force
)

× 100 and was quantified
by measurement of the elbow flexor force responses to single
pulse motor cortical stimulation and to double pulse motor point
stimulation during 50, 75, and 100%MVC. The predicted resting
PT force for each participant was derived from extrapolating
the linear regression (r2 value) between the SIT forces upon
the voluntary forces over the force ranges: 50, 75, and 100%
MVC. These force ranges were chosen because they gave the
best r2 values for TMS predicted twitch force (data not shown)
for TMS (Todd et al., 2004; Goodall et al., 2009) and motor
point stimulation and will be referred to as TMS predicted and
motor point predicted hereafter. The y-intercept was taken as
the estimated amplitude of the resting PT force. Each set of
contractions provided a resting estimated PT force. Furthermore,
VA was also quantified by measurement of the elbow flexor
force responses to motor point stimulation during 100% MVC
and divided by the resting PT force following the MVC (i.e.,
not using a predicted PT force and referred to as motor point
actual hereafter) and a linear regression (r2 values) between the
SIT forces upon the voluntary forces over the force ranges (25–
100%) and the actual potential twitch (i.e., 0% MVC) and 25–
100%. The amplitude of motor point actual PT force was also
measured to assess muscle fatigue. The maximal force of the
elbow flexors was quantified as the average value over a 500 ms
interval that was centered about the peak of the MVC. The biceps
and triceps brachii EMG activity was determined as the root
mean square (RMS) value over a 500 ms interval about the same
interval of the MVC force measurement. Triceps EMG was also
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expressed as a percentage of biceps EMG during each elbow
flexor MVC.

The amplitudes and areas of MEP and Mmax of the biceps
and triceps brachii evoked by TMS and Erb’s point stimulation,
respectively, were measured between cursors placed at the
beginning and end of the evoked potentials for each set of
contractions. Triceps MEP amplitude was also expressed as a
percentage of bicep MEP amplitude during each MVC. Because
amplitude and area showed similar changes, only amplitude data
were reported. All data were measured offline using Signal 4.0
software (Cambridge Electronic Design Ltd., Cambridge, UK).

Statistical Analysis
Statistical analyses were computed using SPSS software (SPSS
22.0, IBM Corporation, Armonk, New York, USA). Assumptions
of sphericity (Mauchley test) and normality (Shapiro–Wilk test)
were tested for all dependent variables. If the assumption of
sphericity was violated, the corrected value for non-sphericity
with Greenhouse-Geisser epsilon was reported. A one-way
ANOVA with repeated measures (time; VA-pre, VA 1–4, and VA-
post 5 and 10-min) was performed on MVC force, EMG, and PT
force. A two-way ANOVA (3 × 7) with repeated measures
(stimulation type; motor point actual, motor point predicted
and TMS predicted × time) was performed on VA, actual and
predicted twitch forces and r2 values. A two-way ANOVA (2
× 7) with repeated measures (stimulation type × time) was
performed on super imposed twitch force. A Bonferonni Post-
hoc test was performed to test for significant differences between
interactions. F-ratios were considered statistically significant at
the p< 0.05 levels. Cohen’s d effects sizes (ES) (Cohen, 1988) were
also calculated to determine the magnitude of the differences
between interventions and time. The following criteria were
used: ES < 0.2 “trivial”; ES = 0.2–0.49 “small”; ES = 0.5–0.79
“medium”; and ES> 0.8 “large.” Percentage changes and absolute
values (mean± SD) are reported in text and absolute values only
(mean± SE) are reported in Figures 3–5.

RESULTS

MVC Force and EMG
There was a significant [F(6, 54) = 22.47, p< 0.001; F(6, 54) = 2.57,
p= 0.03; F(6, 54) = 18.77, p< 0.001] main effect for time onMVC
force, EMG and PT force, respectively. MVC force significantly (p
< 0.01, ES= 2.7) decreased from VA-pre to VA-4 by 40.5± 9.1%
(Figures 2, 3A). MVC force remained significantly (p < 0.01, ES
= 1.7 and p < 0.01, ES= 1.5) depressed by 27.2± 9.3 and 24.9±
11.3% at VA-post5 and VA-post10, respectively compared to pre-
fatigue. However,MVC force significantly (p< 0.01, ES= 0.9 and
p < 0.01, ES= 1.0) increased by 22.2± 18.4 and 25.9± 19.1% at
VA-post5 and VA-post10, respectively compared to VA-4. EMG
significantly (range: p < 0.01–p = 0.03, ES = 0.8–1.4) decreased
(range: 24.9 ± 20.1–44.6 ± 31.1%) from VA-pre compared to all
other time points (Figure 3B).

Voluntary Activation
There was a significant interaction [F(12, 108) = 10.54, p < 0.001]
between stimulation type and time for VA (Figure 4A). VA when

using motor point actual or motor point predicted twitch forces
were significantly (p < 0.01 for all time points, ES = 1.6–3.1)
higher at each time point (range: 20.9 ± 11.9–136.1 ± 39.6%)
compared to using TMS predicted twitch force. VA significantly
(p < 0.01, ES = 1.6; p < 0.01, ES = 1.8; p < 0.01, ES =

1.8) decreased from VA-pre to VA-4 by 17.7 ± 9.0, 20.4 ± 8.4,
and −75.2 ± 99.2% when calculated by using the motor point
actual, motor point predicted, and TMS predicted twitch forces,
respectively. VA remained significantly depressed by 16.7 ± 5.7
and 15.7 ± 6.2 (p < 0.01, ES = 1.1 and p < 0.01, ES = 1.3)
when using motor point actual, by 19.4 ± 5.7 and 18.4 ± 6.6%
(p < 0.01, ES = 1.2 and p < 0.01, ES = 1.4) when using motor
point predicted and by 51.3 ± 44.5 and 58.6 ± 28.6% (p < 0.01,
ES = 1.7 and p < 0.01, ES = 1.5) when using TMS predicted
twitch forces at VA-post5 and VA-post10, respectively compared
to VA-pre. However, VA significantly (p< 0.05, ES= 3.3 and p<

0.05, ES = 4.0) increased by 176.9 ± 46.6 and 191.3 ± 44.3% at
VA-post5 and VA-post10, respectively compared to VA-pre, when
using TMS predicted twitch forces.

There was a significant interaction [F(12, 108) = 9.33, p
< 0.001] between stimulation type and time for PT force
(Figure 4B). Motor point actual and motor point predicted
resting potentiated twitch forces were significantly (p < 0.01 for
all time points, ES = 2.7–5.2) higher at each time point (range:
50.1 ± 23.6–79.6 ± 13.1%) compared to TMS predicted resting
potentiated twitch force. Motor point actual was significantly (p
< 0.05, ES = 1.7) higher by 19% at VA-pre compared to motor
point predicted resting potentiated twitch force at VA-pre. Motor
point actual and TMS predicted resting potentiated twitch forces
significantly (p = 0.001–p = 0.003, ES = 1.8–2.2 and p < 0.01–
p= 0.034, ES = 0.7–3.6) decreased from VA-pre compared to all
other time points, respectively by 19.9± 8.5–30.5± 13.3 and 27.1
± 25.1–40.1 ± 34.1%. Motor point predicted resting potentiated
twitch forces significantly (p < 0.01, ES = 1.3) increased by 17.7
± 10.2% from VA-pre to VA-1 and significantly (p < 0.01, ES =
1.1 and p < 0.01, ES = 1.1) decreased by 14.5 ± 14.7 and 15.4 ±
12.1% from VA-1 to VA-post5 and VA-post10, respectively.

There was a significant [F(6, 54) = 8.64, p < 0.001] main effect
for time on SIT force at 100% MVC. SIT force significantly (p <

0.01 for all time points, ES = 0.7–1.3) increased (range: 159.4 ±
120.1–253.9 ± 210.1%) from VA-pre compared to all other time
points (Figure 5A). There was a significant interaction [F(6, 36) =
6.0, p< 0.001] between stimulation type and time for SIT force at
50% MVC. TMS SIT force was 30.2 ± 20.2–35.7 ± 12.9% lower
(p < 0.05 for all time points, ES = 1.0–1.6) than motor point
stimulation from VA-1 to VA-post10, respectively (Figure 5A).

There was a significant main effect [F(1, 8) = 5.9, p < 0.05] for
stimulation type on r2 values. Overall, r2 values were significantly
(p < 0.05 and p < 0.05) lower by 19.9 ± 5.1 and 14.2 ±

5.5% for TMS predicted than motor point actual and predicted,
respectively (Figure 5B).

Biceps and Triceps EMG and MEP and
Mmax Amplitudes
There was no significant [F(6, 54) = 0.83, p= 0.53; F(6, 54) = 2.66,
p = 0.08; F(6, 54) = 3.82, p = 0.06; F(6, 54) = 2.55, p = 0.08]
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main effect for time on 100% elbow flexor MVC triceps/biceps
EMG, biceps MEP, and Mmax amplitudes, and triceps/biceps
MEP amplitude, respectively. Triceps EMG ranged from 18.9 ±

12.1 to 22.2 ± 14.1% of biceps EMG from VA-pre to VA-post10.
Biceps MEP andMmax amplitudes ranged from 6.7± 4.5 to 7.8±
4.1 and 13.5 ± 6.2 to 13.9 ± 5.8 mV, respectively from VA-pre to
VA-post10. Triceps MEP ranged from 15.1± 8.2 to 21.4± 11.2%
of biceps MEP from VA-pre to VA-post10.

DISCUSSION

Overall elbow flexor fatigue was due to a combination of
reduced output from the central and peripheral nervous
systems. Interestingly, VA was substantially underestimated
when using TMS compared to motor point stimulation in
non-fatigued and fatigued elbow flexors. As elbow flexor
fatigue developed, this underestimation became dispersed. The
dispersed underestimation of VA could not be explained by
a fatigue-induced increase of triceps brachii activation, but
instead a reduced linearity between the TMS evoked SIT

force and voluntary force of the elbow flexors. The decreased
linearity subsequently yielded a reduced TMS, but not motor
point stimulation, predicted resting twitch force leading to an
underestimation of VA. The reduced linearity may be due to
TMS evoked SIT force being much smaller than motor point
stimulation evoked SIT forces at 50% MVC.

The elbow flexor fatigue protocol in the current study
induced fatigue both centrally and peripherally. Participants
could no longer voluntarily drive the muscle the same way as
pre-fatigue. Following the fatiguing contractions, motor point
stimulation evoked larger SIT forces during the MVCs than
when the muscles were not fatigued indicating that the axons
of the motoneurones were capable of increased output but
that there was a reduction in central nervous system output
to (i.e., at the corticomotoneuronal synapse; Gandevia et al.,
1999) or within the motoneurone itself (i.e., decreased intrinsic
excitability; Khan et al., 2012). During the same MVCs, the
increased SIT force due to TMS indicates that the reduced
output to the motoneurone was due, in part, to altered synaptic
activity from the motor cortex (Taylor et al., 1996; Ranieri and
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Di Lazzaro, 2012). Because there was no change in the biceps
brachii MEP amplitude, the corticospinal pathway probably
never played a role in the reduced MVC force. Thus, the
altered synaptic activity to the motoneurone may be upstream
from this pathway. Mechanisms of fatigue-induced changes in
central nervous system output have been reviewed elsewhere
(Gandevia, 2001; Ranieri and Di Lazzaro, 2012; Kent et al.,
2016). The reduction in PT force indicates that the reduction
in MVC force was, in part, due to fatigue induced changes in
the elbow flexor muscles. The reduction in PT illustrates that
there were impairments to: (1) muscle excitation-contraction
coupling, such as sarcoplasmic reticulum release, restoration of
intracellular calcium and sensitivity of calcium to contractile
protein interactions, (2) H+, (3) PCr breakdown, (4) muscle
deoxygenation, and (5) others, which have all been reviewed in
detail (Enoka and Stuart, 1992; Fitts, 1994; Allen et al., 2008; Kent
et al., 2016).

The most interesting finding in the current study was the
disperse differences in estimated VA via TMS compared to
motor point stimulation, especially during the development of
elbow flexor fatigue. A potential reason for these differences
is antagonist co-activation. Because cortical stimulation is not
focal, there may be an activation of corticospinal cells that
project to various muscles including the antagonist. Activation

of the antagonist during an agonist contraction would reduce
the size of the SIT force and subsequently result in an over- or
underestimation of VA (Todd et al., 2016). In the current study, at
all contraction intensities (data only shown for 100% MVC) and
throughout the development of fatigue the triceps/biceps MEP
and EMG ratios were ∼20% or less. Thus, increased antagonist
activation could not explain the disperse VA differences between
TMS and motor point stimulation or the decrease in VA via TMS
from VA-pre to VA-4.

The main reason for the disperse differences in VA as the
participants fatigued was poor linear regression. When linear
regression between motor point evoked SIT force and voluntary
force was made the average r-values at all times points were high
for the elbow flexors with and without fatigue. For TMS the linear
regression average r-value was high only for the elbow flexors in
a non-fatigued state. It has been shown that non-linearity of the
regression between TMS evoked SIT force and voluntary force
occurs more often with fatigued compared to non-fatigue muscle
(Hunter et al., 2006, 2008; Girard et al., 2013; Kennedy et al.,
2013; Keller-Ross et al., 2014). Based on the current findings, the
difference in the linear regression between TMS and motor point
stimulation was due to the 50% but not 75 or 100% MVCs. The
evoked SIT forces were similar for both TMS and motor point
stimulation at 75 and 100% MVC but much smaller for TMS
at 50% MVC. These differences lead to an underestimation of
resting twitch force for TMS. In fact, because of these differences
in linearity, the TMS predicted resting twitch force became
so underestimated that by VA-4 the SIT was larger than the
predicted resting twitch, and thus a negative VA occurred. As the
SIT force at 50% MVC started to recover post-fatigue there was
an increase in the estimated resting twitch force and VA became
positive again.

There were several methodological considerations for this
study. Typically, the TMS predicted resting twitch force is larger
in the elbow flexors compared to the resting potentiated twitch
force evoked by motor point stimulation (Todd et al., 2003,
2004; Kennedy et al., 2013), which is opposite to what happened
in the current study. The differences between TMS and motor
point predicted VA compared to other studies (Todd et al.,
2003, 2004; Kennedy et al., 2013) may have occurred for several
reasons. First, in the aforementioned studies a single motor point
stimulus was delivered, whereas a double stimulus was used
here. A double rather than a single stimulus was used to evoke
twitch forces because it has been shown to produce a higher
signal to noise ratio (Behm et al., 1996). The double stimulus
at the motor point recruited the elbow flexor muscle fibers
differently than TMS at 50%MVC especially during the fatiguing
contractions. Second, we recruited chronically strength-trained
participants, whereas other studies (Todd et al., 2003, 2004;
Kennedy et al., 2013) did not. Although, strength-training alters
various sites in the central nervous system (Carroll et al., 2011)
it does not appear to affect VA of upper limb muscles (Herbert
et al., 1998; Lee et al., 2009). Lastly, in the current study, the
elbow joint was flexed to 90◦ and the shoulder at 0◦ with the
forearm parallel to the ground and supinated with the force at
the wrist being upwards. In other studies, (Todd et al., 2003,
2004; Kennedy et al., 2013) the elbow and shoulder joints were
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flexed to 90◦ with the forearm vertical and supinated with the
force at the wrist being backwards. Changes in forearm and
shoulder positions alters CSE of the biceps brachii (Forman
et al., 2016; Nuzzo et al., 2016) and potentially could affect
VA of the elbow flexors. Todd et al. (2003) showed a high
linear regression between TMS evoked SIT forces and voluntary
force (50–100% MVC) in fatigued elbow flexors with the elbow

and shoulder joints were flexed to 90◦, which was opposite
to the current results. However, to the best of our knowledge
no studies to date have determined the combined effects of

fatigue, shoulder position, stimulation type and training on elbow
flexor VA.

CONCLUSION

The estimation of VA or the level of neural drive from the central
nervous system to produce force is important for quantifying the
presence of central fatigue in various physiological conditions.
Compared to motor point stimulation, VA of the elbow flexors
was underestimated prior to and even more so during fatigue
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when using TMS. During fatigue the stimulus evoked SIT
forces responded differently to TMS at submaximal compared
to near maximal or maximal voluntary contractions leading
to an underestimation of the resting twitch and subsequently
underestimation of VA. TMS during voluntary contraction does
have the advantage over motor point stimulation to indicate
that a change in VA is, in part, cortex dependent. However,
based on the current findings and the conditions in which
VA was measured the use of TMS to estimate VA of the
elbow flexors may not be an appropriate technique especially
following fatigue. Overall motor point stimulation was the
more appropriate technique for estimating VA of the elbow
flexors.
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