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Abstract: In this study, a novel electrogenic bacterium denoted as strain NIT-T3 of the genus
Desulfuromonas was isolated from a graphene-oxide-reducing enrichment culture that was origi-
nally obtained from a mixture of seawater and coastal sand. Strain NIT-T3 utilized hydrogen and
various organic acids as electron donors and exhibited respiration using electrodes, ferric iron, nitrate,
and elemental sulfur. The strain contained C16:1ω7c, C16:0, and C15:0 as major fatty acids and
MK-8, 9, and 7 as the major respiratory quinones. Strain NIT-T3 contained four 16S rRNA genes
and showed 95.7% similarity to Desulfuromonas michiganensis BB1T, the closest relative. The genome
was 4.7 Mbp in size and encoded 76 putative c-type cytochromes, which included 6 unique c-type
cytochromes (<40% identity) compared to those in the database. Based on the physiological and
genetic uniqueness, and wide metabolic capability, strain NIT-T3 is proposed as a type strain of
‘Desulfuromonas versatilis’ sp. nov.

Keywords: Desulfuromonas; electrogenic bacteria; nitrate respiration; graphene oxide

1. Introduction

Anaerobic and extracellular electron-transferring (EET) bacteria are ubiquitously
involved in the redox flow via solid conductors. Geobacter and Shewanella have been exten-
sively studied for their functional roles in terrestrial and marine subsurface, whose anoxic
environments are deficient in soluble electron acceptors. The unique metabolism of such
bacteria has been applied in bioelectrochemical systems (BESs) to be used for wastewater
treatment [1], production of renewable energy and value-added products [2], and bioreme-
diation [3]. Both culture-dependent and -independent studies have revealed the presence
and functional role of electrogenic microbes other than Geobacter and Shewanella [4]. Vari-
ous factors, such as availability of the electron donor [5], the electric potential of a solid
conductor [6], and the origin, affect the microbial composition in the system. Additionally,
the surface chemistry of electrodes provides selective pressure during the early growth of
the biofilm [7].

The genus Desulfuromonas has received much attention as a common electrogenic
bacteria present in BESs [8–10]. Desulfuromonas species are found in natural environ-
ments, such as aquifers [11], sediment cores [12], and terrestrial mud volcanoes [13],
suggesting a wide distribution. The genus Desulfuromonas consists of anaerobic chemo-
heterotrophs and was first proposed after the isolation of an elemental sulfur-reducing
bacterium, Desulfuromonas acetoxidans DSM 684T, from anaerobic sulfide-containing marine
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mud [14]. At present, D. acetoxidans DSM 684T and seven other valid species have been pro-
posed. D. acetexigens 2873T [15], Desulfuromonas palmitatis SDBY1T [16], Desulfuromonas thio-
phila NZ27T [17], Desulfuromonas chloroethenica TT4BT [18], Desulfuromonas michiganensis
BB1T [19], Desulfuromonas svalbardensis 112T [20], and Desulfuromonas carbonis ICBMT [21]
have been isolated from anoxic freshwater sediments, marine sediment, freshwater mud,
freshwater sediment, pristine river sediment, Arctic marine sediments, and coal-bed water,
respectively. Recently, additional strains including Desulfuromonas sp. TF [22], Desul-
furomonas sp. AOP6 [23], Desulfuromonas sp. TZ1 [24], and ‘Desulfuromonas soudanensis’
WTL [25] have been isolated from tidal flat sediment, sub-seafloor sediment, marine sedi-
ments, and anoxic deep subsurface brine, respectively.

All valid species of Desulfuromonas grow anaerobically and reduce sulfur, and exhibit
iron respiration coupled with acetate oxidation; however, they are unable to respire using
soluble nitrogenous and sulfuric compounds. The respiration specific to solid minerals
and the presence of Desulfuromonas species in BESs suggest the substantial involvement
of Desulfuromonas in electrode-driven metabolism, although such activity has been rarely
proven in pure cultures. None of the valid species, except for two strains including
Desulfuromonas sp. TZ1 [24] and ‘D. soudanensis’ WTL [25], generate an electric current in
pure cultures, and both have been isolated from electrodes set up in environments, such as
marine sediment and Soudan mine, respectively. These results suggest that Desulfuromonas
species play substantial roles similar to those of two representative electrogenic genera,
Geobacter and Shewanella, in microbial elemental cycling on solid conductors, especially in
marine sediments.

Presently, the genomes of two strains, D. soudanensis WTL [25] and Desulfuromonas sp.
AOP6 [23], have been published, and the genome of another strain, DDH964, is unpub-
lished but uploaded on the National Center for Biotechnology Information (NCBI) database
under the accession number CPO15080. The genomes are 1.64–4.40 Mb in size, contain
37.9–65.9% of broad G + C content, and have 2181–3924 coding sequences (CDSs). All
three genomes encode a complete TCA cycle, a non-oxidative pentose phosphate path-
way, Embden-Meyerhof-Parnas glycolysis/gluconeogenesis, and abundant CDSs asso-
ciated with c-type cytochrome biosynthesis. The number of putative multiheme c-type
cytochromes ranges from 37–44, and the number is comparable to those in the genera
Geobacter and Shewanella. Additionally, genes involved in the biosynthesis of type IV pili,
known to be involved in the formation of conductive biofilm [26], are commonly present in
the three genomes.

In this study, a novel electrogenic bacterium of the genus Desulfuromonas, ‘Desul-
furomonas versatilis’ NIT-T3 was isolated from an enrichment culture of graphene oxide-
reducing bacteria (GORB) that were initially obtained from a mixture of seawater and
coastal sand [27]. GORB have been applied in the formation of hydrogel electrodes that
generate electricity using synthetic medium [28], soil [29], and wastewater [30–32]. Phys-
iological and genomic analysis of strain NIT-T3 revealed versatile metabolism, and the
findings expand the understanding of the metabolism in the genus Desulfuromonas and its
ecology in natural and artificial environments.

2. Materials and Methods
2.1. Isolation and Growth Conditions

Strain NIT-T3 was isolated from an enrichment culture of GORB (CS culture) that
was obtained from a mixture of seawater and coastal sand, as described previously [27].
A DS-basal medium used for the isolation and growth of the strain contains 20 g/L
NaCl, 0.3 g/L KCl, 0.5 g/L NH4Cl, 0.1 g/L CaCl2·2H2O, 4 g/L MgCl2·6H2O, 0.6 g/L
KH2PO4, 2.5 g/L NaHCO3, 1 mL/L SL-10, 1 mL/L Se/W solution, vitamin-solution, and
0.2 mg/L resazurin and the basal medium was prepared anaerobically under flashing
N2:CO2 (80:20, v/v) [28]. The strain NIT-T3 was isolated from an anaerobic DS-AQDS agar
plate which DS-basal medium supplemented with 10 mM acetate, 5.0 mM anthraquinone-
2,6-disulfonate (AQDS), 1 mM Na2SO4, and 1.5% agarose. After 7–14 d of incubation at
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28 ◦C, electrochemically active colonies showed orange halos, which was the color of the
reduced form of AQDS. The colony culture was then purified via repeated agar-shake
cultivation using DS-AF agar plate, DS-basal medium supplemented with 10 mM acetate,
0.1% yeast extract, 1.5 mM Na2S, 5.0 mM fumarate, and 1.5% agarose. The purified culture
was then phylogenetically identified based on the 16S rRNA gene sequence amplified from
the cell lysate [33] and named strain NIT-T3. Strain NIT-T3 was routinely cultured using
the liquid DS-AF medium. In total, 7–14 d of anaerobic cultivation at 28 ◦C was sufficient
to achieve full growth.

2.2. Morphological, Physiological, and Biochemical Analyses

The morphology of strain NIT-T3 was evaluated using field-emission scanning elec-
tron microscopy (JSM-7800F; JEOL Ltd., Tokyo, Japan) operating at 1.0 kV; spore-forming
ability and Gram staining nature were determined via optical microscopy, as described
previously [34]. Motility was determined using the hanging drop method [34]. The effect of
NaCl on cell activity was evaluated by monitoring growth in DS-AF medium supplemented
with 0–8.0% (w/v) NaCl. The effect of pH was also determined using a bicarbonate-free
medium adjusted to a pH ranging from 4.8 to 8.4 using sodium bicarbonate and by adjust-
ing the CO2 concentration in the headspace gas. Temperatures ranging from 4 ◦C to 40 ◦C
with approximate intervals of 5 ◦C were applied to determine the effect on cell growth.

Formate, acetate, butyrate, lactate, pyruvate, succinate, malate, isopropanol, glucose,
glycerol, isobutyrate, caproate, benzoate, phenol, methanol, ethanol, butanol, and fructose
at 10 mM, and 0.5 g/L peptone and yeast extract were tested as potential electron donors
during nitrate reduction. Potential electron acceptors were evaluated by observing growth
and detecting the oxidation of 5.0 mM acetate in the presence of 10 mM fumarate, 5 mM
nitrate, 10 mM sulfate, 10 mM thiosulfate, 5.0 mM AQDS, and 10 mM malate. Production
of electric current by the strain NIT-T3 was evaluated via electrochemical cultivation using
a graphite plate inoculated with NIT-T3, as described previously [35].

2.3. Chemotaxonomic Analysis

The cellular fatty acid composition and isoprenoid quinones present in NIT-T3 were in-
vestigated by Techno Suruga Laboratory Co., Ltd. (Shizuoka, Japan). Isoprenoid quinones
were extracted, as described by Tamaoka et al. [36]. Cellular fatty acids were analyzed
using cells cultured in liquid DS-AF medium at 28 ◦C for 14 d. The fatty acid profile was
analyzed using the Sherlock Microbial Identification System version 6.0 (MIDI) using the
TSBA6 database.

2.4. Genetic Characterization

Genomic DNA was extracted from strain NIT-T3, as described previously [37]. Se-
quencing was performed using a combination of the Illumina Miseq and Nanopore MinION.
In total, 1.8 M reads (1.02 Gbp) of Illumina paired-end reads (150 × 2) and 0.37 M Nanopore
reads (1.76 Gbp) were subjected to error removal using Short Read Manager and assembled
using Unicycler-0.4.7. The complete genome of NIT-T3 was successfully determined, and
gene prediction and genome annotation were performed using DFAST [38]. Comparison of
the genes between NIT-T3 and other Desulfuromonas species was based on bidirectional best
hits at 40% identity and 80% query coverage using SEED Viewer version 2.0 [39] and basic
local alignment search tool in the NCBI database. The sequence of the NIT-T3 genome was
deposited in the DNA Databank of Japan/GenBank under the accession number AP024355.

The 16S rRNA gene sequences from all publicly available Desulfuromonas, Desulfuro-
musa, Geobacter, Geopsychrobacter, and Pelobacter genomes were downloaded from NCBI.
A phylogenetic tree based on 16S rRNA gene sequences of NIT-T3 and other members
of the family Desulfuromonadaceae was generated using MEGA X based on the neighbor-
joining method [40].
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3. Results
3.1. Isolation of NIT-T3

Anaerobic cultivation of AQDS-supplemented agar plates inoculated with the TGOA
enrichment culture resulted in the formation of colonies that showed a change in color
from colorless to orange. This suggested the ability of the colony to reduce AQDS and
utilize it as an extracellular electron acceptor. A single colony was picked from the agar
culture, purified via repeated agar-shake cultivation, and then re-cultivated in liquid DS-SF
medium. Finally, based on the uniformity in microscopic morphology and 16S rRNA
gene sequences, a liquid culture was selected and further purified by repeating the agar
cultivation step. Cells of strain NIT-T3 were Gram-negative, non-spore-forming, rod-
shaped, and approximately 0.5 µm in width and 1.5 µm in length (Figure 1A).
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Figure 1. Morphology and electrogenic properties of strain NIT-T3. (A) Scanning electron microscopic image of strain
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(C) Electric current production by strain NIT-T3. The arrow in panel C indicates a spike of acetate addition.

The strain NIT-T3 produced an electric current on a graphite electrode in the presence
of acetate and simultaneously generated a thin biofilm on the electrode surface (Figure 1B).
The current in the electrochemical cultivation medium was rapidly generated and the max-
imum level was detected in the range of 0.18 to 0.19 mA/cm2 on days 6 and 7 (Figure 1C).
Electric current production decreased gradually with time; however, it increased immedi-
ately after adding acetate to the media. These results indicated that strain NIT-T3 grows by
coupling EET to electrode with acetate-oxidation.

3.2. Phylogenetic Identification Based on 16S rRNA Sequencing

Strain NIT-T3 was found to contain four 16S rRNA operons (rrn1-4); one of them
showed 95.5–95.8% similarity to the three Desulfuromonas strains. The copy number was
higher than that in Desulfuromonas strains containing two copies, and equal to that in
four Geobacter and two Pelobacter strains: G. bemidjiensis, G. bremensis, P. acetylenicus, and
P. propionicus. The 16S rRNA gene-based phylogenetic tree revealed that all four rrns
formed a cluster with sequences of five strains of the genus Desulfuromonas of the family
Desulfuromonadaceae (Figure 2).

Strain NIT-T3 showed only 95.7% closest similarity based on 16S rRNA gene sequences
to that of D. michiganensis BB1T. Similarities with seven other species of the genus Desul-
furomonas ranged from 92.9% to 95.4%. The 16S rRNA gene sequence similarity of strain
NIT-T3 to members of the genera Pelobacter, Desulfuromusa, and Geobacter were 89.7–94.9%,
90.7–90.9%, and 90.6–91.6%, respectively. According to the cut-off values of 98.2–99.0% [41],
and 98.65% similarity among single species [42], the strain NIT-T3 may be proposed as a
strain of a novel species of the genus Desulfuromonas.
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Strain NIT-T3 grew at 10–35 ◦C (optimum, 25 ◦C), pH 6.4–8.4 (optimum pH 6.8–7.1),
and tolerated 0.05–3% NaCl (optimum, 0.2–1%) (Table 1). Growth was completely inhibited
at concentrations of ≥3% NaCl. Strain NIT-T3 could metabolize hydrogen, formate, acetate,
lactate, pyruvate, succinate, malate, peptone, isopropanol, and yeast extract in the presence
of nitrate (Table 1). Lactate, pyruvate, succinate, and the combination of H2 and acetate
resulted in optimal growth together with nitrate. No growth occurred in the presence of
butyrate, glucose, glycerol, ethanol, isobutyrate, caproate, benzoate, phenol, methanol,
butanol, or fructose. Cells did not show any apparent movement on a slide, suggesting
that the strain NIT-T3 was non-motile.
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Table 1. Characteristics of strain NIT-T3 and other Desulfuromonas strains.

Characteristic 1 2 3 4 5 6 7 8 9 10

Motility NM ND NM Motile Motile NM Motile NM Motile Motile
G + C content (%) 63.1 61.2 61.2 50.1 ND ND 61.6 54.7 62.3 62.3
Temp. range (◦C)
(Optimum) 10–35 (25) 24 10–37

(25–37)
2–20
(14)

10–35
(25) 21–31 10–39

(26–30) 40 (30–35) (30–35)

pH range (Optimum) 6.4–8.4
(6.8–7.1) * 6.8 6.5–8.0

(7.0)
6.5–7.5

(7.3)
6.8–8.0

(7.0–7.5)
6.5–7.4

(7.4)
6.5–8.2

(6.9–7.9) ND 6.4–8.5
(7.6–7.8)

6.4–8.5
(7.6–7.8)

Electron donors
Hydrogen + + (+) - - - - (+) - -

Lactate + + + - + - - + - -
Fumarate + - + - + - + + - -
Succinate + - + - + - + + - -

Malate + ND + - + - - ND - -
Acetate + + + + + + + + + +

Pyruvate + + + + + + + - ND -
Glucose - - - - - ND - - - -
Butyrate - - - - - ND - - - -
Glycerol - - ND - - ND - ND - -
Peptone + ND ND ND ND ND - ND ND -

Isopropanol + ND ND ND ND ND ND ND ND ND
Ethanol - + ND + - - - - - +

Benzoate - - - ND ND - - - - -
Methanol - - ND ND - ND - - - -

Phenol - ND - ND ND ND ND - ND ND
Fructose - ND - - - ND - - - -

Isobutyrate - ND ND ND ND ND ND ND ND ND
Caproate - ND ND ND ND ND - ND - ND
Butanol - ND ND + ND ND - ND - +

Fermentation of Fumarate ND Fumarate ND Fumarate
malate None ND ND ND ND

Electron acceptors
Nitrate + ND - - - - - - - -
Sulfur + ND + + + ND + + + +
Sulfate - ND - - - - - - - -

Thiosulfate - ND - - - - - - - -
Ferric iron (Fe(III)) + ND + + + + (+) + ND ND

Malate + ND - - + - - - + +
Fumarate ND ND - + + + - + + +

AQDS + ND - ND ND ND ND ND ND ND
GO + ND ND ND ND ND ND ND ND ND
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Table 1. Cont.

Characteristic 1 2 3 4 5 6 7 8 9 10

Major fatty acids (>10%)
C16: 1ω7c (26.2%)

C16: 0 (18.3%)
C15: 0 (13.2)

ND

C16: 0 (39.3%)
C16:1ω7c and/or
iso-C15:0 2-OH

(36.6%)

C16: 0 (43%)
C16:1ω7c (35%)

C15: 0 (10%)
ND ND ND ND ND ND

Major respiratory
quinones

MK-8 (93%)
MK-9 (5.3%)
MK-7 (1.9%)

ND ND ND ND ND ND ND ND ND

Strains: 1, NIT-T3 (this study); 2, Desulfuromonas soudanensis WTLT [21]; 3, Desulfuromonas carbonis ICBMT [18]; 4, Desulfuromonas svalbardensis 112T [17]; 5, Desulfuromonas michiganensis BB1T [16]; 6, Desulfuromonas
chloroethenica TT4BT [15]; 7, Desulfuromonas thiophila NZ27T [14]; 8, Desulfuromonas palmitatis SDBY1T [13]; 9, Desulfuromonas acetexigens 2873T [12]; 10, Desulfuromonas acetoxidans DSM 684T [11]. The data for NIT-T3 was

obtained in this study and others are brought from references [14–21].
+, good growth; (+), hydrogen was oxidized but no growth; -, no growth; [motile], only a small population was motile; ND, not determined; NM, not motile; temp., temperature; AQDS, Anthraquinone-2,6-disulfonate;

GO, graphene oxide.

* Tested with acetate and fumarate as the substrates.
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3.3. Physiological and Biochemical Characterization

Similar to most Desulfuromonas species, strain NIT-T3 showed respiration using sulfur
and ferric iron coupled with acetate oxidation. Contrary to the lack of nitrate respiration in
other Desulfuromonas members, strain NIT-T3 exhibited nitrate respiration (Figure 3). The
cell density increased from 5.7 × 107 to 2.4 × 108 cells/mL with a reduction of 5.1 mM of
nitrate within 7 d of incubation. Meanwhile, a maximum concentration of 1.7 mM of nitrite
was produced in the medium. The NIT-T3 did not grow in the culture supplemented with
nitrite. These results indicated the ability of strain NIT-T3 to grow on nitrate, while reducing
nitrate to nitrite. The imbalance of the spiked nitrate and produced nitrite suggested the
assimilative utilization of nitrite as nitrogen source.
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3.4. Chemotaxonomic Characterization

The major fatty acids identified in strain NIT-T3 were C16:1ω7c (26%), C16:0 (18%),
and C15:0 (13%) (Table 1). The fatty acid profile of Desulfuromonas species is available for
only two strains, D. svalbardensis 112T [20] and D. carbonis ICBMT [21]; these two strains
contain the three major fatty acids found in strain NIT-T3. However, the proportions differ
among the three strains. The most abundant fatty acid is C16:0 (approximately 40%) in
strains 112T and ICBMT, and C15:0 in ICBMT is detected in minor amounts (0.1%). The
presence of C16:1ω7c and C16:0 as main cellular fatty acids was common in most members
of Geobacter [43–47] rather than in only Desulfuromonas.

The major respiratory quinones in NIT-T3 were identified as MK-8 (93%), and other
menaquinones including MK-7 (1.9%) and MK-9 (5.3%) were detected. This result is
consistent with the fact that MK-8 is a typical respiratory quinone present in the genus
Geobacter [43,44,47,48], although the menaquinone profile data of other species of the genus
Desulfuromonas are not available.

3.5. General Genomic Features

NIT-T3 contained a single 4,656,376 bp circular chromosome that encodes 4119 protein-
coding sequences (CDS), 60 transfer RNAs, 1 transfer-messenger RNA, and 10 rRNAs.
The G + C content in strain NIT-T3 was approximately 63.1%, which is similar to that of
D. acetexigens 2873T and D. acetoxidans (Table 1). The genome map is shown in Figure 4.
Regarding energy conversion, NIT-T3 had CDSs to metabolize hydrogen, lactate, pyruvate,
and other organic acids of the TCA cycle intermediates (fumarate, succinate, malate), and
complete TCA cycle. NIT-T3 also contained a full set of genes associated with glycolysis
similar to the other two strains; however, the bacteria cannot utilize glucose due to the lack
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of glucose transporters [25]. A gene encoding nitrate reductase (NarB) was found which
oxidizes quinol and reduces nitrate to nitrite. The reductive acetyl-CoA pathway and
reductive TCA cycle lacked certain genes, suggesting an inability of the strain to fix carbon.
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generated using TBtools v.1.082 [49]. Rings numbered from the outside to inside are: 1, location of tRNA (red), transfer
messenger RNA (blue), and rRNA (green); 2, gene density; 3, c-type cytochromes (blue), and type IV pili (orange); 4, protein
coding sequences colored based on KEGG category; 5, putative sensor histidine kinases (red) and response regulators
(black); 6, G + C skew (red, positive; green, negative) approximated using GenSkew (http://genskew.csb.univie.ac.at);
7, transposase (red) and phage integrase (black); 8, G + C content; 9, genes unique to NIT-T3 (orange, annotated; blue,
unannotated) compared to other Desulfuromonas spp; 10, links showing repetitive sequence ≥ 95% identity (cyan, > 500 bp;
purple, >2 kbp). KEGG, Kyoto Encyclopedia of Genes and Genomes.

3.6. Putative c-Type Cytochromes

NIT-T3 possessed 79 putative c-type cytochromes. The CDSs with C(X)nCH, n = 2–4,
were first screened and then identified as c-type cytochromes either based on the presence
of a conserved domain of c-type cytochromes in the pfam and TIGR databases (e-value
= <0.01 cutoff) or showing an e-value < 10−10 in the pairwise alignment with c-type
cytochromes of strain PCA. Among them, 61 were homologs of c-type cytochromes in
Desulfuromonas strains (Figure 5, ≥40% amino acid identity (AAI) in the 759–92 AAs of
the HIPER scoring region) and 38 were homologs of those in Geobacter sulfurreducens PCA,
a well-characterized model of iron-reducing bacterium. NIT-T3 contained a relatively
larger number of c-type cytochromes than other Desulfuromonas strains in the range from
37 to 44. Based on PROSITE prediction [50], most of the c-type cytochromes were present

http://genskew.csb.univie.ac.at
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in the periplasmic (28), extracellular (7), and cytoplasmic membranes (6), whereas a few
cytochromes were present in the cytoplasm (3). The number of heme-binding motifs varied,
and ranged from 1 to 53.
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40720 4 0   PP NrfA, 3154 - 1033 150 TRO77878 Des Desl acetoxidans
41160 2 0 - 3332 13 12 3572 PLX84049 Des Desl -
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Number of
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Figure 5. List of putative c-type cytochrome C proteins present in the NIT-T3 genome. Tag indicates
the locus tag of the coding sequence encoding c-type cytochromes in the genome. CM, cytoplasmic
membrane; PP, periplasm; EX, extracellular; (-), unknown. The number and color scale for the
closest protein in the strain indicates the locus tag and amino acid identity (%), respectively. Geo,
Geobacteraceae; Geoa, Geoalkalibacter; Geob, Geobacter; Geop; Geopsychrobacter; Geot, Geothermobacter;
Syn, Syntrophotaleaceae; Synt, Syntrophotalea; Des, Desulfuromonadaceae; Desl, Desulfuromonas.

The c-type cytochromes were highly variable showing approximately ~77.76% sim-
ilarity to those of Desulfuromonas strains. The phylogeny matched within families of
Geobacteraceae and Desulfuromonadaceae, and few were related to cytochromes found only
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in metagenomes. Among them, six c-type cytochromes were unique and shared <40%
AAI with those in the database; four independent genes (DESUT3_0860, 20270, 29420,
DESUT3_29000), and two (DESUT3_10660, 38460) were present in gene clusters of putative
cytochromes (Figure 6).
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3.7. Homologs of c-Type Cytochromes to Those in G. sulfurreducens PCA

Twenty-four c-type cytochromes were homologs of those functionally identified
in G. sulfurreducens PCA. DESUT3_09000, 18560, and 27920 are homologous to PpcD,
DESUT3_10670 and 38450 are homologous to OmcB, and DESUT3_40090 and 40040 are ho-
mologous to ImcH and CbcL present in G. sulfurreducens, respectively. These cytochromes
are involved in the porin-cytochrome (Pcc) EET pathways that mediate electron trans-
fer across the cell envelope [51]. In the Pcc pathways, ImcH and CbcL represent inner
membrane cytochromes that oxidize quinol in the cytoplasmic membrane and transfer
the released electrons to the periplasmic PpcA/PpcD [52,53]; PpcA/PpcD transfers the
electrons acquired from the cytoplasm to the OmcB-based (ombB-omaB-omcB) conduit in
the outer membrane [54]. The OmcB-based conduit transfers electrons through the lipid
bilayer of proteoliposomes and directly reduces Fe(III) hydroxides outside the proteolipo-
somes [55,56].

DESUT3_29940, 36260, 05490, 10630, and 31560 are homologs of ExtA, ExtC, ExtG, ExtT,
and ExtK of G. sulfurreducens, respectively. They belong to the outer membrane electron
conduit ext gene clusters, which transfer electrons across the outer membrane to the bacte-
rial surface [57]. DESUT3_31530 and 31540 are homologs of CbcM, and DESUT3_37260,
31490, 40060, and 12140 are homologs of CbcA, CbcR, CbcS, and CbcX of G. sulfurreducens,
respectively. These Cbc-proteins and CbcL constitute the menaquinol oxidoreductase
protein complexes, which combine electron transfer processes to form a proton gradient
across the inner membrane via either a Q loop or a Q cycle [58,59].

DESUT3_40120 is a homolog of the inner-membrane-associated diheme cytochrome
MacA of G. sulfurreducens, which is described as a peroxidase that can also mediate the
electron transfer between inner membrane components and multiheme periplasmic cy-
tochromes [60]. DESUT3_20370, 37510, and 29950 are homologs of the outer membrane
cytochrome OmcI, OmcV, and OmcX of G. sulfurreducens, respectively. These Omc-proteins
help transfer the electrons extracellularly, are required for Fe (III) reduction [61,62], and
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are significantly upregulated by Fe(III) oxides/Mn(IV) oxides/granular activated car-
bon [61,63]. DESUT3_40720 is a homolog of NrfA, which functions as a nitrite reduc-
tase component in a putative NrfH/NrfA nitrite-to-ammonia respiration pathway [25].
DESUT3_31280 is a homolog of CoxB encoding a cytochrome c oxidase subunit II, which is
involved in the oxidative phosphorylation pathway.

3.8. Type IV Pilus (T4P)-Related Genes

The strain NIT-T3 was found to contain 16 CDSs encoding T4P (Figure 7) and 3 related
genes including transcription regulators. T4P are filamentous polymers of pilin monomers
that undergo dynamic rapid polymerization and depolymerization from a pool of pilin [64].
The pilus polymer of pilin protein PilA of G. sulfurreducens PCA is an electrically conductive
pilus and is known to be involved in the EET of solid electron acceptors [65]. Aromatic
acids are key elements associated with conductivity and are estimated to account for 9.83%
of the content in the PilA of strain PCA [66]. The aromatic acid content in the PilA homolog
in NIT-T3 was 14.2%, which was relatively high based on the range of PilA aromatic
acid content in phylogenetically diverse bacteria (5.5–25.25%) [67]; this suggested that
the polymer may be conductive. The NIT-T3 genome was found to contain a full set of
genes encoding T4P: two major pilins PilA and PilE, four minor pilins PilE, PilY, PilV, and
PilW, and other essential proteins for the secretin (PilQ), alignment (PilM, PilN, PilO, and
PilP), platform (PilC), four retraction ATPases (PilT), and assembly ATPases (PilB). Most
CDSs are well-conserved in the genus Desulfuromonas, except for CDSs of four minor pilins
closely related to the genera Syntrophotalea (PilE, PilV, and PilW) and Geobacter (PilY).
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17090 type IV pilin PilY 11.7 GSU1066 DBW_1432 AOP06_2015 DSOUD2166 GPICK_05505 Geo Geob pickeringii

17180 type IV pilin PilV 5.81 - - - - Pcar_2158 Syn Synt  carbinolica

17190 type IV pilin PilW 8.12 - DBW_3171 AOP06_2014 - Pcar_2157 Syn Synt  carbinolica

17220 type IV pilin PilE 8.66 - - AOP06_0499 DSOUD2405 Pcar_2154 Syn Synt  carbinolica

17280 type IV pilus assembly ATPase PilB GSU1491 DBW_1442 AOP06_2007 DSOUD2162 DSOUD2162 Des Desl soudanensis

17290 type IV twitching motility protein PilT GSU1492 DBW_1443 AOP06_2006 DSOUD2161 DBW_1443 Des Desl -
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17510 type IV pilus assembly protein PilP GSU2029 DBW_1458 AOP06_1985 DSOUD2148 DSOUD2148 Des Desl -

17520 type IV pilus modification protein PilQ GSU2029 DBW_1458 AOP06_1985 DSOUD2148 AOP06_1985 Des Desl -

32370 type IV twitching motility protein PilT GSU0146 DBW_0920 AOP06_0579 DSOUD0931 WP_092054494.1 Des Desl acetexigens

32890 type IV twitching motility protein PilT GSU0230 DBW_0856 AOP06_0536 DSOUD0328 WP_072909266.1 Des Mal rubra

37530 type IV twitching motility protein PilT GSU0146 DBW_0920 AOP06_0579 DSOUD0931 WP_092055312.1 Des Desl acetexigens

Tag
Closest protein

Protein tag 
16SrRNA-gene phylogenyAnotation

Closest protein in strainsaromatic
acid
Mole%

Identity (%): 20-30 30-40 41-50 51-60 61-70 71-80 81-90 91-100

Figure 7. List of T4P assembly-related genes in the NIT-T3 genome Tag indicates the locus tag of coding sequences encoding
T4P-related proteins in the genome. The number and color scale for the closest protein in the strain indicates the locus tag
and amino acid identity (%), respectively. T4P, Type IV pilli; Geo, Geobacteraceae; Geob, Geobacter; Syn, Syntrophotaleaceae;
Synt, Syntrophotalea; Des, Desulfuromonadaceae; Desl, Desulfuromonas; Mal, Malonomonas.

4. Discussion

The isolation of a novel electrogenic strain NIT-T3 of the genus Desulfuromonas and its
respiration-ability specific to solid minerals suggests the adaptation of the genus to solid
minerals or conductor-driven metabolism [8–13]. The ability to grow on solid minerals and
electrodes is supported by the presence of seven extracellular c-type cytochromes (Figure 5),
and conductive pilin (PilA)-homologs and full sets of T4P-assembly genes in the genome
(Figure 6). These CDSs are phylogenetically cross-related in the order Desulfuromonadales
beyond family, and show higher identities with CDSs of the genera Desulfuromonas and Mal-
onomonas of the family Desulfuromonadaceae; Geobacter, Geoalkalibacter, and Geopsychrobacter
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of the family Geobacteraceae, and Syntrophotalea of family Syntrophotaleaceae. The fact that all
members in these genera are capable of reducing solid minerals, and that the EET-related
genes are closely related suggests the early divergence of EET during the evolution of
bacteria in the order Desulfuromonadales. The strain NIT-T3 required NaCl and showed
growth in the presence of 0.05–3.0% NaCl; the preference for NaCl was in agreement
with the salt tolerance observed in the genus Desulfuromonas (0–3.0%) [17,19,21]. This
supports the fact that Desulfuromonas species have widely adapted to both marine and
freshwater environments.

The c-type cytochromes were hypervariable and abundant (n = 79), whereas other
Desulfuromonas strains are reported to contain 37–44 c-type cytochromes according to the
given annotation. The difference in the number was probably due to the difference in
annotation strategies. A CDS for c-type cytochrome (DESUT3_5430) had 53 heme-binding
sites which was the maximum number, and showed 54% of the closest identity to that of
Geoalkalibacter subterraneus (B_0221) and 49% and 41% with that of contigs of D. acetexigens
and M. rubra, respectively. The number of heme-binding sites in these homologs ranged
from 55 to 77, indicating the broad distribution of the c-type cytochrome with such a large
number of heme-binding sites in the order Desulfuromonadales.

Among the unique c-type cytochromes, two cytochromes (DESUT3_10660 and
DESUT3_38460) were present in gene clusters including multiple c-type cytochromes
(Figure 7). The gene cluster harboring DESUT3_10660 contains ten non-cytoplasmic c-type
cytochromes with domains for cytochrome_C3 (cl23752), decahem_SO (cl37283), and deca-
hem_SO1788 (cl28266). Three homologs of c-type cytochromes are found in strain PCA:
DESUT3_10630 sharing 49% identity with ExtT which is a subunit of ExtTUVW conduit,
and DESUT3_10680 and DESUT3_10710 with both sharing 43% identity with CtcA and
tetra/tri-heme c-type cytochromes, respectively. DESUT3_38460 was located in a gene
cluster including five CDSs of c-type cytochromes: three CDSs (DESUT3_38420, 38440, and
38450) shared 41–69% similarity with the c-type cytochrome of Desulfuromonas strains, and
DESUT3_38430 showed 53% similarity with a hypothetical protein of Desulfuromusa kysingii.
Among them, only one CDS (DESUT3_38450) was the homolog of the functionally iden-
tified c-type cytochrome known as omcB, a subunit of the OmaB/OmbB/OmcB conduit.
The function of these gene clusters is unknown; however, it is speculated that they are
essential for the unique adaptation of the strain for facilitating EET.

Strain NIT-T3 could metabolize nitrate which is not observed in other strains in the
genus Desulfuromonas. The strain NIT-T3 produced nitrite; however, its production was
approximately one-third of the amount of nitrate supplemented (Figure 3). The difference
in the concentrations of produced nitrite and supplemented nitrate may be attributed to
the assimilation of ammonia produced from nitrite. Analysis of the genome of NIT-T3
indicated the possibility of nitrite-to-ammonia transformation. Similar to NIT-T3, the
complete genomes of all four Desulfuromonas strains contain CDSs for the nitrogen fixation
pathway, including nitrite-to-ammonia reduction. However, genes encoding transporters
for the uptake of extracellular nitrate were present in NIT-T3 alone (Figure 8A). This is
consistent with the fact that NIT-T3 alone, and not the other Desulfuromonas strains, could
reduce nitrate.

The NIT-T3 genome was found to contain several unique CDSs that encode complete
metabolic pathways which are absent in the other three Desulfuromonas genomes: histidine
degradation to glutamate (Figure 8B), and C1-unit interconversion (Figure 8C). This sug-
gested a variable metabolism in members of the genus Desulfuromonas associated with the
transient reduction and uptake of genes in the genome.

In addition to the unique genes mentioned above, NIT-T3 possesses 46 other CDSs in
the genome with no confirmed homologs (<40%) in other species of the Desulfuromonas
strains; 29 of these sequences encode proteins with predicted functional annotation (Table S1).
The unique proteins include a putative autoinducer-2 (AI-2) transporter family protein
(DESUT3_07100), which has been reported to regulate the intracellular concentration of
AI-2, a quorum-sensing chemical that affects global gene expression in biofilms [68,69] and
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shares a higher identity with proteins of Geobacter species than those of Desulfuromonas.
The NIT-T3 genome includes another candidate for the AI-2 transporter family protein
(DESUT3_31000) that was similar to that in all three genomes of the genus Desulfuromonas,
but not to that of Geobacter species (63–70% identity). These two paralogs of AI-2 trans-
porters with different phylogenies may potentially control biofilm growth. DESUT3_07210
encodes RNA molecules of a labile antitoxin, HicB, that regulates the expression of a toxin
protein, HicA. Both proteins are involved in bacterial survival under stress conditions, such
as nutrient deprivation and antibiotics [68,69]. An additional set of CDSs for HicAB was
present in the genome; however, its role in Desulfuromonadales has never been investigated.
Several metabolic genes (DESUT3_29720, 35500, 33690, and 37760) were also found to be
unique to the NIT-T3 genome; however, these genes are disconnected from other functional
genes and do not complete a series of metabolic processes.

Microorganisms 2021, 9, x FOR PEER REVIEW 14 of 18 
 

 

degradation to glutamate (Figure 8B), and C1-unit interconversion (Figure 8C). This sug-
gested a variable metabolism in members of the genus Desulfuromonas associated with the 
transient reduction and uptake of genes in the genome. 

 
Figure 8. The complete metabolic pathway of strain NIT-T3 distinct from that of the complete genomes of three Desulfu-
romonas strains. Metabolic pathways of (A) nitrate reduction, (B) histidine degradation, and (C) C1-unit interconversion. 

In addition to the unique genes mentioned above, NIT-T3 possesses 46 other CDSs 
in the genome with no confirmed homologs (<40%) in other species of the Desulfuromonas 
strains; 29 of these sequences encode proteins with predicted functional annotation (Table 
S1). The unique proteins include a putative autoinducer-2 (AI-2) transporter family pro-
tein (DESUT3_07100), which has been reported to regulate the intracellular concentration 
of AI-2, a quorum-sensing chemical that affects global gene expression in biofilms [68] 
and shares a higher identity with proteins of Geobacter species than those of Desulfuromo-
nas. The NIT-T3 genome includes another candidate for the AI-2 transporter family pro-
tein (DESUT3_31000) that was similar to that in all three genomes of the genus Desulfu-
romonas, but not to that of Geobacter species (63–70% identity). These two paralogs of AI-2 
transporters with different phylogenies may potentially control biofilm growth. 
DESUT3_07210 encodes RNA molecules of a labile antitoxin, HicB, that regulates the ex-
pression of a toxin protein, HicA. Both proteins are involved in bacterial survival under 
stress conditions, such as nutrient deprivation and antibiotics [68]. An additional set of 
CDSs for HicAB was present in the genome; however, its role in Desulfuromonadales has 
never been investigated. Several metabolic genes (DESUT3_29720, 35500, 33690, and 
37760) were also found to be unique to the NIT-T3 genome; however, these genes are dis-
connected from other functional genes and do not complete a series of metabolic pro-
cesses. 

  

Figure 8. The complete metabolic pathway of strain NIT-T3 distinct from that of the complete genomes of three Desul-
furomonas strains. Metabolic pathways of (A) nitrate reduction, (B) histidine degradation, and (C) C1-unit interconversion.

5. Conclusions

The isolation and polyphasic characterization of the novel strain NIT-T3 revealed an
increase in the metabolic capability of the genus Desulfuromonas. In total, 79 of the large
number of c-type cytochromes suggested their substantial role as representative electro-
genic bacteria in natural and synthetic environments. The interswitching phylogeny of
EET-related genes in members of the order Desulfuromonadales beyond the family suggested
the early divergence and the substantial roles of the order Desulfuromonadales rather than
the specific genus like Geobacter in EETs in various environments. Strain NIT-T3 is proposed
as a new species of the genus Desulfuromonas according to the phenotype and phylotype
and the description is provided as follows:
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Description of Desulfuromonas versatilis sp. Nov.

Desulfuromonas versatilis (ver.sa’ti.lis L. masc./fem. Adj. versatilis, versatile with
respect to the capability to use a variety of electron donors and acceptors).

Cells are Gram-negative, non-spore-forming, rod-shaped, non-motile, and strictly
anaerobic. Optimal growth was observed at 25 ◦C, pH 6.8–7.1, and NaCl concentration
ranging from 0.2% to 1%. The substrates used for nitrate reduction included hydrogen,
formate, acetate, lactate, pyruvate, succinate, malate, isopropanol, peptone, and yeast
extract. Elemental sulfur, iron oxide, fumarate, nitrate, AQDS, malate, graphite electrode,
and GO served as terminal electron acceptors coupled to acetate oxidation. The major
cellular fatty acids present were C16:1ω7c and C16:0, and the major respiratory quinone in
the cell wall of NIT-T3 was MK-8. The type strain, NIT-T3T was isolated from a mixture of
seawater and coastal sand. The genomic G + C content in the type strain was 63.1%.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/microorganisms9091953/s1, Table S1: Genes uniquely present in strain T3 compared with
other species of the genus Desulfuromonas.
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