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Purpose: To develop an automated machine-learning-based method for the dis-
covery of rapid and quantitative chemical exchange saturation transfer (CEST) 
MR fingerprinting acquisition and reconstruction protocols.
Methods: An MR physics-governed AI system was trained to generate optimized 
acquisition schedules and the corresponding quantitative reconstruction neu-
ral network. The system (termed AutoCEST) is composed of a CEST saturation 
block, a spin dynamics module, and a deep reconstruction network, all differenti-
able and jointly connected. The method was validated using a variety of chemical 
exchange phantoms and in vivo mouse brains at 9.4T.
Results: The acquisition times for AutoCEST optimized schedules ranged from 
35 to 71 s, with a quantitative image reconstruction time of only 29 ms. The re-
sulting exchangeable proton concentration maps for the phantoms were in good 
agreement with the known solute concentrations for AutoCEST sequences 
(mean absolute error = 2.42 mM; Pearson’s r = 0.992, p < 0.0001), but not for an 
unoptimized sequence (mean absolute error = 65.19 mM; Pearson’s r = − 0.161,  
p = 0.522). Similarly, improved exchange rate agreement was observed between 
AutoCEST and quantification of exchange using saturation power (QUESP) 
methods (mean absolute error: 35.8 Hz, Pearson’s r = 0.971, p < 0.0001) com-
pared to an unoptimized schedule and QUESP (mean absolute error = 58.2 Hz; 
Pearson’s r = 0.959, p < 0.0001). The AutoCEST in vivo mouse brain semi-solid 
proton volume fractions were lower in the cortex (12.77% ± 0.75%) compared to 
the white matter (19.80% ± 0.50%), as expected.
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1   |   INTRODUCTION

Chemical exchange saturation transfer (CEST) is an in-
creasingly explored molecular imaging technique which 
allows for the detection of signals associated with milli-
molar concentrations of proteins, metabolites, and vari-
ous molecular compounds.1,2 It uses frequency selective 
radiofrequency (RF) pulses to saturate the magnetization 
of exchangeable protons on proteins, lipids, and other bio-
logically interesting compounds that later undergo chem-
ical exchange with the bulk water protons, thus altering 
the MR-detectable signal.3

The potential benefit of using the CEST contrast mech-
anism was demonstrated in a variety of clinical applica-
tions, including cancer detection and grading,4 stroke 
characterization,5 characterization of neurodegenerative 
disorders,6 kidney disease monitoring,7,8 cartilage and in-
tervertebral disc imaging,9,10 cell tracking,11–13 and cardiac 
disease assessment.14

The most common analysis method for CEST-weighted 
imaging is the magnetization transfer ratio asymmetry 
(MTRasym). Although it is straightforward to calculate and 
was found useful in many reports, this metric is affected 
by a mixed contribution from several exchange and relax-
ation properties, such as the relayed aliphatic nuclear 
Overhauser enhancement (rNOE) and the water T1 relax-
ation time, that may bias the interpretation of the obtained 
contrast.15 Moreover, the MTRasym is strongly affected by 
the saturation pulse parameters used, challenging the 
comparison of findings obtained using different protocols, 
and requiring a rigorous optimization of the acquisition 
parameters.16

A quantitative CEST technique would clearly be bene-
ficial for overcoming the abovementioned challenges. The 
exchange parameters (proton volume fraction and chemi-
cal exchange rate) can be quantified by acquiring multiple 
Z-spectra with different saturation pulse durations and/
or powers, followed by analysis using methods such as 
quantification of exchange using saturation power/time 
(QUESP/QUEST),17 Omega-plot,18,19 or a full fitting of the 
Bloch–McConnell equations.20 However, the long acqui-
sition times and the complexity of the in vivo multipool 

environment render this approach suboptimal for rou-
tine clinical use. CEST MR-fingerprinting (MRF21) is a 
recently suggested promising alternative.22–24 In the MR 
fingerprinting approach, a pseudo random and fast CEST 
acquisition schedule is used to obtain different “signal-
signatures,” representing different combinations of solute 
concentration and chemical exchange rate. The acquired 
experimental signals are then compared to a simulated 
signal dictionary, allowing the generation of quantitative 
CEST parameter maps. However, the CEST-MRF per-
formance, and ability to discriminate different exchange 
rates and proton volume fractions, is critically depen-
dent on the acquisition parameter schedule used.25 This 
mandates a careful optimization of the imaging protocol, 
which is very challenging for CEST/MT imaging given the 
large number of exchangeable proton pools involved.

The purpose of this work is to develop and validate a 
novel paradigm for conducting and analyzing CEST ex-
periments. We hypothesized that an MR physics governed 
AI system, termed here as AutoCEST, can be designed 
and trained to simultaneously generate an optimized 
and fast CEST acquisition schedule and at the same 
time provide the means for reconstructing quantitative 
exchange-parameter maps, for any given and broadly 
defined multi-pool CEST/MT scenario. To demonstrate 
the efficiency and robustness of the method, a validation 
study using a variety of different CEST phantoms was per-
formed, followed by an in vivo mouse imaging experiment.

2   |   METHODS

2.1  |  AutoCEST architecture and 
realization

An overview of the AutoCEST approach is described in 
Figure 1A. For each chemical exchange scenario of inter-
est (e.g., amide, amine, creatine, magnetization transfer 
(MT), etc.), the system gets as input a general description 
of the expected range of parameter values and simulates 
the expected MR signals from a random CEST acquisition 
protocol. The system then performs automatic optimiza-
tion, which ultimately outputs a refined set of acquisition 

Conclusion: AutoCEST can automatically generate optimized CEST/MT acqui-
sition protocols that can be rapidly reconstructed into quantitative exchange pa-
rameter maps.

K E Y W O R D S

chemical exchange saturation transfer (CEST), deep learning, magnetic resonance 
fingerprinting (MRF), magnetization transfer (MT), optimization, quantitative imaging
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protocol parameters (Figure 1B,C orange rectangles) as 
well as optimized neural network weights (Figure 1D, 
orange circles), capable of transforming the measured 
signals into quantitative CEST/MT proton exchange pa-
rameter maps.

The proposed technique is based on the integration 
of CEST physics and spin dynamics with deep learning. 
In a classic neural network, each of the nodes contains a 

“weight element,” which is updated and optimized during 
the backward propagation step. To allow an analogous 
equivalent update of the CEST experiment parameters and 
achieve efficient optimization using auto-differentiation, 
the analytical solution of the governing spin dynamics 
for every step of the imaging experiment was represented 
as a computational graph (Figure 1B,C). Next, a deep re-
construction network26 was used to obtain quantitative  

F I G U R E  1   A, Schematic representation of the AutoCEST pre-experiment pipeline. A broadly defined clinical scenario serves as input 
which allows the experiment optimization by sequentially simulating CEST saturation (purple), readout and recovery (green), and deep 
reconstruction (yellow). AutoCEST outputs an optimized acquisition schedule and a reconstruction network (orange). B, CEST saturation 
block as a computational graph. The blue rectangles represent the input tissue parameters: initial magnetization (M0), water relaxation rates 
(R1a, R2a), solute transverse relaxation (R2b), exchange-rate (kb), and volume fraction ( fb). The orange rectangles represent the dynamically 
updated protocol parameters: saturation time (Tsat), saturation power (�1), saturation frequency offset (�rf). The graph calculates the 
magnetization at the end of the saturation block Mz[n

+]. C, Bloch equation-based image readout as a computational graph. The blue 
rectangles represent the water-pool parameters, while the orange rectangles represent the dynamically updated protocol parameters: flip 
angle (FA) and recovery time (Trec), which is embedded in the appropriate relaxation step. Note that this is a partial display due to space 
limitations. D, Deep reconstruction network for decoding the “ADC” MR signals (purple circles), obtained in C into CEST quantitative 
parameters ( fb and kb, blue circles)
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CEST/MT parameter maps (proton volume fraction and 
exchange rate). Notably, the acquisition and reconstruc-
tion steps are serially connected to allow joint optimi-
zation using automatic differentiation and stochastic 
gradient descent. The detailed AutoCEST steps include:

2.1.1  |  CEST saturation block

The analytical solution of the Bloch–McConnell equations 
for continous wave RF irradiation, for either a two-pool27 
(water and solute proton pools) or a three-pool20 (water, 
solute, and semi-solid/MT proton pools) imaging scenario 
was represented as a computational graph (Figure 1B). 
This allows the calculation of the water-pool Mz compo-
nent at the end of the saturation, and more importantly, 
the update of the saturation-block parameters (Figure 1B, 
orange rectangles) during training.

2.1.2  |  Readout and relaxation spin 
dynamics module

In the next step of the forward-direction modeling, the 
transverse spin components are zeroed-out, assuming suf-
ficient gradient spoiling is applied. Next, the spin dynamics 
are calculated during excitation and relaxation, using the 
Bloch equations with a discrete-time state-space model in 
the rotating frame 28 (Figure 1C). This allows for the update 
of the flip-angle (FA) and the recovery time (Trec) parame-
ters as well as the calculation of the expected “ADC” signals.

2.1.3  |  Deep reconstruction network

The resulting MR signals are two-norm normalized 
along the temporal dimension in a pixel-wise manner 
and mapped into CEST quantitative parameters using a 
fully connected four-layer deep reconstruction network26 
(Figure 1D). The neural network is composed of a series 
of fully connected dense layers, with two hidden layers of 
300 nodes each and activated by hyperbolic tangent (tanh) 
functions.

The entire pipeline was implemented using PyTorch 
1.0.1 and Python 3.6.8 on a Linux laptop computer 
equipped with an 8-core Intel i7-7700HQ CPU (2.80 
GHz). AutoCEST was trained for a variety of chemical 
exchange scenarios as described in Sections 2.2, 2.4.2, 
and Supporting Information Table S1. For each scenario, 
acquisition schedules of N = 10 raw (molecular informa-
tion encoding) images were generated. The batch size was 
set to 256 and the number of training epochs set to 100,29 
while a different development set of simulated signals 

(not included in the training data) was used to confirm 
that over-fitting is not reached. To further promote robust 
learning, white Gaussian noise (standard deviation of 
0.002) was injected into the training data.30,31 The loss was 
defined as the mean-squared-error between the estimated 
proton exchange rate and volume fraction values and 
their corresponding ground-truth values. The RMSprop 
algorithm32 was used as the optimizer, with the learning 
rates of the acquisition schedule parameters and the re-
construction network set to 0.001 and 0.0001, respectively.

To provide basic intuition on the optimization process, 
AutoCEST was set to update only the saturation pulse 
power for some of the scenarios (iohexol, BSA, and in 
vivo amide). Next, 2,3, or 5 different acquisition param-
eters were defined in a simultaneous parameter optimi-
zation for the in vivo MT, pCr, and L-arginine scenarios, 
respectively.

Finally, the optimal acquisition schedule parameters 
found by AutoCEST are loaded into the MR scanner, and 
a set of N, molecular information encoding, raw images 
are acquired (Figure 2). The resulting images are then 
fed voxel-wise into the AutoCEST-trained reconstruction 
network, resulting in quantitative CEST/MT maps of the 
imaged subject.

2.2  |  Phantom preparation

To validate the suggested approach, an extensive in vitro 
imaging study was performed using a set of seven imag-
ing phantoms, each composed of three different vials of 
a particular CEST compound, dissolved in PBS or in a 
buffer titrated to a particular pH value between 4.0 and 
7.4. The compound concentrations were varied between 
12.5 and 100 mM in all cases except for BSA, where the 
w/w concentration was varied between 7.5% and 15%.33–36 
To verify the AutoCEST robustness for various imaging 
scenarios, the following compounds were used:

2.2.1  |  Iohexol

An x-ray iodinated contrast agent, used as a CEST agent 
for extracellular pH quantification. Iohexol contains two 
exchangeable amide protons at a chemical shift of 4.3 ppm 
relative to the resonance frequency of water.37,38

2.2.2  |  Phosphocreatine (pCr)

A crucial metabolite for heart and skeletal muscle ener-
getics, contains a single guanidinium exchangeable pro-
ton at 2.6 ppm.31,39,40
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2.2.3  |  L-arginine

An amino acid with three equivalent exchangeable amine 
protons with a chemical shift of 3 ppm with respect to the 
water resonance.

2.2.4  |  Bovine serum albumin (BSA)

A protein with a large number of exchangeable amide  
(3.5 ppm), amine (∼2.75 ppm), and rNOE (∼-3.5 ppm) 
protons.

While iohexol, pCr, and L-arginine contain additional 
exchangeable protons at other chemical shifts than men-
tioned above, the optimization was focused on their com-
monly targeted exchangeable protons. To demonstrate the 
ability of detecting multiple CEST targets within the same 
phantom, various AutoCEST-based acquisition schedules 
were generated for imaging the amide, amine, and rNOE 
exchangeable protons of BSA.

2.3  |  Animal preparation

All animal experiments and procedures were per-
formed in accordance with the NIH Guide for the Care 
and Use of Laboratory Animals and were approved by 
the Institutional Animal Care and Use Committee of 
the Massachusetts General Hospital. Three C57/BL6 
wild-type male mice (27–31 gr) were purchased from 
Jackson Laboratory. They were anesthetized using 1%–2% 

isoflurane and placed on an MRI cradle with ear and bite 
bars to secure the head. Respiration rate was monitored 
with a small animal physiological monitoring system (SA 
Instruments, Stony Brook, NY), and the temperature was 
maintained by blowing warm air in the bore of the magnet.

2.4  |  Magnetic resonance imaging

All imaging experiments were conducted using a 9.4T MRI 
scanner (Bruker Biospin, Billerica, MA), employing an in-
house programmed, flexible CEST-EPI protocol,22,25,41 loaded 
with the acquisition parameters generated by AutoCEST.

2.4.1  |  Phantom studies

Imaging was performed using a transmit/receive volume 
coil (Bruker Biospin, Billerica, MA), a field of view (FOV) 
of 32 × 32 mm2, a matrix of 64 × 64 pixels, and a 5 mm slice 
thickness. The iohexol and L-arginine phantoms were im-
aged at room temperature. The pCr and BSA phantoms 
were heated to 37◦C, using a feedback loop between a small 
animal physiological monitoring system (SA Instruments, 
Stony Brook, NY) and a warm air blower. Each phantom 
was imaged using the AutoCEST-generated scenario-
specific acquisition schedules (Figure 3 and Supporting 
Information Table S1). Single-shot QUESP-EPI images 
were acquired with saturation at ±1× the chemical shift of 
each phantom’s exchangeable proton, except for the BSA 
where the existence of both the amide and rNOE pools 

F I G U R E  2   AutoCEST-based quantitative image reconstruction. The optimized protocol parameters (orange rectangles, �1 = saturation 
pulse power, Tsat = saturation pulse duration, �rf  = saturation pulse frequency offset, FA = readout flip angle, Trec= recovery time) are 
loaded into the scanner, allowing for the acquisition of N raw ADC (molecular information encoding) images. The images are fed voxelwise 
into the trained reconstruction network (orange circles), resulting in quantitative CEST/MT parameter maps (e.g., proton volume fraction fb 
and exchange rate kb)
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is incompatible with QUESP estimation of the exchange 
rate. The QUESP saturation pulse powers ranged from 0 to 
6 μT in 1 μT increments, the saturation pulse length (Tsat ) 
was 3 s, flip angle (FA) = 90◦, and echo/repetition times 
(TE/TR) = 20/15000 ms. For comparison, a CEST-MRF 
scan was performed, using a previously reported phan-
tom acquisition schedule (Supporting Information Figure 
S1),22 shortened to include only the first N = 10 images, 
for proper comparison with AutoCEST schedules of the 
same length. The CEST-MRF protocol included a single 
saturation frequency offset (aimed at the target compound 
chemical shift frequency), TE/TR = 20/4000 ms, Tsat = 3 s, 

and FA = 60◦. A traditional Z-spectra was obtained using 
a CEST-EPI protocol, employing a saturation pulse power 
of 2 μT, Tsat = 3 s, TE/TR = 20/8000 ms, and saturation fre-
quency offsets of 7 to −7 ppm with 0.25 ppm increments. 
For calculation of the static magnetic field B0 map using 
the water saturation shift referencing (WASSR) method,42 
the CEST scan was repeated with a saturation pulse power 
of 0.3 μT, and frequency offsets ranging between 1 to  
−1 ppm with 0.1 ppm increments. T1 maps were acquired 
using the variable repetition-time rapid acquisition with 
relaxation enhancement (RARE) protocol, with TR = 50, 
200, 400, 800, 1500, 3000, 5000, and 7500 ms, TE = 7.2 ms, 

F I G U R E  3   AutoCEST-generated acquisition schedules for the various imaging scenarios studied. The black dashed lines with squares 
represent the random/fixed parameters used for initializing the optimization and the green lines with circles represent the final AutoCEST-
optimized schedule. For iohexol (A), BSA, amide (B), BSA, amine (C), BSA, rNOE (D), and in vivo amide (E), only the saturation pulse 
power (B1) was optimized. For the In vivo MT (F,G), pCr (H–J), and L-arginine (K–O) cases, 2, 3, and 5 acquisition parameters were 
simultaneously optimized, respectively. Additional acquisition schedule information is available in Supporting Information Table S1
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RARE factor = 2. T2 maps were acquired using the multi-
echo spin-echo protocol, TR = 2000 ms, and 25 TE values 
between 20 and 500 ms.

2.4.2  |  In vivo study

A quadrature volume coil was used for RF transmission and 
a mouse brain phased array surface coil was used for receive 
(Bruker Biospin, Billerica, MA). A field of view (FOV) of 
19 × 19 mm2, a matrix of 64 × 64 pixels, and a 1 mm slice 
thickness were used in all scans except for a high-resolution 
T2-weighted scan, where the matrix size was set to 128 × 
128, and the TE/TR were 30/2000 ms. MT and amide 
AutoCEST scans were performed using the generated ac-
quisition schedules described in Figure 3 and Supporting 
Information Table S1, with an echo time of 21.88 ms.

2.5  |  Comparison of different 
performance optimization methods

The suggested AutoCEST approach constitutes a unified 
framework for simultaneous optimization of both the ac-
quisition protocol and the biophysical parameter quantifi-
cation. To better understand the individual contributions 
of each optimization component (or neural network) to 
the overall performance optimization, as well as any syn-
ergistic effects between the two, the AutoCEST perfor-
mance was compared to that of systems where: 

1.	 A traditional MR-fingerprint dot-product quantification 
was applied on the data acquired using the optimized 
AutoCEST protocols.

2.	 A deep learning optimization of parameter quantifica-
tion (similarly to the process described in Section 2.1.3) 
was applied on the data acquired using an unoptimized 
acquisition schedule.

The resulting images were compared to the images ob-
tained from the full AutoCEST pipeline, as well as to those 
obtained from applying an entirely traditional MRF method 
using an unoptimized acquisition schedule (as described in 
Section 2.4.1 and Supporting Information Figure S1). The per-
formance optimization method comparison was carried out 
for all in vitro and in vivo data obtained throughout this work.

2.6  |  Data analysis

Raw AutoCEST-generated images were given as input to 
the trained reconstruction network, yielding the corre-
sponding proton exchange rate and volume fraction maps. 

T1 and T2 exponential fitting were performed using a 
custom-written program. Conventional CEST images 
were corrected for B0 inhomogeneity using the WASSR 
method.42,43 The MTRasym was calculated using: 
MTRasym = (S−Δ� − S+Δ�)∕S0, where S±Δ� is the signal 
measured with saturation at ± the relevant solute chemi-
cal shift and S0 is the unsaturated signal. Exchange rate 
ground-truth estimation was performed by fitting the 
QUESP data with the known solute concentration and 
measured water T1 given as fixed inputs for each phantom 
vial.44 In addition, simultaneous QUESP estimation of 
both the exchange rate and the unconstrained solute con-
centration was performed for comparison.

CEST-MRF signal matching was performed by cal-
culating and finding the maximum dot-product (after 
two-norm normalization) of each pixel’s trajectory with 
all relevant simulated dictionary entries. The dictionar-
ies were built using the same data properties used for 
training AutoCEST (Supporting Information Table S1). 
Dictionary generation was performed using a numerical 
solution of the Bloch–McConnell equations, implemented 
in MATLAB R2018a (The MathWorks, Natick, MA).22

In vitro statistics were calculated using 79 mm2 cir-
cular regions of interest (ROIs) drawn on each phantom 
vial. In vivo statistics were calculated using a gray mat-
ter (GM) ROI positioned on the cortex and a white matter 
(WM) ROI comprised of the corpus callosum and fiber 
tracts (cerebral peduncle, optic tract, and fimbria) regions. 
Localization of mouse brain regions was performed using 
the Allen Mouse Brain Atlas (adult mouse P56, coronal, 
image 78) as a reference.45,46 Pearson’s correlation coeffi-
cients were calculated using the open source SciPy scien-
tific computing library for Python.47 Absolute error was 
defined as |ground truth value − estimated value|. One-
way analysis of variance (ANOVA) followed by Tukey’s 
HSD test for comparing differences between multiple 
groups was performed using the Python module statsmod-
els.48 Differences were considered significant at p < 0.05.

3   |   RESULTS

3.1  |  AutoCEST-generated acquisition 
protocols

The AutoCEST optimization of a quantitative acquisition 
protocol took between 22 min and 5.58 hr (see Supporting 
Information Table S1). The optimized protocol acquisition 
time was 71.1 s for pCr, 47.6 s for L-arginine, and 35s for 
all others (iohexol, BSA amide, BSA amine, BSA rNOE, 
in vivo amide, and in vivo MT). The optimized protocol 
parameters are shown in Figure 3.
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3.2  |  Phantom study—exchange 
parameter quantification performance

The AutoCEST reconstruction time for each pair of 
quantitative proton exchange rate and volume fraction 
maps (in vitro and in vivo) was 28.62 ± 0.01 ms. The 
resulting maps for iohexol, pCr, and L-arg are shown 
in Figures 4–6, respectively. In all cases, an excellent 
agreement was oberved between the AutoCEST-based 
calculated solute concentrations and the known solute 
concentrations, yielding an absolute error of 2.42 ± 2.53 
mM and a significant correlation (Pearson’s r = 0.992, 
p < 0.0001). There was also a significant correlation be-
tween the QUESP-calculated and AutoCEST-measured 
proton exchange rates (r = 0.971, p < 0.0001), with an 

absolute error of 35.8 ± 29.3 Hz (Supporting Information 
Table S2).

The measured solute concentrations obtained with 
a pseudo-random, unoptimized CEST-MRF acquisition 
schedule (Supporting Information Figures S4–S9, panel 
E) were poorly correlated with the known solute concen-
trations (Pearson’s r = − 0.161, p = 0.522), yielding an 
absolute error of 65.19 ± 34.48 mM. The absolute error 
between the QUESP-calculated and CEST-MRF measured 
proton exchange rates (Supporting Information Figures 
S4–S9, panel I) was higher than that obtained using 
AutoCEST (58.2 ± 56.76 Hz), yet there was a significant 
correlation between unoptimized CEST-MRF and QUESP 
measured exchange rates (r = 0.959, p < 0.0001). The im-
plementation of QUESP for simultaneous estimation of 

F I G U R E  4   Iohexol phantom study. Each row represents a single phantom composed of three iohexol vials, with different 
concentrations (A) or pH (D). (B, E) AutoCEST-generated iohexol concentration maps. (C, F) AutoCEST-generated amide (4.3 ppm) proton 
exchange rate maps. The white text next to each vial represent its mean ± SD parameter value
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the concentration and exchange rate yielded a higher ab-
solute error in solute concentration estimation compared 
to AutoCEST (11.03 ± 7.77 mM), and lower absolute error 
in proton exchange rate estimation (23.94 ± 29.54 Hz).

To demonstrate the differences between CEST-
weighted and AutoCEST output images, conventional 
MTRasym images (acquired using a fixed saturation pulse 
power of 2 μT) for two L-arginine phantoms are provided 
in Figure 7. Although the MTRasym image in Figure 7B 
provides a clear contrast difference for different L-arg 
vials, it cannot provide any definite information on the 
underlying biophysical mechanism; namely, whether a 
change in the solute concentration or pH is occurring. 
Moreover, the use of a single pulse saturation power is 
sub-optimal for imaging scenarios with a wide possible 
range of proton exchange rates (or pH). This is demon-
strated in Figure 7D, where an L-arginine vial with fast 
exchanging protons (pH = 6) appears to have a decreased 
contrast, due to insufficient saturation. In contrast, a sin-
gle AutoCEST imaging protocol was capable of correctly 
quantifying the exchange parameters and uncovering the 
chemical exchange property responsible for the change in 
contrast (Figure 6D–I).

AutoCEST quantitative images for the amide, rNOE, 
and amine exchangeable protons of BSA are shown in 
Figure 8. The proton volume fraction maps were in good 
agreement with the ground truth BSA concentration. 
AutoCEST-based estimation of the exchange rates yielded 
parameter values (BSA amide ∼45 Hz, BSA rNOE ∼15 Hz, 
BSA amine ∼783 Hz) in good agreement with previous lit-
erature reports.22,41,49,50

3.3  |  AutoCEST of in vivo mouse brain

Representative AutoCEST-generated quantitative semi-
solid exchange parameter maps are shown in Figure 9, 
and additional results obtained for all mice are avail-
able in Supporting Information Figure S2 and Table S3.  
The semi-solid proton volume fraction maps were in 
good agreement with the Nissl-stained histology tis-
sue section (Figure 9D), where neuronal cell bodies 
of GM are preferentially stained. In particular, an el-
evated semi-solid volume fraction was observed for 
the subcortical WM (19.80% ± 0.50%) compared to the 
GM (12.77% ± 0.75%), allowing a clear identification 
of the corpus callosum and white matter fiber tracts. 
The obtained values were in good agreement with pre-
vious literature reports.51,52 The semi-solid chemical 
exchange rate was faster in the GM (56.54 ± 3.1 Hz) 
compared to WM (43.87 ± 2.36 Hz), in agreement with 
the literature.24,52,53

Amide exchange parameter maps for the same mouse 
used in Figure 9 are shown in Supporting Information 
Figure S3. The corresponding GM/WM parameter val-
ues are shown in Supporting Information Table S4. The 
AutoCEST-generated amide proton volume fractions were 
0.29% ± 0.16% and 0.40% ± 0.27% for the GM and WM, 
respectively. The amide proton exchange rates were 60.81 
± 9.28 Hz and 73.02 ± 51.11 Hz, for the GM and WM, re-
spectively, which are in the general range of previously 
reported values,24,41,54 yet higher than the exchange rate 
measured using water exchange spectroscopy (WEX) in 
the rat cortex.49

F I G U R E  5   Phosphocreatine (pCr) phantom study. A, Ground truth solute concentration and pH. B, AutoCEST-generated pCr 
concentration map. (C) AutoCEST-generated guanidinium (2.6 ppm) proton exchange rate map. The white text next to each vial represent 
its mean ± SD parameter value
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F I G U R E  6   L-arginine phantom study. Each row represents a single phantom composed of three L-arginine vials, with different 
concentrations (A) or pH (D, G). (B, E, H) AutoCEST-generated L-arginine concentration maps. (C, F, I) AutoCEST-generated amine  
(3 ppm) proton exchange rate maps. The white text next to each vial represent its mean ± SD parameter value
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3.4  |  Comparison of different 
performance optimization methods

The performance of the full AutoCEST pipeline was 
compared to that of individual elements of the pipeline 
to examine the importance of each element to the overall 
performance optimization (Supplementary Information 
Figures S4–S16). A statistical analysis comparing the differ-
ent optimization variants is provided in Figure 10, where 
the absolute error for each case was calculated using the 
phantoms where the most reliable ground truth was avail-
able (measured concentration and QUESP-derived pro-
ton exchange rate). The best performance was observed 
for the full AutoCEST pipeline, where a sigificantly lower 
absolute error in quantifying the compound concentra-
tion (p < 0.01, n = 18 phantom vials, one-way ANOVA 
followed by Tukey’s HSD test) was obtained compared 
to the use of unoptimized acquisition schedules (with 
or without deep NN quantification). Nevertheless, using 
the AutoCEST-dervied acquisition schedules for “classi-
cal” dot-prodcut MRF quantification yielded significantly 
lower errors (p < 0.01, n = 18 phantom vials, one-way 
ANOVA followed by Tukey’s HSD test) compared to un-
optimized MRF acquisition, demonstrating the potential 
of AutoCEST for also serving as a means for CEST-MRF 

protocol optimization. Notably, the chemical exchange 
rate is generally more challenging for quantification com-
pared to the compound concentration. It is therefore not 
surprising that the differences in the exchange rate er-
rors between the different optimization methods were 
less striking than for the concentration. Nevertheless, the 
median absolute error and the standard deviations in the 
quantification error were much smaller for AutoCEST 
compared to other methods.

4   |   DISCUSSION

Since its establishment more than 20 years ago, CEST MRI 
has been increasingly investigated as a promising contrast 
mechanism for studying a variety of disease pathologies. 
However, while numerous clinical CEST studies have 
demonstrated its potential,2 this technique has not yet 
been adopted in routine clinical practice. The main bar-
riers for clinical translation have been the typically long 
image acquisition times, the semi-quantitative nature of 
the proton exchange-weighted image contrast, which de-
pends on a complex overlay of contrasts from different ex-
changeable proton pools (MT, rNOE, amide, amine), and 
the inability to separate out contributions to the CEST 

F I G U R E  7   Conventional CEST-
weighted imaging. Each row represents 
a single phantom, composed of three 
L-arginine vials, with different pH. 
(B, D) MTRasym images obtained from 
a Z-spectrum acquisition with a fixed 
saturation pulse power of 2 μT. The red 
arrow in D points to the highest pH vial, 
which demonstrated a decreased MTRasym 
contrast due to insufficient saturation. 
AutoCEST-generated maps of the same 
phantoms are available in Figure 6E,F,H,I
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F I G U R E  8   BSA phantom study. Each row represents a different molecular target (amide at 3.5 ppm, rNOE at −3.5 ppm, or amine at 
2.75 ppm, respectively), imaged from the same phantom (A, D, G). (B, E, H) AutoCEST-generated amide, rNOE, and amine proton volume 
fraction maps, respectively. (C, F, I) AutoCEST-generated amide, rNOE, and amine proton exchange rate maps, respectively. The white text 
next to each vial represent its mean ± SD parameter value
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contrast from chemical exchange rate and proton volume 
fraction, both of which may be changing with time and 
disease progression. A quantitative and rapid imaging ap-
proach could drastically improve the clinical applicability 
of CEST, rendering it as an attractive means for gaining 
new diagnostic insights.

A CEST MRF approach could help overcome the above 
challenges and provide quantitative CEST and MT in-
formation.22–24 Recently, it was further combined with 
deep learning architectures, for rapid MT55,56 and CEST/
MT41 fingerprinting. However, previous studies have also 
demonstrated that the ability to discriminate different ex-
change parameter values depends critically on the choice 
of acquisition schedule.22,25 In particular, the transfer 
of a CEST-MRF acquisition protocol from one chemical 
exchange scenario to another is not straight-forward,25 
requiring a through optimization, validation with appro-
priate tissue-like phantoms, and expert knowledge of the 
effect of the acquisition protocol properties on the result-
ing CEST signals. As demonstrated here, naively taking 
a random CEST-MRF acquisition schedule, which might 
be useful for a particular CEST agent and applying it 
for other compounds/applications, could result in very 
poor performance. This is demonstrated in Supporting 

Information Figures S4–S12 panels E and I, where poor 
agreement is observed between the exchange parameters 
determined from an unoptimized CEST-MRF acquisition 
schedule and the known ground truth values for Iohexol 
(Supporting Information Figures S4–5E,I), phosphocre-
atine (Supporting Information Figure S6E,I), L-arginine 
(Supporting Information Figures S7–9E,I), and BSA 
(Supporting Information Figures S10-12E,I) phantoms. 
In contrast, here we demonstrate that AutoCEST can 
adapt and optimize the acquisition schedule for a variety 
of distinctly different chemical exchange scenarios, accu-
rately mapping the exchange parameters (Figures 4–10, 
Supporting Information Table S2). In addition, AutoCEST 
was able to accurately map the solute concentration and 
chemical exchange rate in a very short time with acqui-
sition times of only 35–71 s and an almost instantaneous 
reconstruction time of 29 ms. This dramatically reduced 
scan time could greatly assist in incorporating CEST in-
vestigations into routine clinical imaging with minimal 
interference with workflow or time constraints.

The AutoCEST method proposed here constitutes a 
unified framework for both the design of fast CEST/MT 
acquisition protocols and the reconstruction of quanti-
tative parameter maps. Importantly, the method is fully 

F I G U R E  9   AutoCEST imaging of a representative in vivo mouse brain. (A) T2-weighted image and (D) corresponding Nissl-stained 
mouse brain section with the cerebral cortex (ctx), corpus callosum (cc), and fiber tracts (ft, composed of cerebral peduncle, optic tract, and 
fimbria) identified.45,46 AutoCEST-generated (B) semi-solid proton volume fraction ( fss) and (C) chemical exchange rate (kssw) maps. (E, F). 
Analysis of the resulting exchange parameters in the white matter (WM, defined as the corpus callosum and white matter fiber tracts) and 
gray matter (GM). Data are presented as mean ± SD with all data points overlaid
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automatic, removing the need for user-dependent analy-
sis and exhaustive tuning and optimization of acquisition 
protocols. The AutoCEST realization was inspired and 
driven by the AutoSeq method, which allows for auto-
matic sequence generation in 1D and single pixel T1/T2 
quantitative imaging.28,57 Recently, the MRzero58 method 
was reported, which further incorporates gradient and 
RF-events for learning 2D imaging acquisition schedules, 
including free k-space trajectories.59 The present work ex-
pands on the idea of AI-based sequence design for CEST/
MT quantitative imaging, where a crucial need for auto-
matic schedule invention lies. Observing the differences 
between the acquisition schedules used for AutoCEST ini-
tialization and the final optimized schedules (Figure 3), 
can provide some intuition into the underlying optimiza-
tion performed. For example, optimization of the acquisi-
tion schedules for both the Iohexol (at room temperature) 
and BSA-amide imaging scenarios resulted in saturation 
pulse powers that were lower than initialized. This can be 
explained by the relatively slow exchange rates of these 
compounds (<300 Hz) which are not expected to benefit 
from a high saturation power. Similarly, the optimal satu-
ration frequency offset for amide and amine exchangeable 

protons remained roughly fixed at the solute frequency 
offset, as expected for a CEST agent with a relatively nar-
row spectral width (Figure 3O), while the spectrally very 
broad semi-solid MT case required a wider range of satu-
ration pulse frequency offsets (Figure 3G).

The particular patterns obtained for some of the opti-
mized parameters appeared to lack any noticeable human-
intuition (Figure 3E–J), similar to the results obtained in T1
/T2 MRF sequence generation.60 This highlights the need 
for an automated computer-based optimization process. 
In addition, although the resulting optimized protocols 
were mostly substantially different than the initial acqui-
sition schedules, there were a few cases where the pro-
tocols were not drastically modified (Figure 3C,D). This 
might explain the success of some previously reported 
random CEST-MRF schedules, which could in some cases 
randomly “land on” suitable parameters.

The AutoCEST-generated schedules tended to have a 
longer recovery time compared to the initial value. Notably, 
quantitative CEST is characterized by an internal trade-off 
between a sufficiently high SNR and a clinically relevant 
scan time.25 While longer recovery times improve the for-
mer, some compromise must be made to accommodate 

F I G U R E  1 0   Absolute error analysis for the different optimization methods, based on the phantoms described in Figures 4, 5, and 6. A, 
Absolute error for compound concentration mapping. B, Absolute error for proton chemical exchange rate mapping. The evaluated methods 
were (left to right) AutoCEST (blue), dot-product MRF quantification applied to data acquired using AutoCEST-optimized schedules 
(purple), deep learning-based quantification applied to data acquired using an unoptimized CEST-MRF acquisition protocol (green), and 
CEST-MRF dot-product quantification applied to an unoptimized acquisition schedule (black). Statistical analysis of the resulting exchange 
parameters was carried out using one-way analysis of variance (ANOVA) followed by Tukey’s HSD test (n = 18 phantom vials). *p < 0.05; 
**p < 0.01. In all box plots, the central horizontal lines represent median values, box limits represent upper (third) and lower (first) quartiles, 
whiskers represent 1.5× the interquartile range above and below the upper and lower quartiles, respectively, and all data points are plotted
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for the latter. In this work, we have either fixed or limited 
the lower and upper bounds for the AutoCEST optimized 
Tsat and Trec (Supporting Information Table S1). Although 
probably not reaching the optimal possible sensitivity, this 
approach has yielded very good performance (Supporting 
Information Table S2), while satisfying the need for a short 
scan time with all output schedules shorter than 72 s.

All the experiments conducted in this work were fixed 
to create acquisition schedules of N = 10 raw images, to-
gether with additional restrictions on the scan time (in 
the form of maximal Trec and Tsat, Supporting Information 
Table S1). While this was done to push the boundaries of 
quantitative CEST beyond the limits set by previous work, 
a slight relaxation in the parameter restriction could im-
prove the quantitation performance, and still retain suf-
ficiently clinically relevant scan times. In the future, the 
number of raw images acquired (N) could be defined as a 
dynamically optimized parameter. In addition, while the 
saturation power was limited to not exceed a fixed value for 
each of the scenarios (Supporting Information Table S1), it 
could be replaced in the future by a specific absorption rate 
(SAR) penalty term, incorporated in the cost-function.58 
Similarly, a penalty term for exceedingly long scan times 
could be used to further improve SNR/scan-time balance.

The AutoCEST determined exchange parameters for 
the in vivo mouse brain were in general agreement with 
the literature for two-pool MT and three-pool amide/MT 
imaging; however, the resulting in vivo amide exchange 
rates were higher than a previous WEX estimation in the 
rat cortex49 and demonstrated a rather large standard devi-
ation (Supporting Information Table S4). Although amide 
chemical exchange rate is a subject of some controversy in 
the field, given that various groups have reported amide 
proton exchange rates >100 Hz,24,61 it might be useful 
to pursue additional strategies for exploring multi-pool 
AutoCEST imaging. In particular, the use of a single ac-
quisition schedule, with saturation at the amide proton 
frequency only, may make discrimination of both amide 
and MT pool exchange parameters more challenging. 
For example, we have recently demonstrated that nailing 
down the MT pool parameters, with an MT-specific acqui-
sition schedule, and then sequentially using them as di-
rect inputs for the amide-pool classification, significantly 
improved the performance in CEST-MRF of oncolytic vi-
rotherapy treated mice.41 Future work could expand the 
architecture of AutoCEST to allow for such sequentially 
acquired information to be incorporated. In addition, sev-
eral other compounds could be added to the model and 
simulations for improved accuracy, such as glutamate and 
guanidyl amine protons.

While the experiments described here were all per-
formed on preclinical scanners with continuous wave 

saturation pulses, the implementation of AutoCEST for 
clinical scanners could be straightforwardly translated for 
cases in which a single continuous-wave block pulse could 
be applied (e.g., when the required Tsat and/or B1max are 
not expected to be too large), or by modifying the analyti-
cal solution of the CEST saturation block to accommodate 
for a pulse train.62–64

5   |   CONCLUSION

The suggested framework provides a fast and automatic 
means for designing and analyzing quantitative CEST 
experiments, potentially contributing to the efforts to 
disseminate CEST/MT in the clinic. The superiority of 
AutoCEST performance compared to unoptimized CEST 
MRF highlights the importance of optimizing the acqui-
sition schedule for improved discrimination of the ex-
change parameters.
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TABLE S4 AutoCEST-determined amide proton chemical 
exchange rates (ksw) and volume fractions ( fs) for GM and 
WM brain tissue regions from an in vivo mouse
FIGURE S1 A previously reported phantom acquisition 
schedule,22 shortened to N = 10 images and used as 
a reference unoptimized CEST-MRF protocol. The 
saturation pulse duration was 3 s, the recovery time was 
1s, the readout flip angle was 60◦, and the saturation pulse 
frequency was set to the chemical shift of the exchangeable 
proton of each imaged phantom
FIGURE S2 AutoCEST brain imaging of three in vivo 
mice. Each row represents a different animal with T2 
-weighted images (A, D, G) and AutoCEST-generated 
semi-solid proton volume fraction (B, E, H) and chemical 
exchange rate maps (C, F, I)
FIGURE S3 AutoCEST amide proton exchange parameter 
mapping of an in vivo mouse. A, T2-weighted image. B, 
AutoCEST-generated amide proton volume fraction (fs). 
C, AutoCEST-generated amide proton chemical exchange 
rate (ksw)
FIGURE S4 Comparison of different performance 
optimization methods—iohexol phantom with various 
concentrations. A, Ground truth concentrations and 
QUESP-determined proton exchange rates. The top row 
shows the resulting Iohexol concentration maps and the 
bottom row shows the resulting amide (4.3 ppm) proton 
exchange rate maps obtained using (B, F) AutoCEST, 
(C, G) dot-product MRF quantification applied to data 
acquired using AutoCEST-optimized schedules, (D, H)  
deep learning-based quantification applied to data 
acquired using an unoptimized CEST-MRF acquisition 
protocol, and (E, I) CEST-MRF dot-product quantification 
applied to an unoptimized acquisition schedule. The white 
text next to each vial represent its mean ± SD parameter 
value
FIGURE S5 Comparison of different performance 
optimization methods—Iohexol phantom with various 
pH levels. A, Ground truth concentrations and QUESP-
determined proton exchange rates. The top row shows the 
resulting Iohexol concentration maps and the bottom row 
shows the resulting amide (4.3 ppm) proton exchange rate 
maps obtained using (B, F) AutoCEST, (C, G) dot-product 
MRF quantification applied to data acquired using 
AutoCEST-optimized schedules, (D, H) deep learning-
based quantification applied to data acquired using 
an unoptimized CEST-MRF acquisition protocol, and  
(E, I) CEST-MRF dot-product quantification applied to an 
unoptimized acquisition schedule. The white text next to 
each vial represent its mean ± SD parameter value
FIGURE S6 Comparison of different performance 
optimization methods—Phosphocreatine (pCr) phantom. 
A, Ground truth concentrations and QUESP-determined 
proton exchange rates. The top row shows the resulting 

pCr concentration maps and the bottom row shows the 
resulting guanidinium (2.6 ppm) proton exchange rate 
maps obtained using (B, F) AutoCEST, (C, G) dot-product 
MRF quantification applied to data acquired using 
AutoCEST-optimized schedules, (D, H) deep learning-
based quantification applied to data acquired using 
an unoptimized CEST-MRF acquisition protocol, and  
(E, I) CEST-MRF dot-product quantification applied to an 
unoptimized acquisition schedule. The white text next to 
each vial represent its mean ± SD parameter value
FIGURE S7 Comparison of different performance 
optimization methods—L-arginine phantom with various 
concentrations. A, Ground truth concentrations and 
QUESP-determined proton exchange rates. The top row 
shows the resulting L-arginine concentration maps and 
the bottom row shows the resulting amine (3 ppm) proton 
exchange rate maps obtained using (B, F) AutoCEST, (C, G) 
dot-product MRF quantification applied to data acquired 
using AutoCEST-optimized schedules, (D, H) deep 
learning-based quantification applied to data acquired 
using an unoptimized CEST-MRF acquisition protocol, 
and (E, I) CEST-MRF dot-product quantification applied 
to an unoptimized acquisition schedule. The white text 
next to each vial represent its mean ± SD parameter value
FIGURE S8 Comparison of different performance 
optimization methods—L-arginine phantom with pH 4–5. 
A, Ground truth concentrations and QUESP-determined 
proton exchange rates. The top row shows the resulting 
L-arginine concentration maps and the bottom row shows 
the resulting amine (3 ppm) proton exchange rate maps 
obtained using (B, F) AutoCEST, (C, G) dot-product 
MRF quantification applied to data acquired using 
AutoCEST-optimized schedules, (D, H) deep learning-
based quantification applied to data acquired using 
an unoptimized CEST-MRF acquisition protocol, and  
(E, I) CEST-MRF dot-product quantification applied to an 
unoptimized acquisition schedule. The white text next to 
each vial represent its mean ± SD parameter value
FIGURE S9 Comparison of different performance 
optimization methods—L-arginine phantom with 
pH 5–6. A, Ground truth concentrations and QUESP-
determined proton exchange rates. The top row shows 
the resulting L-arginine concentration maps and the 
bottom row shows the resulting amine (3 ppm) proton 
exchange rate maps obtained using (B, F) AutoCEST, 
(C, G) dot-product MRF quantification applied to 
data acquired using AutoCEST-optimized schedules, 
(D, H) deep learning-based quantification applied 
to data acquired using an unoptimized CEST-MRF 
acquisition protocol, and (E, I) CEST-MRF dot-product 
quantification applied to an unoptimized acquisition 
schedule. The white text next to each vial represent its 
mean ± SD parameter value
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FIGURE S10 Comparison of different performance 
optimization methods—BSA phantom with amide  
(3.5 ppm) as the target compound. A, Ground truth BSA 
concentrations and pH. The top and bottom rows show the 
resulting amide proton volume fraction and exchange rate 
maps, respectively, obtained using (B, F) AutoCEST, (C, G) 
dot-product MRF quantification applied to data acquired 
using AutoCEST-optimized schedules, (D, H) deep 
learning-based quantification applied to data acquired 
using an unoptimized CEST-MRF acquisition protocol, 
and (E, I) CEST-MRF dot-product quantification applied 
to an unoptimized acquisition schedule. The white text 
next to each vial represent its mean ± SD parameter value
FIGURE S11 Comparison of different performance 
optimization methods—BSA phantom with aliphatic rNOE 
(−3.5 ppm) as the target compound. A, Ground truth BSA 
concentrations and pH. The top and bottom rows show 
the resulting rNOE proton volume fraction and exchange 
rate maps, respectively, obtained using (B, F) AutoCEST, 
(C, G) dot-product MRF quantification applied to data 
acquired using AutoCEST-optimized schedules, (D, H) 
deep learning-based quantification applied to data acquired 
using an unoptimized CEST-MRF acquisition protocol, and 
(E, I) CEST-MRF dot-product quantification applied to an 
unoptimized acquisition schedule. The white text next to 
each vial represent its mean ± SD parameter value
FIGURE S12 Comparison of different performance 
optimization methods—BSA phantom with amine 
proton (2 ppm) as the target compound. A, Ground 
truth BSA concentrations and pH. The top and bottom 
rows show the resulting amine proton volume fraction 
and exchange rate maps, respectively, obtained using  
(B, F) AutoCEST, (C, G) dot-product MRF quantification 
applied to data acquired using AutoCEST-optimized 
schedules, (D, H) deep learning-based quantification 
applied to data acquired using an unoptimized CEST-
MRF acquisition protocol, and (E, I) CEST-MRF dot-
product quantification applied to an unoptimized 
acquisition schedule. The white text next to each vial 
represent its mean ± SD parameter value
FIGURE S13 Comparison of different performance 
optimization methods—in vivo MT imaging, animal #1. 
The top and bottom rows show the resulting semi-solid 
proton volume fraction and chemical exchange rate 
maps, respectively, obtained using (A, E) AutoCEST, 
(B, F) dot-product MRF quantification applied to 
data acquired using AutoCEST-optimized schedules, 

(C, G) deep learning-based quantification applied 
to data acquired using an unoptimized CEST-MRF 
acquisition protocol, and (D, H) CEST-MRF dot-product 
quantification applied to an unoptimized acquisition 
schedule
FIGURE S14 Comparison of different performance 
optimization methods—vivo MT imaging, animal #2. 
The top and bottom rows show the resulting semi-solid 
proton volume fraction and chemical exchange rate maps, 
respectively, obtained using (A, E) AutoCEST, (B, F) dot-
product MRF quantification applied to data acquired 
using AutoCEST optimized schedules, (C, G) deep 
learning-based quantification applied to data acquired 
using an unoptimized CEST-MRF acquisition protocol, 
and (D, H) CEST-MRF dot-product quantification applied 
to an unoptimized acquisition schedule
FIGURE S15 Comparison of different performance 
optimization methods—in vivo MT imaging, animal #3. 
The top and bottom rows show the resulting semi-solid 
proton volume fraction and chemical exchange rate maps, 
respectively, obtained using (A, E) autoCEST, (B, F) dot-
product MRF quantification applied to data acquired 
using AutoCEST optimized schedules, (C, G) deep 
learning-based quantification applied to data acquired 
using an unoptimized CEST-MRF acquisition protocol, 
and (D, H) CEST-MRF dot-product quantification applied 
to an unoptimized acquisition schedule
FIGURE S16 Comparison of different performance 
optimization methods—in vivo amide imaging. The top 
and bottom rows show the resulting amide proton volume 
fraction and chemical exchange rate maps, respectively, 
obtained using (A, E) autoCEST, (B, F) dot-product 
MRF quantification applied to data acquired using 
AutoCEST-optimized schedules, (C, G) deep learning-
based quantification applied to data acquired using an 
unoptimized CEST-MRF acquisition protocol, and (D, 
H) CEST-MRF dot-product quantification applied to an 
unoptimized acquisition schedule
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