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A B S T R A C T   

Multispectral photoacoustic (PA) imaging faces two major challenges: the spectral coloring effect, which has 
been studied extensively as an optical inversion problem, and the spectral crosstalk, which is basically a result of 
non-ideal acoustic inversion. So far, there is no systematic work to analyze the spectral crosstalk because acoustic 
inversion and spectroscopic measurement are always treated as decoupled. In this work, we theorize and 
demonstrate through a series of simulations and experiments how imperfect acoustic inversion induces inac-
curate PA spectrum measurement. We provide detailed analysis to elucidate how different factors, including 
limited bandwidth, limited view, light attenuation, out-of-plane signal, and image reconstruction schemes, 
conspire to render the measured PA spectrum inaccurate. We found that the model-based reconstruction out-
performs universal back-projection in suppressing the spectral crosstalk in some cases.   

1. Introduction 

PA imaging (PAI; alternatively, optoacoustic imaging) combines the 
penetration depths of ultrasound with light absorption contrasts [1,2]. 
In principle, by scanning the wavelength of the excitation light in PAI, 
the absorption spectra of intrinsic biological substances and extrinsically 
administered contrast agents can be measured, and then the material 
composition can be imaged by spectral unmixing [3–5]. One represen-
tative application is the imaging of blood oxygen saturation (sO2) [6–8]. 

Unlike traditional spectroscopic imaging, where the spectrum of the 
excitation light is known a priori, in PAI the excitation spectrum inside 
deep tissue is affected by the wavelength-dependent tissue absorption 
and scattering, thus becoming unknown [9]. Termed the “spectral col-
oring effect”, the above problem has been tackled using model-based 
iterative method [10–12], deep learning [13–17], eigenspectra decom-
position [15,18,19], and other methods [20–25]. All methods imple-
menting spectral unmixing have to assume that the PA spectra at all 
image pixels or voxels are accurately measured in the first place. In PA 
imaging, image artifacts are produced by non-ideal PA signal detection, 
including limited angular acceptance, limited view, limited bandwidth, 
insufficient spatial sampling, etc. Here, we use “limited angular accep-
tance” to refer to the limited detection view perpendicular to the im-
aging plane. The effective thickness of the imaging plane (i.e., 
elevational resolution) is determined by the geometric focus of the 

transducer elements, such as in linear and ring arrays. In such imaging 
systems, an in-plane signal acceptance less than 360◦ is referred to as 
“limited view”. Since these artifacts are generated acoustically, they 
seem to be independent of the optical wavelength. As a result, people 
may assume that spectral unmixing techniques can still be applied, in 
the presence of the above-mentioned acoustic artifacts. 

Upon scrutiny, however, the problem is more intricate and the 
assumption that the deficiencies in acoustic detection are decoupled 
with the wavelength of the excitation light is wrong. Our study has 
shown that the various types of image artifacts commonly encountered 
in PA imaging do induce spectral crosstalk (defined below) between 
even remotely separated points. In communication, “crosstalk” refers to 
the phenomenon by which a signal transmitted on one channel creates 
an undesired effect in another channel. Here, we use the term “spectral 
crosstalk” to refer to the phenomenon by which the spectrum of one 
pixel or voxel is affected by the spectra of other pixels or voxels in PA 
imaging. In the following text, we used “PA spectrum” to refer to the 
initial pressure spectrum and “reconstructed PA spectrum” to refer to the 
spectrum of the reconstructed PA images. The consequence is that the 
measurement of the PA spectrum is intrinsically inaccurate (the recon-
structed PA spectrum is different from the PA spectrum), even in the 
absence of noise. The mechanism of the spectral crosstalk is complicated 
and system-dependent. Up to now, acoustic inversion methods for PA 
image reconstruction have been extensively studied [26–46]. Some of 
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them touched on the connection between non-ideal acoustic recon-
struction and PA spectrum distortion: Kazakeviciute et al. proposed a 
strategy to reduce the influence of random noise and artifacts on the PA 
spectrum, in which the artifacts were unified into statistical “noise” and 
removed by a statistical signal processing method [34]; Prakash et al. 
proposed a model-based reconstruction method with nonnegative 
constraint and showed its effect on the reconstructed PA spectrum [39]; 
Li et al. analyzed and proposed a method to suppress the spectral error 
caused by sparse sampling [43]. But as far as we know, there is no 
systematic research to analyze the influence of the imperfect acoustic 
inversion on multispectral PA imaging. In this work, we will build a 
mathematical model for the spectral crosstalk phenomenon, and employ 
numerical simulations to exemplify and quantitatively analyze the 

contribution of various factors. Our conclusions were validated using 
phantom experiments. We also compared the performance of a 
model-based (MB) algorithm [47] and the BP algorithm in terms of 
spectral reconstruction accuracy. When the model is reasonably accu-
rate, the MB method can effectively reduce the spectral crosstalk caused 
by limited angular acceptance, but for the crosstalk caused by other 
factors, it has no obvious advantage. In addition, different constraints 
were employed in the MB method to test their performance in sup-
pressing the spectral crosstalk. 

Fig. 1. Numerical simulation of the matrix A. 
(a) to (h) are maps of A20201 based on back 
projection (BP) reconstruction or model-based 
(MB) reconstruction with different conditions: 
(a-d) Maps of A20201 based on BP reconstruc-
tion, (e-h) Maps of A20201 based on MB recon-
struction. (a, e) 256 transducers, 360◦ view, no 
bandwidth limit; (b, f) 256 transducers, 360◦

view, with bandwidth limit; (c, g) 64 trans-
ducers, 90◦ view, with bandwidth limit, dashed 
lines in (c) mark the angular range of detection; 
(d, h) 32 transducers, 90◦ view, with bandwidth 
limit. (i) to (p) are the magnitude parts of the 
Fourier transform of (a) to (h). (q) Amount of 
element whose value is greater than 0.1 in 
matrix A under different spatial sampling con-
ditions based on BP reconstruction. 64/128/ 
256 transducers, 360◦ view, with/without a 
bandwidth limit. (r) Amount of element whose 
value is greater than 0.01 and less than 0.1 in 
matrix A under different spatial sampling con-
ditions based on BP reconstruction. 64/128/ 
256 transducers, 360◦ view, with/without a 
bandwidth limit.   
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2. Methods 

2.1. Mathematical model 

In the framework of BP, delay and sum (DAS) [48] or MB recon-
struction (in which the iteration step is fixed, without constraint), the 
excitation, propagation, acquisition, and reconstruction of the PA signal 
are a series of linear processes, which can be represented using the 
following equations: 

Ai1 = p1  

Ai2 = p2 (1)  

...

AiN = pN  

A = REH (2)  

where in is the initial pressure distribution (here the initial pressure 
distribution in 3D space is reshaped into a column vector) and pn is the 
corresponding reconstructed image at the n-th wavelength. N is the total 
number of wavelengths. R is the reconstruction process. E is the 
receiving process with the acousto-electric impulse response (EIR) of 
receiving transducer included, and H is the PA wave propagation pro-
cess, in which the spatial impulse response (SIR) of the receiving 
transducer is considered. The reconstruction process and results in this 
work are acoustic reconstructions, optical inversion is not considered in 
this work. For the BP or DAS reconstruction, R can be discretized into a 
matrix; for the MB reconstruction when the gradient descent method is 
used: xj+1 =

(
I − sHTH

)
xj + sHTb,where b is the raw PA data, xj is the 

result of the j-th iteration and s is the step size. If the initial value is set to 
0, x1 = sHTb, then R can be expressed as matrix R|H,J,s where J is the 
number of iterations and xJ = R|H,J,sb. Both J and s are independent of 
the excitation wavelengths. The case of multispectral imaging can then 
be compactly written as: 

A[i1, i2,⋯iN ] = [p1,p2,⋯pN ]

AI = P (3) 

The PA spectrum at a fixed position corresponds to one row in the I 
matrix, denote that position using index m: 

Ispectrumm = [im1, im2,…imN ] (4) 

Then, the reconstructed PA spectrum at the same position can be 
expressed as: 

Pspectrumm =
∑K

k=1
amkIspectrumk (5) 

In the above equation, both m and k are position indices, K is the total 
number of positions in a PA image. Ispectrumk is jointly determined by the 
absorption spectrum and the illumination spectrum at the same position, 
amkis determined by PA signal propagation, detection, and reconstruc-
tion. At the same time, amk is the (m, k) element of matrix A. We define 
amk as the crosstalk coefficient quantifying the severity of spectral 
contamination at position m due to the spectrum at position k, and 
∑K

k∕=mamkIspectrumk as the m-th position’s crosstalk component contributed 
by all other positions. For an ideal reconstruction, the reconstructed PA 
spectrum is consistent with the initial pressure spectrum. Mathemati-
cally, Pspectrumm

||Pspectrumm ||
=

Ispectrumm
||Ispectrumm ||

for all pixel index m. 
To illustrate how data acquisition and image reconstruction affect 

the value of crosstalk coefficient amk, we numerically calculated matrix 
A under non-ideal detection conditions, including limited angular 
acceptance, limited bandwidth, limited view, and sparse spatial sam-
pling. To construct matrix A, matrix H was generated by the CDMMI 

method [47], the convolution process of EIR and the PA signal was 
represented by matrix E. For the BP reconstruction, the reconstruction 
process was written in matrix form. For the MB reconstruction, we took J 
as 1000 and s as 0.1. The initial pressure distribution was discretized 
into a 201 × 201 matrix, with a pixel size of 0.1 mm. The speed of sound 
was set to 1500 m/s, the PA signal was sampled at 40 MHz with 1200 
sampling points. Several identical point transducers were evenly ar-
ranged on the circle with a diameter of 50 mm. For a 128-channel array, 
H is a matrix with 153,600 (128× 1200) rows and 40,401 (201× 201) 
columns, E is a matrix with 153,600 (128× 1200) rows and 153,600 
(128× 1200) columns, and R is a matrix with 40,401 (201× 201) rows 
and 153,600 (128× 1200) columns. According to Eqs. (1) and (2), 
matrix A represents the linear mapping from the initial pressure distri-
bution (40401 × 1 vector) to the reconstructed PA distribution 
(40401 × 1 vector). The m-th row of A represents the crosstalk co-
efficients of pixel m due to the contamination by all image pixels; the 
m-th column of A represents the crosstalk coefficients of all pixels due to 
the contamination by pixel m. 

We numerically calculated matrix A corresponding to 360◦ view 64-, 
128- and 256-channel arrays, both with a finite bandwidth (2.5 MHz 
center frequency, 75% bandwidth) and without any bandwidth limit; 
We also calculated matrix A corresponding to 90◦ view, 32- and 64- 
channel arrays, with a finite bandwidth (2.5 MHz center frequency, 
75% bandwidth). Because matrix A is too large (40401× 40401), we 
just studied its 20,201st column A20201 which is a vector representing 
the crosstalk coefficients at all image pixel due to the 20,201st pixel. 
A20201is proportional to the linearly-reshaped PSF of the 20,201st pixel. 
To convert A20201back into a matrix that directly represents a 2D image, 
we normalized A20201 by A(20201, 20201), and reshaped A20201 into a 
201 × 201 matrix L, in which the largest element was L(101,101), as 
shown in Fig. 1(a). 

The value of L based on BP reconstruction is shown in Fig. 1(a-d), 
whose corresponding Fourier transform is shown in Fig. 1(i-l). In the 
ideal situation, only L(101,101)is non-zero, meaning that an artifact- 
free image is reconstructed (only a bright pixel in the center). Howev-
er, due to the limited angular acceptance in the direction perpendicular 
to the imaging plane, the crosstalk coefficients between pixel (101,101) 
and the surrounding pixels became prominent. As shown in Fig. 1(a), 
some negative values appeared surrounding pixel(101,101). In the fre-
quency domain, it is shown as a high pass filter (Fig. 1(i)). If a limited 
bandwidth is further imposed, the distribution of the crosstalk co-
efficients becomes wider and their amplitudes become larger (Fig. 1(b)). 
So far, the amplitude and distribution of the crosstalk coefficient are 
characterized by high value, short-range, and are insensitive to the 
spatial sampling frequency. Then, a quarter-ring was applied for signal 
detection (with the sensor density unchanged). Fig. 1(c) shows the 
crosstalk coefficient map under this limited-view scenario (dashed lines 
mark the angular range of detection). In this case, a “cross” pattern 
appeared whose shape was defined by the angular span of the array with 
respect to the field point. Finally, we further reduced the number of 
detectors by half, this produced stronger streak artifacts as shown in 
Fig. 1(d). The crosstalk created in the last two cases was relatively weak, 
long-range, and was sensitive to the spatial sampling frequency. In order 
to better illustrate the characteristics of the above different types of 
crosstalk, we analyzed the off-diagonal elements in matrix A (the 
crosstalk coefficients). We classified the off-diagonal elements whose 
absolute value was greater than 0.1 (the m-th column in matrix A was 
normalized by the element A(m, m)) into one category, and those whose 
absolute value was between 0.01 and 0.1 into another. As shown in 
Fig. 1(q-r), the number of the first category was relatively small which 
was very sensitive to the frequency bandwidth but hardly affected by the 
spatial sampling frequency. It corresponds to the non-zero crosstalk 
coefficients generated by limited angular acceptance and limited 
bandwidth in Fig. 1(a-b). The second category had a large number which 
was closely related to the spatial sampling frequency, corresponding to 
the crosstalk coefficients generated by sparse spatial sampling. As for the 
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MB reconstruction, it can satisfactorily reduce the crosstalk coefficients 
due to limited angular acceptance, as shown in Fig. 1(e, m). The non- 
zero crosstalk coefficients imposed by limited bandwidth were also 
reduced due to the addition of EIR in the model matrix H. For the non- 
zero crosstalk coefficients generated by limited view and sparse sam-
pling, MB did not perform obviously better than BP (although the dis-
tributions in Fig. 1(o-p) are broader that those in Fig. 1(k-l), there are 
little differences in their angular range). The information loss in the 
angular direction is the main cause of the error due to limited view and 
sparse sampling, and MB does not outperform BP in supplementing the 
lost angular information. 

The existence of the off-diagonal element amk(m ∕= k) in matrix A is 
the physical basis of spectral crosstalk, and amk(m ∕= k) is determined by 
the PA detection and reconstruction methods. However, in actual im-
aging, the degree of spectral crosstalk at a certain position does not 
depend entirely on amk(m ∕= k), but is closely related to the distribution 
of initial pressure (Ispectrumk ) in the field of view. To facilitate the analysis 
of spectral crosstalk, we define the ratio between the lengths of the 
normal and parallel components of Pspectrummwith respect to Ispectrumm as 
Dcross(m) to measure the degree of spectral crosstalk at position m: 

Dcross(m) =
||Pspectrumm − aeffm Ispectrumm ||

||aeffm Ispectrumm ||
, (6)  

aeffm =
∑K

k=1
amk

Ispectrumk • Ispectrumm

||Ispectrumm ||
2 (7) 

According to the definition, in the extreme case when the spectral 
information of a position is lost, Dcross is close to infinity. When Dcross is 
close to 0, the reconstructed spectrum has a strong correlation with the 
initial spectrum. As discussed above, amk is determined by the imaging 
system and the reconstruction algorithm, which will influence Dcross. 
However, Dcross is further affected by the object being imaged. For a 
simple example, a disk and a point target were placed in the ring array 
imaging system. The center of the disk and the point target were rota-
tionally symmetric with respect to the center of the field of view (FOV). 
The two targets had the same initial pressure. After reconstruction, the 
brightness of the center point of the disk target was weaker than that of 
the point target, despite due to symmetry, amk of the two positions were 

the same. The reason for the above discrepancy was that the center of 
the disk was affected by the crosstalk components from adjacent points 
(i.e., corresponding crosstalk coefficients due to the limited angular 
acceptance or limited bandwidth, as shown in Fig. 1(a-b)). With the 
formula (5)–(7), spectral crosstalk becomes evident when two condi-
tions are met: 

Condition 1: Deficient acoustic detection to cause coupling between 
different locations, according to (5). 

Condition 2: In the reconstructed image, the signal strengths of the 
pixels with different PA spectra are dramatically different. Here, signal 
strength refers to the “apparent brightness” of a feature in a recon-
struction image. The weak features always have small aeff or Ispectrum, so 
strong features contaminate weak features more easily according to (6) 
and (7). 

2.2. Simulation platform 

2.2.1. Transducer arrays 
To better elucidate how various factors generate spectral crosstalk, 

we performed numerical simulations based on ring array, linear array, 
and planar PACT system. The ring array system consists of 256 trans-
ducers which are evenly distributed on a circle (diameter: 50 mm) and 
focused in the elevational direction (see Fig. 2(a)). The focal length of 
the transducer is 25 mm and its elevational numerical aperture is 0.25, 
leading to an elevational resolution of 1.6 mm at the center frequency of 
2.5 MHz. For the linear array, we used the same transducer elements as 
in the ring-array simulation. 128 transducers were evenly arranged in a 
straight line with an inter-element spacing of 300 µm. For the planar 
array, 50 × 50 point transducers were evenly distributed in a plane, 
with an inter-element spacing of 200 µm. 

2.2.2. Digital phantoms 
Six digital phantoms were designed to study the relationship be-

tween the non-ideal signal detection or reconstruction methods and 
spectral crosstalk. 

Phantom 1: The object consisted of eleven cylindrical targets lying 
perpendicular to the imaging plane. The diameter of the cylinders was 
0.6 mm. Ten of them were evenly arranged on a circle with a diameter of 

Fig. 2. Schematic diagrams of the transducer arrays and the digital phantoms. (a) Ring transducer array. (b) 3D illustration of Phantom 1. (c) Central section of 
Phantom1. (d) 3D illustration of Phantom2. (e) 3D illustration of Phantom 3. (f) 3D schematic of the linear array (only shows the sensing elements) and Phantom 5. 
(g) 3D schematic diagram of the planar array and Phantom 6. The red stars in (c) represent the positions of the analysis in Section 3.1.4 (for details see text). 
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8.5 mm, and one was located in the center of the FOV. A vessel-like PA 
target was located in the imaging plane. A big sphere with a diameter of 
6 mm and three small spheres with diameters of 0.3 mm, 0.5 mm, 
0.8 mm were placed next to the vessel target, with their mid-planes 
aligned with the imaging plane. The initial pressures on all targets 
were shown in Fig. 2(b). Fig. 2(c) depicts the distribution of the targets 
in the imaging plane. 

Phantom 2: The effect of light fluence attenuation was taken into 
account in this phantom experiment. In this case, the absorptive targets 
shown in the previous example (Fig. 2(b)) were embedded in a cylinder 
background with a diameter of 20 mm, as shown in Fig. 2(d). The cyl-
inder had uniform scattering and absorption properties, defined by a 
reduced scattering coefficient of 11 cm− 1 and an absorption coefficient 
of 0.3 cm− 1 [49,50]. The absorption coefficient of the targets was 
1.3 cm− 1 [49,50] which is similar to that of the mouse liver. 564 
isotropic point light sources are evenly distributed on the outer rim of 
the cylinder at three different heights (0, 2, and 4 mm from the imaging 
plane). The three-dimensional fluence distribution was obtained by 
Monte Carlo simulation [51]. In this phantom, only the absorptive tar-
gets shown in Fig. 2(b) generated PA pressure which was the product of 
their absorption coefficient and the local light fluence. The absorber of 
the cylinder background was used to attenuate the light fluence. 

Phantom 3: To better quantify the spectral crosstalk caused by in- 
plane and out-of-plane artifacts, another phantom for multispectral 
imaging was designed. We modified Numerical Phantom 1 in Fig. 2(b) 

such that two 6 mm-diameter spheres, instead of one, were put in the 
FOV. In Fig. 2(e), green represents deoxyhemoglobin, and red is 
oxyhemoglobin; the concentrations of oxyhemoglobin and deoxy-
hemoglobin were equal. In particular, one of the spheres exhibits a 
sandwich structure, where the thickness of the deoxyhemoglobin slice in 
the middle is 1.6 mm-thick (which is the same as the elevational reso-
lution of the system at the center frequency of 2.5 MHz). While Phantom 
1 and 2 were used for the single-wavelength test, Phantom 3 was 
designed for the multispectral test ranging from 700 nm to 900 nm. 

Phantom 4: Phantom 4 is modified from Phantom 3, which only 
retained the middle 1.6 mm-thick slice of Phantom 3, which includes the 
middle 1.6 mm-thick slice of the two spherical targets, the whole vessel- 
like target, and the middle 1.6 mm-thick slice of the cylindrical targets. 

Phantom 5: For linear array simulation, two columns of identical 
cylindrical targets (each column contains 8 targets) were positioned at 
different depths, all of them were perpendicular to the imaging plane, as 
shown in Fig. 2(f). Red and green represent oxyhemoglobin and deox-
yhemoglobin, respectively; the concentration of oxyhemoglobin was 
four times that of deoxyhemoglobin. 

Phantom 6: For planar array simulation, the PA targets were iden-
tical spheres with a diameter of 1 mm placed at different depths, as 
shown in Fig. 2(g). Red and green represent oxyhemoglobin and deox-
yhemoglobin, respectively; the concentration of oxyhemoglobin was 
four times that of deoxyhemoglobin. Phantom 5 and Phantom 6 were 
used for the multispectral test, similar to Phantom 3. For Phantom 3–6, 

Fig. 3. Photos of the experimental phantom. (a) The complete phantom. (b) The same phantom without the surrounding contaminators.  

Fig. 4. The relationship between spatial response and frequency bandwidth of the transducer. (a) Spatial response of transducer with infinite receiving bandwidth. 
(b) Spatial response of transducer with limited receiving bandwidth (center frequency: 2.5 MHz, − 3 dB bandwidth: 75%). 
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light attenuation inside the phantoms was not considered – the initial PA 
pressure was evenly distributed within each target with its value defined 
by the hemoglobin concentration. 

2.2.3. Simulation of the forward process 
All PA forward data was generated by k-Wave [52], which is a 

MATLAB toolbox in which the properties of the transducers and the 
digital phantoms can be easily defined. In this study, the grid was set to 
0.1 mm and the sampling rate was 40 MHz. The medium was assumed to 
be homogeneous with a speed of sound of 1500 m/s, which is close to 
that of water at room temperature. For the curved transducer mentioned 
in Section 2.2.1, we divided each of its element into point transducers. 

Fig. 5. PA spectral crosstalk in three types of arrays. (a) 
Reconstructed image of Phantom 1 without transducer 
bandwidth limit. (b) Reconstructed image of Phantom 1 
with transducer bandwidth limit. (c-d) Reconstructed 
image and relative spectral error of Phantom 3. (e-f) 
Reconstructed image and relative spectral error of Phantom 
5 with the linear array system. (g-h) Reconstructed image 
and relative spectral error of Phantom 6 with the planar 
array system. The red dashed line in (a) represents the 
positions of the analysis in Section 3.1.4 (for details see 
text).   
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The signal received by each point detector was obtained with k-Wave, 
then for each curved element, we summed over all point detectors to 
obtain the overall signal of that element. 

When the light fluence attenuation was taken into account, the three- 
dimensional fluence distribution was generated by MCXLAB [51], which 
is a MATLAB toolbox for light fluence calculation. In the toolbox, the 
absorption and scattering distributions as well as the surface light in-
tensity distribution can be set arbitrarily. 

2.3. Phantom experiment 

A phantom experiment was performed to demonstrate the existence 
of the spectral crosstalk and verify our analysis. As shown in Fig. 3, three 
weakly absorbing disks were positioned near the center of the field of 
view (FOV), the diameter of the disks varied from 1 mm to 3 mm. Ten 
strongly absorbing disks with diameters of 1 mm were evenly distrib-
uted on a circle with a radius of 8.5 mm. To avoid the difficulty of 
controlling the blood oxygenation precisely, we selected black ink as the 
chromophore of the central disks, and the surrounding small disks were 
stained with blue ink. At 700 nm, the absorption coefficient of the blue 
ink was 6 times that of the black ink. So, the blue ink will be the main 
source of spectral crosstalk. We made the agar phantom into two pieces 
such that the outer “contaminators” could be removed or included, as 
shown in Fig. 3(a) and (b), which allowed the spectral crosstalk to be 
switched on and off easily. We refer to “spectral crosstalk” in this 
experiment as the crosstalk components from the surrounding “con-
taminators”, excluding the crosstalk components from the central disks 
themselves since their influences are much weaker. A 256-channel 
focused ring array was used for PA signal detection. The system 
employed an OPO laser (SOLAR LP604) with a 10 ns pulse width and 
10 Hz repetition rate for PA excitation. The laser beam was coupled into 
a customized 1 × 10 fiber bundle to provide uniform illumination 
around the imaged object. A full-ring ultrasound array (Imasonic Inc., 
256 elements, 5.5 MHz central frequency, 60% bandwidth) was used for 
PA signal detection. The radius of the ring array was 50 mm, the focal 
width (elevational resolution) inside the imaging FOV was roughly 
1 mm, and the thickness of all the targets was 1 mm. Two customized 
preamplifiers with 20 dB gain were directly connected to the ring array, 
the output of the preamplifiers was further amplified by 40 dB and 
sampled at 40 MHz using two data acquisition units (Analogic Corp., 

SonixDAQ). 
We first took PA images without the surrounding contaminators, at 

eleven wavelengths evenly distributed from 700 nm to 800 nm. This 
image acquisition process was repeated after the second piece of agar 
containing the contaminators was added. Wiener filter was used to 
remove the influence of EIR in the original PA signal. 

Next, we compared the degree of spectral crosstalk of the center disks 
under BP and MB reconstructions. Denoting Pspectrumm as the recon-
structed PA spectrum with the surrounding “contaminators” (spectral 
crosstalk “on”), and Ispectrumm as the reconstructed PA spectrum without 
the “contaminators” (spectral crosstalk “off”), a mask was added to 
ensure that Ispectrumm remained positive at all wavelengths. 

2.4. Reconstruction methods 

As we have discussed in Section 2.1, the spectral crosstalk encoun-
tered in PA tomography is fundamentally due to the non-ideal signal 
detection which renders the acoustic inversion problem ill-posed. In 
different imaging scenarios (i.e., different detection geometry, sensor 
property, and object property, etc.), the performance of different 
reconstruction algorithms varies, thus the severity of spectral crosstalk 
must rely on the reconstruction method being used. Here we provide 
examples to illustrate how the spectral crosstalk can be suppressed by 
properly choosing or modifying the image reconstruction algorithm. 
Nevertheless, an analysis which comprehensively considers all available 
algorithms and all possible combinations of detection schemes and ob-
ject properties can be too lengthy and beyond the scope of this work, so 
we confine ourselves to discussing only BP and one type of MB method 
with simple numerical phantoms. 

In order to reduce the influence of spectral crosstalk, we propose two 
strategies: (1) Identify the positions with large Ispectrumk and suppress the 
corresponding amk. This method can be easily implemented in the BP 
algorithm but will artificially alter A to potentially degrade image fi-
delity. (2) Optimize A to approach an identity matrix, which will ulti-
mately eliminate any inter-pixel crosstalk. The iterative MB approach is 
inherently suitable for this task. At the same time, in the MB recon-
struction, one can easily add regularization terms. After adding the 
regularization terms, the reconstruction process can no longer be 
expressed in a matrix format, so we used a numerical phantom to verify 
the role of these regularization terms in suppressing the spectral 
crosstalk. 

2.4.1. Back-projection reconstruction 
Cai et al. proposed a method similar to the strategy (1) to remove the 

streak artifact by suppressing the projection curves generated by strong 
light absorbers [53]. The method is effective, but its limitations are also 
obvious: First, true image features can be incorrectly identified as arti-
facts and get suppressed; second, the choice of the suppression ratio is 
subjective; third, this method is only applicable to crosstalk generated 
by sparse sampling, and may result in image quality degradation. 
Therefore, we didn’t implement the corresponding method of strategy 
(1), but directly used the standard back-projection algorithm. 

2.4.2. Model-based reconstruction 
Many studies have proven that MB image reconstruction provides 

higher accuracy and image quality [26,28,29], however their immunity 
to spectral crosstalk has not been quantitatively studied before. Here, we 
compare the performance of the BP and the MB reconstruction (with and 
without regularization) in terms of spectral recovery accuracy. We used 
a model matrix built with the CDMMI method [47] in the MB method. 
The optimization problem in the MB reconstruction can be expressed as: 

x̂ = argmin
x

{||Hx − b||2 + αTV(x)+ β||x||2} (8)  

Table 1 
Influence of detection angle and bandwidth on feature brightness.  

Position Absorption coefficient Reconstruction 

Full BW Limited BW 

1  1  1  1 
2  1  0.215  0.013 
3  1  0.034  0.213  

Table 2 
Influence of light attenuation on feature brightness.  

Position Illumination height 

0 mm 2 mm 4 mm 

1  1  1  1 
2  0.0714  0.197  0.404 
3  0.0526  0.155  0.380  

Table 3 
Influence of spatial sampling density on crosstalk strength.  

Number of elements 32 64 128 256  

Full BW  0.0787  0.0466  0.0207  0.0082  
Limited BW  0.0865  0.0621  0.0313  0.0096   
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TV(x) =
∑

p

∑

q

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(
xp+1,q − xp,q

)2
+
(
xp,q+1 − xp,q

)2
√

(9)  

where b is the raw PA data, x is the initial pressure vector to be solved, 
x̂ is the estimation of x, α and β are regularization parameters. x is the 
matrix element of x (PA image). Here, we considered TV regularization 
TV(x) and Tikhonov regularization ||x||2. Considering the non-negative 
characteristics of the initial pressure values, non-negative constraints 
can be added: 

x̂ = argmin
x≥0

{||Hx − b||2 +αTV(x)+ β||x||2} (10) 

In this case, the iterative method is no longer a simple gradient 
descent, but a projected gradient method. When x migrates to the 
boundary position, it will advance according to the projection of the 
negative gradient along the boundary. 

2.5. Relative spectral error 

In Section 2.1, we defined Dcross and aeff to illustrate the relationship 
between the degree of spectral crosstalk and PA detection, reconstruc-
tion and imaging targets. But Dcross is complex to calculate. We define an 
almost equivalent and more concise quantitative value "relative spectral 
error" to measure the difference between the reconstructed PA spectrum 

and the ground truth spectrum. The definition of the "relative spectral 
error" is as follows: 

εerror(m) = ||
Pspectrumm

||Pspectrumm||
−

Ispectrumm

||Ispectrumm ||
||

/

2 (11)  

where Pspectrumm and Ispectrumm represent the reconstructed and the ground 
truth PA spectra, respectively, both evaluated at position m. The relative 
spectral error defined above was used in all simulation and phantom 
experiments. 

3. Results 

3.1. Influence of non-ideal signal detection 

In Section 2.1, we introduced the mechanisms of spectral crosstalk, 
now we analyze a variety of contributing factors and use three repre-
sentative PACT systems to further exemplify the problem. We employ 
rigorous simulations to reach conclusions quantitatively. In this section, 
the BP reconstruction was adopted. 

3.1.1. Limited angular acceptance and limited bandwidth 
The first factor considered here is the limited angular acceptance. 

The receiving angle of a real PA imaging system is always limited, as 
shown in Fig. 2(a), which results in differential reception of signals from 

Fig. 6. Reduction of spectral crosstalk by MB reconstruction and non-negative constraints. (a) Image reconstructed of Phantom 4 with BP. (b) Image reconstructed of 
Phantom 4 with MB. (c) Image reconstructed of Phantom 4 with non-negative MB. (d) Image reconstructed of Phantom 3 with BP. (e) Image reconstructed of 
Phantom 3 with MB. (f) Image reconstructed of Phantom 3 with non-negative MB. (a-f) are displayed with negative values set to 0. (g-l) Relative spectral error maps 
corresponding to (a-f). 
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different parts of an object. For example, the PA wave emitted by a 
cylindrical target is mainly in the direction perpendicular to the target. If 
acoustic detection is focused in one plane, a cylindrical target (e.g., 
blood vessel) may appear brighter perpendicular to the image plane, 
than lying in the plane. As a result, limited angular acceptance not only 
contributes to Condition 1, but it may also give rise to Condition 2. 
Limited detection bandwidth also contributes to spectral crosstalk. To 
see this, consider the simplest case of a spherical target, the central 
frequency of its PA signal is [30]. 

fc =
vs

1.5d
(12)  

where d is the diameter and vs is the speed of sound. Accordingly, a 
center frequency of 5 MHz corresponds to spherical absorbers with a 
diameter of 0.2 mm. Thus, a non-uniform frequency response suppresses 
image features that are significantly smaller or larger than 0.2 mm. As 
such, similar to limited-view detection, a limited detection bandwidth 
subjects the system to both Conditions 1 and 2. 

3.1.2. Out-of-plane crosstalk 
For focused transducers, the focusing capability is directly related to 

the frequency. The relationship between the − 6 dB focal width and the 
acoustic wavelength is as follows [30]: 

w− 6dB ≈ 1.03
lf

2a
(13)  

where lf is the focal length and 2a is the aperture size of the transducer. 
While in PA imaging, people often try to increase the detection band-
width for better image fidelity (this helps reduce spectral crosstalk by 
increasing aeffm , thus simultaneously alleviates Condition 1 and 2), yet as 
more low-frequency components are received, the sectioning capability 
of the system drops such that one always measures a blended spectrum 
by integrating along the elevational direction. Fig. 4 shows the fre-
quency response of the transducer (a single transducer element in Fig. 2 
(a)) with a spherical target placed at different elevational heights, the 
two cases of infinite and finite (center frequency: 2.5 MHz, − 3 dB 
bandwidth: 75%) receiving bandwidth were considered. The k-Wave 
toolbox and a ball target whose diameter was 100 µm were used to 
simulate the response. Even for an ideal transducer with infinite band-
width, at low frequencies, the sectioning capability was almost lost 
which was bound to induce serious out-of-plane spectral crosstalk. 

3.1.3. Light attenuation 
Biological tissues exhibit strong scattering and absorption, resulting 

in the rapid decrease of light intensity along the depth direction. For 
example, shallow blood vessels are often much brighter than deeper 
ones after reconstruction (without digital fluence compensation), thus 
generating spectral crosstalk due to Condition 2. Compared with bright 
field illumination, dark field illumination can make the cross-sectional 
fluence distribution more uniform, at the cost of potentially greater 
spectral coloring and out-of-plane artifacts. 

Fig. 7. Effect of Tikhonov and TV regularization on spectral crosstalk. (a-c) Images reconstructed with different Tikhonov regularization parameter, (a) α= 0.5, (b) 
α= 0.05, (c) α= 0.005. (d-f) are the relative spectral error of (a-c). (g) Image reconstructed by the MB method without regularization, the number of transducers is 
128. (h) Image reconstructed by the MB method with TV regularization, the number of transducers is 64. (i) Image reconstructed by the MB method without 
regularization, the number of transducers is 64. (j-l) are the relative spectral error corresponding to (g-i). 
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3.1.4. Spectral crosstalk in different detection geometries 

3.1.4.1. Ring array. The ring array is shown in Fig. 2(a). At first, we 
neglect light fluence attenuation and Phantom 1 in Fig. 2(b) was used. 
Fig. 5(a) and (b) show the reconstructed images under full and limited 
bandwidth (center frequency: 2.5 MHz, 3 dB bandwidth: 75%). Quan-
titative analysis was carried out at three positions (Fig. 2(c)). As shown 
in Table 1, in the case of full bandwidth, the perpendicular vessels were 
30 times brighter than the in-plane vessel; more strikingly, in the case of 
limited bandwidth, the perpendicular vessels were 70 times brighter 
than the inner region of the big sphere. Next, we considered the effect of 
light fluence attenuation and Phantom 2 was used. Table 2 shows the 
initial pressure at the three test locations (Fig. 2(c)), from which the 
influence of light attenuation and illumination scheme can be clearly 
seen. The above simulations show that even with the same absorption 
coefficient, the brightness of different objects may appear dramatically 
different due to a variety of reasons. To make things worse, the ab-
sorption of biological tissue is spatially inhomogeneous, which tends to 
exacerbate spectral crosstalk due to Condition 2. Spatial sampling plays 

an important role in causing spectral crosstalk. To show this, we used 
Phantom 1 and set the sensor number to 32, 64, 128 and 256. We esti-
mated the severity of signal crosstalk by calculating the standard devi-
ation of the pixel value along the dashed line in Fig. 5(a), the results are 
shown in Table 3. Under various conditions shown in the tables, the 
listed values at Positions 1, 2, 3 and dashed line are relative, and we set 
Position 1 as the reference for normalization. 

Based on Tables 1 and 3, even in the case of sufficient sampling (256 
channel), the amplitude of the crosstalk is comparable to that of some 
important features, no matter whether the influence of EIR is removed. 
According to Table 3, the crosstalk signal will increase sharply when the 
number of the spatial sample decreases. If light fluence attenuation is 
also taken into account, the situation will be even worse. 

In order to better quantify the spectral crosstalk caused by in-plane 
and out-of-plane artifacts, Phantom 3 was adopted in the following 
test. In this simulation, full bandwidth signal reception was assumed. We 
adopted back projection for image reconstruction. Fig. 5(c) is the 
reconstruction result at 760 nm. Fig. 5(d) shows the distribution of the 
relative spectral error. According to Fig. 5(d), the spectral error of the 

Fig. 8. Phantom experiment results. (a) PA image acquired at 740 nm of the phantom shown in Fig. 3(a), reconstructed with BP. (b) Relative spectral error of (a). (c) 
PA image acquired at 740 nm of the phantom shown in Fig. 3(a), reconstructed with MB. (d) Relative spectral error of (c). (e) The PA spectra of the contaminators 
(blue ink) and the crosstalk spectrum at the red star position in (a). (f) PA spectra with BP and MB reconstructions at the red star position in (a). 
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sphere with the sandwich structure is still large. Apparently, the 
remaining error is due to the spectral leakage from the upper and lower 
parts of the sphere. At the same time, the spectral error of the in-plane 
blood vessel is also large, due to small value of aeffm with the limited 
angular acceptance of the ring array. 

3.1.4.2. Linear and planar arrays. Linear arrays are commonly 
employed for clinical use. The transducer elements of the linear arrays 
are similar to those in the ring array (focused in one direction), so the 
problem of limited angular acceptance in the elevational direction also 
exists. In addition, the crosstalk caused by the limited-view detection in 
the lateral direction becomes a major factor to generate spectral cross-
talk. The problem of fluence attenuation will be more serious due to the 
one-sided illumination. Another problem is that the numerical aperture 
in the lateral direction decreases with depth, consequently the bright-
ness of the same target will decrease rapidly with depth after recon-
struction (under uniform light illumination). The overall effect is that 
the signal strength decays very fast with depth in the image, thus deeper 
regions are prone to spectral crosstalk (both Condition 1 and 2). The 
situation for planar array is similar to linear array. PA initial pressure 
images (900 nm) were reconstructed using BP and the results are shown 
in Fig. 5(e) and (g). The relative spectral error due to the crosstalk can be 
seen in Fig. 5(f) and (h). The error appears to be highly inhomogeneous 
and increases with depth, as expected. 

3.2. Influence of reconstruction methods 

3.2.1. Numerical simulation results 
Phantom 3 and 4 were used to analysis the influence of reconstruc-

tion methods. The results of BP, MB (no regularization) and non- 
negative MB (no regularization) are shown in Fig. 6. For Fig. 6, the 
first and third column (a-c, g-i) show the results of Phantom 4, and the 
second and fourth column (d-f, j-l) show the results of Phantom 3. As 
shown in Fig. 6(a), for the BP reconstruction, the signals of the two large 
circular targets were very weak, in other words, aeffm was very small. At 
the same time, the vascular feature was subject to negative crosstalk at 

the edge of the circular targets, which was affected by the limited 
angular acceptance (Section 2.1/3.1.1). As shown in Fig. 6(d), when the 
imaging target was replaced with a complete three-dimensional phan-
tom (Phantom 3), the intensity of the circular targets increased obvi-
ously, which was caused by the addition of the out-of-plane signals. 
According to Fig. 6(b), for the MB reconstruction, we can see that the 
crosstalk to the circular targets caused by the limited angular acceptance 
was reduced. At the same time, the artifacts in the image were reduced, 
indicating that the MB method can effectively reduce the off-diagonal 
elements in the A matrix. However, the central vascular feature was 
still affected by the negative value of the circular target (the thickness of 
the vascular target in the z direction was about half that of the circular 
target in Phantom 4). After adding non-negative constraints, the 
strength of the middle vascular feature effectively recovered, as shown 
in Fig. 6(c). For the complete three-dimensional phantom (Phantom 3), 
the large circular targets’ signal also showed obvious enhancement, 
which was due to the out-of-plane signal (Fig. 6(e-f)). At the same time, 
the central vascular feature after adding non-negative constraints in 
Fig. 6(f) was significantly clearer than that in Fig. 6(e). 

Analyzing the relative spectral error, the MB reconstruction with 
nonnegative constraints greatly eliminated the in-plane spectral cross-
talk (which was considered to be caused by limited angle acceptance and 
sparse sampling here) which was shown in Fig. 6(g-i). However, the MB 
reconstruction had limited effect on the out-of-plane spectral crosstalk. 
Compare Fig. 6(j) and (k), the relative spectral error of the circular 
target in the upper left corner decreased, which should be the result of 
the increase of aeffm at the in-plane position. Due to the addition of out- 
of-plane signal, the negative crosstalk of the vascular target was more 
serious, which can be alleviated after adding nonnegative constraints, as 
shown in Fig. 6(l). 

Next, Tikhonov and TV regularization were added, while Phantom 4 
was used here. The signals collected by the actual system often contain 
various levels of noise, thus Tikhonov regularization is always employed 
to ensure the stability of the iteration. We evaluated the effectiveness of 
Tikhonov regularization on the MB method’s ability to overcome spec-
tral crosstalk. Fig. 7(a-c) show the reconstruction image at a single 

Fig. 9. Numerical simulation of spectral crosstalk in oxygen saturation imaging. (a) Digital phantom without surrounding contaminators. (b) Digital phantom with 
surrounding contaminators. (c) sO2 map calculated based on BP reconstruction. (d) sO2 map calculated based on MB reconstruction. (e) PA spectra at position 1 in 
(c) reconstructed by BP. (f) PA spectra at the same position reconstructed by MB. (g) Absorption spectra of oxyhemoglobin and deoxyhemoglobin. 
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wavelength under α = 0.5, 0.05 and 0.005 (arbitrary unit), and Fig. 7(d- 
f) show the corresponding relative spectral error. It can be seen that a 
large Tikhonov regularization term inhibited the effect of MB method on 
suppressing the spectral crosstalk. This similar effect was also mentioned 
in literature [26]. TV regularization is a common technique in medical 
imaging. In PA imaging, it is considered to be an effective method to 
suppress the sparse sampling artifacts. Here we tested its performance 
on spectral crosstalk caused by sparse sampling. Fig. 7(g) and (j) show 
the reconstruction results of the MB method and their corresponding 
relative spectral error, using a 128-channel ring array. Fig. 7(i) and (l) 
show the results after the sampling density was reduced by half. It can be 
seen that the degree of spectral crosstalk was increased. Fig. 7(h) and (k) 
are the result of adding the TV regularization term. The spectral cross-
talk was improved to some extent, but is still larger than the crosstalk in 
Fig. 7(j). 

3.2.2. Phantom experiment results 
The images at 740 nm illumination and their corresponding relative 

spectral error distributions are shown in Fig. 8(a, b) (BP) and Fig. 8(c, d) 
(MB). The Tikhonov and TV regularization were added in MB re-
constructions. Obviously, the artifacts in the images reconstructed with 
the MB algorithms were significantly less. The dark area in the disk 
target was significantly reduced. And the TV regularization also sup-
pressed the streak artifacts. As shown in Fig. 8(b, d), the degree of 
spectral crosstalk was significantly reduced with the MB algorithms. 

To verify the spectral crosstalk in the experiment, a series of “dif-
ferential images” at all the wavelengths were calculated. At each 
wavelength, the image with and without the surrounding contaminators 
were reconstructed. We subsequently subtracted the image with the 
contaminators from the those without the contaminators to obtain a 
“differential image”. The absolute value of the spectrum of each pixel in 
the differential image is termed the “crosstalk spectrum”. We further 
measured the PA spectrum of blue ink, termed here as the “contaminator 
spectrum”. As shown in Fig. 8(e), there is a high correlation between the 
crosstalk spectrum and the contaminator spectrum at the position 
labeled by the red star in Fig. 8(a). The PA spectra at the red star posi-
tions with BP and MB reconstructions were shown in Fig. 8(f), the 
spectra of the MB reconstruction were similar with and without the 
contaminators. For the BP reconstruction, there was a huge difference 
between the spectra with and without the contaminators. Here, the 
“crosstalk spectrum” in Fig. 8(e) was subtracted from the contaminator- 
free PA spectrum (subtraction means the artifacts were negative), 
leading to serious spectral crosstalk. 

It should be noted that the relative spectral error at the center of the 
largest disk was zero, which was due to the application of the mask (see 
Section 2.3). Even without the surrounding contaminators, the center of 
the largest disk had a negative value for both the BP and MB re-
constructions. This was caused by: 1. The frequency of the PA signal 
corresponding to the largest disk was outside the response range of the 
transducer and its interfacing electronics, so even if the EIR was cor-
rected, the signals could not be recovered completely; 2. Light intensity 
attenuated significantly towards the center of the disk. 

4. Discussion and conclusion 

In this paper, we introduced the concept of spectral crosstalk caused 
by imperfect acoustic inversion in multispectral PA imaging. The spec-
tral crosstalk phenomenon is independent of the spectral coloring effect 
in multispectral PA imaging, and is added upon spectral coloring to 
make spectroscopic analysis more challenging. The following simulation 
was designed to highlight how spectral crosstalk can affect real appli-
cations such as the estimation of saturation of oxygen (sO2). Similar to 
the phantom experiment, ten surrounding small disks were designed as 
the sources of spectral crosstalk, and the chromophore in these disks was 
oxyhemoglobin. In the middle region, there were three disks whose 
chromophore was deoxyhemoglobin. Fig. 9(a) shows the situation when 

the outer “contaminators” were removed (spectral crosstalk “off”) and 
Fig. 9(b) shows the situation when the outer “contaminators” were 
included (spectra crosstalk “on”). The simulation was carried out in 3D 
with the same parameters in Section 2.2.3. The thickness of all the disks 
was 1 mm.We then used BP and MB to reconstruct multispectral PA 
images. Here, the light fluence was independent of the wavelength and 
position (the spectral coloring effect was not considered). The recon-
structed multispectral PA data were linearly unmixed to solve the sO2 
values. To show the sO2 map, the positions with negative values or with 
no target were set to black. Fig. 9(c, d) show the estimated sO2 by BP and 
MB, respectively. Fig. 9(c) clearly shows that the sO2 values calculated 
based on the BP reconstruction were significantly higher at certain po-
sitions inside the middle disks (theoretically sO2 was zero because they 
were set to be purely deoxyhemoglobin, as shown in Fig. 9(b)). For MB, 
the calculated sO2 values were closer to the ground truth. The recon-
structed PA spectra at the red star position (position 1) in Fig. 9(c) were 
analyzed to prove that the inaccurate estimation was caused by the 
crosstalk components of the outer “contaminators”. As shown in Fig. 9(e, 
f), the blue and red lines represent the reconstructed PA spectra when 
the crosstalk was turned “off” and “on” respectively, and the yellow lines 
are the difference between them. All spectra were normalized. The 
“difference spectrum” is reminiscent of the spectrum of oxyhemoglobin 
(Fig. 9(g)). This experiment showed that spectral crosstalk can render 
sO2 estimation inaccurate even in the absence of spectral coloring. In our 
study, we established a mathematical model to analyze the mechanism 
of spectral crosstalk caused by various factors. Through simulation and 
phantom experiments, the spectral crosstalk in real PA imaging systems 
were demonstrated. Here, we assumed that the medium is acoustically 
uniform and lossless. Although not discussed, it is expected that spectral 
crosstalk can be induced by non-uniform sound speed and frequency- 
dependent acoustic attenuation. How these factors come into play is 
similar to the discussed aspects in terms of generating non-vanishing off- 
diagonal elements in the A matrix. The concept of relative spectral error 
was proposed as a new quantitative value to measure the quality of 
multispectral PA image reconstruction. This evaluation index can test 
the spectral crosstalk in reconstructed image for the linear algorithm. 
For nonlinear reconstruction methods or image enhancement methods 
(such as multiply DAS [54,55] or neural network post-processing 
methods [56]), the influence of nonlinear algorithms on the spectra 
can be tested at the same time. For the BP algorithm, there are some 
modified methods that can reduce the impact of one type of spectral 
crosstalk (caused by streak artifacts), but these methods have unavoid-
able tradeoff and should be used with care. For focused ring- and linear 
array systems, the high pass effect as a result of their limited angular 
acceptance can play a role: even if the probe has excellent low-frequency 
response, a large portion of the low-frequency features in the image will 
still be lost. At the same time, the contradiction between frequency 
response and spatial response makes it difficult to obtain the in-plane 
low-frequency signal alone. Therefore, the low frequency characteris-
tics in the plane are often subject to serious spectral crosstalk. 

To reduce the spectral crosstalk, the MB methods are in principle 
superior since they aim at optimizing matrix A towards an identity 
matrix. At the same time, some constraints can be easily added to reduce 
the morbidity of reconstruction. In this paper, we verified that these 
constraints can reduce the spectral crosstalk, and we also verified that 
adding nonlinear regularization terms can facilitate spectral recovery. 
However, model mismatch often exists to jeopardize their performance. 
Other reconstruction algorithms are not discussed and should be 
analyzed case by case since the performance of a certain reconstruction 
algorithm is determined by the entire imaging process (imaged objects 
and the detection scheme, etc.). 

In conclusion, we have analyzed in detail the cause of spectral 
crosstalk due to imperfect acoustic detection and inversion. The notion 
that the artifacts in the initial pressure images are independent of the 
spectroscopic measurement, and thus multispectral PA images are 
spectrally accurate despite being spatially distorted is wrong. Bad 
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acoustic inversion tends to cause coupling between close-by or remotely 
located pixels such that the spectra of bright image features will 
contaminate those of the dim ones. We have listed a number of factors 
that can cause dramatic difference in the signal strengths of recon-
structed features. When performing quantitative analysis such as sO2 
estimation, pixels with weak signals are more prone to spectral cross-
talk. An algorithm is in need to quantitatively evaluate the pixel-wise 
credibility of the experimentally measured PA spectrum in the future. 
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V. Ntziachristos, Multispectral opto-acoustic tomography of deep-seated 
fluorescent proteins in vivo, Nat. Photonics 3 (7) (2009) 412–417. 

[5] D. Razansky, A. Buehler, V. Ntziachristos, Volumetric real-time multispectral 
optoacoustic tomography of biomarkers, Nat. Protoc. 6 (8) (2011) 1121–1129. 

[6] L. Li, L. Zhu, C. Ma, L. Lin, J. Yao, L. Wang, K. Maslov, R. Zhang, W. Chen, J. Shi, L. 
V. Wang, Single-impulse panoramic photoacoustic computed tomography of small- 
animal whole-body dynamics at high spatiotemporal resolution, Nat. Biomed. Eng. 
1 (5) (2017). 

[7] J. Zalev, L.M. Richards, B.A. Clingman, J. Harris, E. Cantu, G.L.G. Menezes, 
C. Avila, A. Bertrand, X. Saenz, S. Miller, A.A. Oraevsky, M.C. Kolios, Opto-acoustic 
imaging of relative blood oxygen saturation and total hemoglobin for breast cancer 
diagnosis, J. Biomed. Opt. 24 (12) (2019) 1–16. 

[8] M. Li, Y. Tang, J. Yao, Photoacoustic tomography of blood oxygenation: a mini 
review, Photoacoustics 10 (2018) 65–73. 

[9] B. Cox, J.G. Laufer, S.R. Arridge, P.C. Beard, Quantitative spectroscopic 
photoacoustic imaging: a review, J. Biomed. Opt. 17 (6) (2012), 061202. 

[10] J. Buchmann, B. Kaplan, S. Powell, S. Prohaska, J. Laufer, Three-dimensional 
quantitative photoacoustic tomography using an adjoint radiance Monte Carlo 
model and gradient descent, J. Biomed. Opt. 24 (6) (2019) 1–13. 

[11] Two-dimensional quantitative photoacoustic image reconstruction of absorption 
distributions in scattering media by use of a simple iterative method, Appl. Opt., 45 
(8), 2006, pp. 1866–1875. 

[12] Quantitative photoacoustic tomography based on the radiative transfer equation, 
Opt. Lett., 34(12), 2009, pp. 1765–1767. 

[13] T. Kirchner, J. Grohl, L. Maier-Hein, Context encoding enables machine learning- 
based quantitative photoacoustics, J. Biomed. Opt. 23 (5) (2018) 1–9. 
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