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ABSTRACT: Solvent deasphalting (SDA) is a complex multiscale
continuous process. The operation mode of the SDA process is not
considered in the related data-driven model. Therefore, this paper
proposes a time lag process prediction model with multiple
operation modes to solve the above problem. First, based on
random forests, the relative importance of initial input variables in
the SDA process on DAO yield and Conradson carbon residual are
studied and features are selected according to the results. Then, the
stack denoising autoencoder (SDAE) is used to reconstruct the
data and obtain the nonlinear mapping information of hidden
layers of SDAE and achieve feature dimension reduction. SDAE
can improve clustering accuracy of fuzzy c-means, and the
operation mode of SDA process is accurately divided. Long short-term memory (LSTM) is used to establish a multicondition
LSTM model. Compared with the traditional LSTM model, the multicondition LSTM model has a higher prediction accuracy with
R2 > 0.95. The sensitivity analyses of the properties of feed and operating conditions on DAO yield are consistent with the principle
of two-phase countercurrent extraction in the SDA process. In addition, the benchmark test of the Tennessee Eastman process
shows that the proposed method is also effective in the fault detection of other processes. Because the multicondition LSTM can
predict the future process measurement data according to operating mode, it can better avoid the false alarm problem and predict
the fault earlier.

1. INTRODUCTION
The petroleum industry which is a highly regulated and capital-
intensive industry plays a pivotal role in meeting the world’s
energy demand.1 With the development and change of global
issues such as climate change and environmental protection,
the standards of petrochemical production processes and
products have become more stringent. Therefore, modeling
and simulation in a cheap and rapid way are crucial and useful
to engineering design and optimization.2 Through the
industrial process forecast to guide the industrial production
processes can timely adjust the industrial equipment temper-
ature, pressure, and other operating conditions to achieve the
purpose of reducing resource consumption and improving
product yield. In recent years, solvent deasphalting (SDA) has
attracted more and more attention in heavy oil processing due
to its good adaptability of raw materials,3,4 especially when
combined with the hydrotreating process, the catalytic cracking
deasphalted oil (DAO) production process, and the hydrogen
production process of deoiled asphalt (DOA).5 However, the
establishment of the SDA mechanism model requires extensive
process knowledge research. A data-driven approach can
provide a cheaper and faster solution for process modeling.
Whether for fault detection or target prediction, data-driven
methods are becoming increasingly popular in industries.6

Data-driven methods such as principal component analysis
(PCA), independent component analysis, and k-nearest
neighbor are commonly used in data analysis, which can
realize fault detection and diagnosis in the industrial
production process.7 Support vector machine (SVM) and
artificial neural network (ANN) can be used to solve nonlinear
problems in industrial data.8 Combining PCA with a
quantitative operational risk assessment model can solve the
problem of false alarms.9 The use of Kalman filtering can also
avoid false alarms.10 Hu et al. established a fracturing pressure
prediction model by using the locally weighted linear
regression approach in a data-driven way and proposed a
delicate early warning scheme of fracturing screenout event(s)
for practical application in the field.11 Kumari et al. used the
selected attributes to develop an ANN model to predict the
causes of an incident. For each cause, another ANN model was
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developed to predict the sub-cause of the incident. The
integration of cause and sub-cause prediction models enabled
the efficient causation prediction of incidents.12

Some models solve industrial production problems by
combining multiple data-driven approaches, such as a real-
time hybrid method based on PCA and Bayesian belief
network,13 and limited diagnostic information from kernel
PCA, other online fault detection and diagnostic tools, and
process knowledge combined through Bayesian belief net-
work.14 Amin proposed an integrated method for process fault
detection and diagnosis and propagation pathway identifica-
tion, which can detect the fault earlier and ensure the
correctness of the diagnosis. The methodology was developed
by combining the early fault detection capacity of the
multivariate exponentially weighted moving average PCA and
robust diagnosis and causality representability of the Bayesian
network.15 The existing models did not consider the existence
of cycles that are common in chemical processes, Kumari et al.
proposed a modified Bayesian network in this work that
accounted for cyclic loops to improve the accuracy of root
cause diagnosis.16 Chaudhari et al. adopted multiple feature
selection methods to select descriptors through a data-driven
method and compared the prediction accuracy of the model
based on random forests (RFs), neural network, and genetic
function approximation.17 Arunthavanathan et al. used the
convolutional neural network (CNN)�long short term
memory (LSTM) approach to forecast the system parameters
for future sampling windows’ recognition and an unsupervised
one-class-SVM (OC-SVM) was used for fault symptoms’
detection using forecasted data window. The results confirmed
that the proposed method effectively detected potential fault
conditions in multivariate dynamic systems by detecting the
fault symptoms early as possible.18

Based on the above, the data-driven method has been widely
used in fault detection and process prediction in the industrial
production process. However, in industrial production under
different operating modes, there are complex and different
nonlinear relations between the production index and the
operating conditions, and there is always a strong coupling
between the operating conditions. Changes in these operating
conditions affect coupling strength and may result in different
operating modes. In addition, the coupling between operating

conditions results in redundant variables in the data.
Therefore, this paper aims to study a process prediction
method of multicondition division to solve the problem of
working condition change in industrial processes. Compared
with other methods, the proposed method can make a more
accurate prediction according to different working conditions,
and it can provide guidance for the prediction and fault
detection of any industrial production process with the change
of working conditions. First, the RF is used to select the
important factors affecting the industrial production process.
Then, the stacked denoising autoencoder (SDAE)�Fuzzy c-
means (FCM) algorithm is used to divide the working
conditions. Finally, the LSTM neural network is used to
establish the prediction model of SDA-related yield under
multiple working conditions.
The main contributions of this paper are as follows:

(1) RFs is used to evaluate the importance of variables.
More than 60 variables are voted by out-of-bag (OOB)
error, and 21 key variables are finally selected as the
input of the model.

(2) A new framework for operation mode classification is
proposed. SDAE is used to reduce the dimension to
improve the clustering accuracy and then FCM is used
to identify the operation mode of the data.

(3) On the basis of operating mode division, LSTM is used
to establish a multimode integration model based on the
voting method. Also, the sensitivity analyses of the
properties of feed and operating conditions on DAO
yield are consistent with the extraction principle of the
SDA process.

(4) The benchmark Tennessee Eastman process is used to
test efficacy of multicondition LSTM and confirm that
multicondition LSTM can reduce false alarms and
effectively detect potential fault conditions by detecting
the fault symptoms earlier.

This paper is organized as follows: the background and
current research studies of this paper are described in Section
1. Section 2 introduces the SDA process and related data-
driven methods. Section 3 describes the modeling process in
detail including feature selection, time delay analysis, operation
mode division, and model comparison. Moreover, the

Figure 1. Industrial flowchart of SDA.
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established model is benchmarked by Tennessee Eastman
process data. Finally, conclusions are mentioned in Section 4.

2. PROPOSED METHODOLOGY
2.1. Study Area. 2.1.1. Process Principle. The vacuum

residue containing high concentration of asphaltenes (As) can
be deasphalted by the SDA process which can make certain
DAO have the characteristics of good cracking performance
and low impurity content. As shown in Figure 1, the overall
study area of this paper is a 5 × 105 tons/year UOP’s DEMEX
SDA industrial unit, which is a quite popular industrial SDA
unit due to high solvent recovery, energy-saving capability, and
high yield of DAO. It is mainly composed of sub-critical
solvent extraction, supercritical solvent recovery, and stripping.
In the industrial flowchart, VR and mixed C4 (solvent

volume composition: 0−3% C3, 0−3% C3=, 13−20% n-C4, 29−
50% i-C4, 28−49% C4=, and C5 < 2%) are adopted to be the
feed and solvent, respectively. After being thoroughly mixed,
they are fed into the extractor from the upper and lower parts
of the column, respectively. The oil is solubilized in the solvent
while the insoluble pitch will precipitate out of the mixed
feedstock as As. The solvent extractor is designed to separate
the DAO phase (the extract phase) and the pitch phase (DOA
phase, the raffinate phase) under subcritical conditions. They
are taken from the bottom and top of the column, respectively.
The settlement tower is used to separate the resin in the DAO
phase at a higher temperature than the extraction tower. The
solvent recovered from DAO separator (supercritical solvent
recovery tower) under high pressure is combined with solvent
condensation recovered from DOA and DAO strippers under
low pressure to recycled back to initial stage. DAO and DOA
after solvent removal are sent out of the plant. DAO is
normally used as feedstocks of hydrocracking or fluid catalytic
cracking because of its low contents of metal (Ni + V). DOA is
usually the raw material for gasification or asphalt produc-
tion.19

The choice of the extraction process or optimization of
process parameters in the SDA process will determine the
properties and yield of DAO. Under a certain solvent
composition and pressure, the lower temperature of the
extractor, the higher the DAO yield and the lower the DAO
properties. While the DAO yield remains constant with an
increase in solvent, the degree of separation of individual
components will be improved, then a better quality (proper-
ties) of DAO will be obtained. Therefore, an accurate SDA
process model is beneficial to analyze the influence of
operation variables and raw material content in the production
process on DAO yield.20

2.1.2. Importance of Yield and Properties of DAO. The
SDA process plays a vital role in upgrading heavy oils and
removes impurities that can reduce the impurity and improve
the cracking performance content of DAO. Carbon residue is
an important index for evaluating its coking tendency. The
composition of saturates (S), aromatics (A), resins (R), and As
dictate its cracking performance. The content of the impurities
in DAO such as sulfur, nickel, and vanadium are important
evaluation parameters of process operation for the SDA
process. The SDA process is an intermediate link in the whole
refining process, and the yield and quality of DAO will affect
the production efficiency of the next link. Among the many
properties affecting DAO cracking performance, CCR, S, A, R,
and As are the most important properties of DAO, where the

calculation of DAO’s product yield and the solvent ratio refers
to eqs 1 and 2.

the DAO yield
DAO flow

total feed flow
100%= ×

(1)

the solvent ratio
total solvent flow

total feed flow
100%= ×

(2)

2.2. RFs for Variable Importance Measurements. RFs
is an ensemble learning method. RFs has higher accuracy in
feature importance evaluation due to its strong robustness.21 In
the industrial production process, the characteristic of high
dimension of industrial data often affects the complexity and
prediction performance of the model. A forest-based variable
selection algorithm can analyze the distribution of variables to
measure the importance of each variable, and it has been
proved in several cases that the algorithm can identify
important information in different applications.22 There are
also cases comparing and analyzing the performance of
different methods based on RFs, such as recursive feature
elimination, Boruta, and VarSelRF algorithm.23 The feature
screening process of RFs is shown in Figure 2. The most
important variable is screened out through importance
evaluation of each variable.

2.3. Stacked Denoising Autoencoder. Autoencoder
(AE) is an unsupervised neural network that has powerful
nonlinear expression ability to achieve feature dimension
reduction.24 Deep structure AE can more accurately deal with
the problem of nonlinear distribution. In image processing,
such as thermal image, the process of extracting features from
the model can be revealed by layer-by-layer visualization.25

DAE is a variant of AE. The first is to corrupt original input by
adding some disturbance like Gaussian noise and Mask noise.
Then, the parameters of DAE are trained for reconstructing the
clean input. The objective of DAE is to learn denoised features
which can be decoded back into the clean input, which can
make the encoded and extracted features have strong
robustness.26 The process of DAE extracting features is
shown as Figure 3. First, the original input x is destroyed by
matrix of noise qd to get x’ and then the latent variable y is
obtained by encoding operator fθ. Finally, the data are decoded
and restored by operator gθ to get h. L(x,h) is the
reconstruction error function, which aims to update the
network weight so that the restored data h is as consistent as
possible with the original input x.27 Where, the latent variable y
is the feature to be proposed.
SDAE forms a deep network structure by stacking DAE.

Through greedy layer-wise training, each self-coding layer is
trained separately without supervision. The input data are

Figure 2. Sequential logic architecture of RFs.
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reconstructed, and the likelihood function between the input
and reconstructed data are minimized to obtain the
information of the hidden layer in the SDAE network.

2.4. Fuzzy C-Means. Fuzzy c-means is a kind of fuzzy
clustering algorithm with membership function, which has
strong robustness. The membership function can express the
degree to which a sample x belongs to the set A, and the range
of its independent variables is all possible objects belonging to
the set A. This is the fuzzy idea in FCM algorithm. Objective
function of FCM is essentially the sum of Euclidean distances
(the sum of squared errors) from each point to each class.28

Suppose a data set A is divided into C classes, then there are C
class centers, and μij

m represents the membership degree of
sample xi to clustering center cj. ||xi−cj||2 is the square of the
Euclidean distance between each sample point xi and the
current class center point. Therefore, our objective function Jm
is equivalent to making each sample point have a
corresponding class, so that the distance from the sample
point to the class center is the shortest. The process of
clustering is the process of minimizing the objective function.29

When the objective function converges, the final clustering
result can be obtained. The objective function refers to eq 3.

J u x c m, 1m
i

N

j

C

ij
m

i j
1 1

2= || || <
= = (3)

eqs 4 and 5 are formulations of membership degree and
cluster center, respectively. The clustering principle of the
highest intra-group similarity and the lowest inter-group
similarity can be ensured by minimizing the objective function
by finding the clustering center cj of each group.

30

( )
u

1
ij

k
C x c

x c

m

1

2/ 1
i j

i k

=

=
|| ||
|| || (4)

c
u x

u
j

i
N

ij
m

i

i
N

ij
m

1

1

=
·=

= (5)

eq 6 is the termination condition, where t is the number of
iteration steps and ε is a small constant representing the error
threshold. uij and cj are updated iteratively until the maximum
change of membership degree does not exceed the error
threshold. This process eventually converges to local minima
or saddle points of Jm.

u umax
ij

ij
t

ij
t( 1) ( ){| } <+

(6)

Steps of FCM algorithm:

(1) Select the number of categories C and the appropriate m
to initialize the matrix u0 determined by the membership
function (initialized between random values [0,1]).

(2) Calculate the central value of clustering cj.
(3) Calculate the new membership matrix uij.
(4) Compare uij(t+1) and uij(t). If the change between them is

less than a certain threshold, stop the algorithm;
otherwise, turn to (2).

2.5. Modeling Method for Prediction of Yield and
Properties of DAO. 2.5.1. Long Short-Term Memory.
LSTM31 is a variant of recurrent neural network, whose
internal structure includes memory gates that can save part of
information. Therefore, LSTM partly overcomes the problems
of vanishing and exploding gradients of the traditional
recurrent neural network. LSTM selects the information to
be remembered and the information to be forgotten through
memorizing (input gate, forgetting gate, and output gate) and
two states (cellular state and hidden state), so as to make long-
term dependence of network learning.32 Due to the memory
function of LSTM, LSTM is gradually applied to industrial
time series analysis and prediction. A machine learning method
combining CNN and LSTM can accurately predict the entire
particle trajectory and surface erosion profile.33 LSTM can
effectively predict the CH4 leakage source of chemical
processes, and it is found that the model with larger time
steps has better performance and stronger generalization
ability.34 A maximum correntropy criterion-based LSTM
(MCC-LSTM) neural network is proposed to develop a
reliable soft sensor model for quality prediction, which can
identify the outliers and reduce their negative effects on the
prediction in some extent.35

The structure of LSTM cell is shown in Figure 4. The LSTM
network includes four memory gates (for a sample i as

ct
i d 1h× , input it

i, forget f t
i, update gt

i, and output ot
i gates

d 1h× ),36 which can selectively memorize and forget the
relevant information. The forget gate through eq 7 chooses to
forget some information from the past moment and input gate
(refer to eqs 8 and 9) and remember some information from
the present moment. The update gate combines past and
present information to generate new information by eq 10.
The output gate can determine the information in the state to
be routed to the output and the calculation as shown in eqs 11
and 12.

f W X h b( , )t
i

f t
i

t
i

f1= ·[ ] + (7)

i W X h b( , )t
i

i t
i

t
i

i1= ·[ ] + (8)

c f c i gt
i

t
i

t
i

t
i

t
i

1= + (9)

Figure 3. Structure of DAE.

Figure 4. Structure of LSTM cell.
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g W X h btanh( , )t
i

g t
i

t
i

g1= ·[ ] + (10)

o W X h b( , )t
i

o t
i

t
i

o1= ·[ ] + (11)

h o ctanh( )t
i

t
i

t
i= (12)

where σ() is the sigmoid activation function; tanh() is the
hyperbolic tangent function; wi, wf, wg, and wo are the weights
of each gating unit; bi, bf, bg, and bo are the bias of each gating
unit; and ⊙ is the Hadamard product. Additional LSTM
details are in Piyush Agarwal et al.37

2.5.2. Convolutional Neural Network. CNN is a deep
neural network with strong feature extraction ability. Its main
characteristic is the use of a shared parameter filter to scan the
previous feature graph, which can significantly reduce the size
of the parameter space.38 The convolution layer extracts local
features of input data through convolution operation. The size
and strides of the convolution kernel determine the feature
extraction effect of the convolution layer.39 The results of
convolution are down-sampled by the pooling layer to obtain
local significant feature information, which aim to reduce
network parameters, reduce computation, and avoid overfitting
to some extent.40 The full connection layer is usually located in
the last several layers of CNN, which is used to collect
information and obtain the value of the predicted target.
2.5.3. Multilayer Perceptron. Multilayer perceptron (MLP)

is a widely used ANN with multilayer feedforward structure
and has nonlinear system modeling capability.41 The MLP
contains at least one hidden layer, which is fully connected to
each other.42 MLP uses activation functions to find
mathematical relationships between inputs and outputs. In
the data set of nonlinear relationship, nonlinear activation
functions such as logistic function (Sigmoid) and hyperbolic
tangent function (tanh) are often used.43

2.6. Model Training Strategy and Testing. The data set
used in this paper is from the production data of the SDA
industrial device. Because samples have different physical
meanings and dimensions, they cannot be directly used as
input data for network training. SDA data were normalized to
[0,1] through eq 13. RFs is used for feature selection. After the
data are reduced to two dimensions by DAE, FCM clustering
algorithm is used for cluster analysis to realize the division of
SDA process conditions. LSTM sub-models under different
operating modes are established. In the training process, the
appropriate loss function and optimizer need to be selected.
Also, the grid method is used to optimize the network
structure and parameters for each model. During the model
testing phase, the output data are inversely normalized through

eq 14. The mean absolute percentage error (MAPE), root
mean square error (RMSE), mean square error (MSE), mean
absolute error (MAE), and R-square (R2) are adopted to test
models and the evaluation function is shown in eqs 15−19.

X
x x

x x
min

max min
=

(13)

x X x x x( )max min min= × + (14)

n
Y Y

Y
MAPE

1

i

n
i i

i1

=
= (15)

n
Y YRMSE

1
( )

i

n

i i
1

2=
= (16)

n
Y YMSE

1
( )

i

n

i i
1

2=
= (17)

n
Y YMAE

1

i

n

i i
1

= | |
= (18)

R
Y Y

Y Y
1

( )

( )
i
n

i i

i
n

i i

2 1
2

1
2= =

= (19)

where Yi is the actual value, Yi is the predicted value, Yi is the
average value of the actual value, and n is the number of test
samples. The lower the values of MAPE, RMSE, and MRE, the
better the performance of the model. When the value of R2 is
closer to 1, the prediction effect of the model is more accurate.
Finally, through the comparison of model performance, the

superiority of the model is proved. The workflow of the
predictor of DAO properties is shown in Figure 5.

3. RESULTS AND DISCUSSION
3.1. Data and Preprocessing. In this paper, the data were

collected from the laboratory information management system
of the SDA process of a petrochemical company in China and
were processed as follows: (1) Due to noise, environment, and
other reasons, the sensor cannot detect the value or the
detected value is abnormal. Therefore, it is necessary to
eliminate the data of large fluctuation period and instrument
abnormal period and fill in the missing value. First, some
outliers were eliminated through expert experience. Second,
the remaining outliers are eliminated by using the 3σ principle.
Missing values were processed by means of mean filling. (2)

Figure 5. Workflow of the predictor of DAO properties.
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Compared with the frequent changing and sufficient opera-
tional data in the DCS, the update period of the properties
data in the laboratory information management system was
lengthy which was generally 8, 24 h or even several days and
the data were insufficient. At the same sampling frequency,
there may be missing data for oil properties. Therefore,
interpolation was used to process the samples to integrate the
properties data and operating condition data according to the
sample timestamp, which made the sample points continuous
in time. (3) The calculation of DAO’s product yield and
solvent ratio refers to eqs 1 and 2. This paper collected over
25,000 historical data accumulated during the operation period
from April 2017 to July 2017. The data set included a total of
65 variables such as raw materials and operational variables
introduced, and the data acquisition interval was 5 min.
Through the preprocessing of missing values and outliers, as
well as the calculation of relevant yields, 25,000 samples were
finally retained as the raw data of the model. In addition, our
data were continuous numerical data, so there was no need to
transform the data. In this paper, there raw data will be used to
establish the prediction models of yield, CCR, A, As, R, and S
of DAO in the SDA process.

3.2. Importance of Variables. Because the high
dimension of the original data will increase the complexity of
the model and make the model easy to overfit, using RFs for
feature selection can reduce the number of variables. RFs was
used to divide the raw data into training data and OOB data
and take sample from training data by bootstrapping
procedure. Then, the importance of each feature was calculated
and the features were voted on using the OOB error to
determine the selected variable. Through experiments, 21
variables which consisted of 11 properties items and 10
operating conditions were selected as the input variables of the
prediction models. Figure 6 shows the relative importance of
the top 21 initial input variables in the models of DAO yield
and DAO CCR. As shown, the properties of feed such as S, A,
R, As content, and metals’ content are very important in
predicting the yield and CCR content of DAO. The
temperatures of extraction tower (TR1T and TR1B) have a
significant influence on DAO yield. Table 1 shows the detailed
information of model input variables after feature selection.

3.3. Analysis of the Time Lag Effect between Yield
and Properties of DAO and Operating Conditions. The
complexity, multiscale characteristics, and continuity of the
SDA process result in many variables affecting product yield
and performance. At the same time, these characteristics also
lead to significant differences of production data in frequency,

diversity, and relationship time lag. Traditional ANN cannot
effectively extract the information on the time lag relationship
between model input (various operational variables and raw
material properties data) and model output (yield and
properties of DAO). Therefore, in this paper, the LSTM
neural network was used to analyze the time lag effect of
related operational variables on yield and properties of DAO in
this paper. In the process of time lag analysis, the production
process was divided into a mixing unit of residue and solvent,
an extraction tower, and a settlement tower according to the
flow sequence of materials in the device. The initial prediction
model that took DAO yield as the prediction target was
constructed, and the time lag relationship between operating
conditions (in three units) and DAO yield was investigated in
different time window sizes. The MAPE between the actual
value and the predicted value of DAO yield was taken as the
judgment standard. Finally, three timing analysis results were
obtained, as shown in Figure 7. When the time window sizes
were 25, 20, and 15 min, respectively, the MAPE of the model
results reached the minimum. That is, through the existing data
acquisition method, the DAO yield data had a lag effect of 25,

Figure 6. Relative importance of the initial input variables in the SDA models.

Table 1. Input Features of the SDA Process Model

feature type Description unit

feed properties density (ρVR) kg/m3

kinematic viscosity μ) mPa/s
Conradson carbon residue content (wCCR) ω %
sulfur content (wS) ω %
iron content (wFe) mg/kg
nickel content (wNi) mg/kg
vanadium content (wV) mg/kg
saturated hydrocarbons (wSH) ω %
aromatic hydrocarbons (wAH) ω %
resin content (wR) ω %
asphaltene content (wA) ω %
mass flow (FVR) t/h

operating variable inlet temperature of extraction tower (TR1I) °C
top temperature of extraction tower (TR1T) °C
bottom temperature of extraction tower
(TR1B)

°C

inlet temperature of settlement tower (TR2I) °C
top pressure of settlement tower (PR2T) Mpa
top temperature of settlement tower (TR2T °C
bottom temperature of settlement tower
(TR2B)

°C

diluent solvent temperature (TR2FRJ) °C
the ratio of solvent to VR (RA)
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20, and 15 min, respectively, relative to the mixing unit of oil
and solvent, extraction column, and sedimentation column.
The results of this time lag analysis also conformed to the
production principle of the SDA process, that is, after mixing
residuum and solvent, it entered the extraction tower for two-
phase reverse extraction and further settled the R in residuum.

3.4. Model Development and Assessment. 3.4.1. Effect
of Dimensionality Reduction on Clustering Results. Due to
different operating modes, the feature distribution of sample
points is different. In the process of clustering, sample points
with similar feature distribution will form clusters as the same
category. However, the high-latitude characteristics of
industrial data will increase the computational amount and
complexity of clustering and affect the clustering results, so
dimensionality reduction is conducive to improving the
accuracy of clustering. In addition, different dimensionality
reduction methods also have different effects on the clustering
effect. As shown in Figure 8, iris, wine, abalone, and glass were

used for verification in this paper. Taking K-means clustering
algorithm as an example, the effects of PCA, KPCA, LLE, and
SDAE on clustering accuracy were investigated (all dimension-
ality reduction methods were reduced to two dimensions).
Compared with the clustering accuracy without dimension
reduction, KPCA and SDAE with nonlinear expression ability
can improve the clustering accuracy in the four data sets, and
SDAE-K-means has the highest clustering accuracy in the four
data sets.
Clustering in actual production often does not have very

clear boundary division. Different from traditional hard
clustering methods such as K-means, FCM is a flexible
clustering method, which determines the degree to which each
sample belongs to each cluster center through the concept of
fuzzy membership degree. Therefore, in order to make the

clustering results more fit, SDAE-FCM was used in this paper
to cluster the data of the SDA process to achieve the purpose
of working condition division. SDAE was used to reduce the
data dimension from 21 to 2. The number of hidden layer
nodes was 10, 5, and 2, the activation function was the sigmoid
function, the noise selection randomly set 40% of input
features to 0, the learning rate was set to 0.007, and the
number of training rounds of each layer was set to 3000. FCM
was used to cluster the data after the dimension reduction of
SDAE, and the clustering effect was evaluated by eq 20, where,
tr(·) is the trace of the matrix and n is the number of sample
points.

tr
n

(UU )T

(20)

The number of clusters was set to an integer ranging from 2
to 7. The visual clustering effect is shown in Figure 9. When
the number of clusters was 2, 4, 5, 6, and 7, the samples in a
certain region can be divided into two categories. When the
number of clusters was 3, the clustering result was significantly
better, and the value of FPC was the highest. Therefore, the
SDA process was divided into three operating modes.
3.4.2. Optimization and Validation of the LSTM Model.

According to the operating mode division result as mentioned
in Section 3.4.1, this paper selected 5000 sets of data under a
certain operating mode and were normalized by eq 13. The
data were divided into training set and test set according to the
time series, in which the training set (validation set was also
extracted 20% of training set according to time series) and test
set was 80 and 20% of the 5000 groups of data, respectively.
The established model performance by LSTM with different
structures (single layer, double layer, and three layer) and
numbers of neurons will be evaluated by using the grid method
to obtain optimized structures of the LSTM neural network.
According to Table 2, the LSTM model with three hidden
layers had minimum RMSE on DAO yield (30 neurons in the
first layer, 50 neurons in the second layer, and 50 neurons in
the third layer) and was finally adopted in this paper. In
addition, the performance of LSTM models with different time
window sizes were evaluated by MAPE evaluation function,
and the optimal time window size was finally obtained as 25
min. Figure 10 shows that the convergence trend of the DAO
yield model on the training set and the validation set, and the
convergence result of the model on the validation set is close
to the convergence result on the training set. Figure 11 shows
the fitting effect and prediction error of training samples and
test samples on the model, which indicates that there is no
overfitting in the training of the model.

Figure 7. Time lag effect of operating conditions on DAO yield under time window sizes relative to (a) residue and solvent mixing unit, (b)
extraction tower, and (c) settling tower.

Figure 8. Effects of different dimensionality reduction methods on
clustering results.
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3.4.3. Comparison of Models Established by Different
Methods. To investigate the performance of the LSTM model,
the LSTM model was compared with the optimized CNN and
MLP models. In CNN and MLP models, data were not divided
into training and test sets according to time series after
normalization, but were randomly sampled. The ratios of the
training set and test set were consistent with that of the LSTM
model. The network structure and parameters of CNN and
MLP models were optimized by gridding, and the results are
shown in Table 3. The performance of these six models on
yield, CCR, S, A, R, and As of DAO are shown in Figure 12.
The MLP model had the worst performance when evaluated

by RMSE, MAPE, and MAE. For the yield prediction model of
DAO, LSTM was obviously better than CNN. In the
prediction of CCR, S, A, R, and As of DAO, LSTM was also
better than CNN, but the performance of the two models was
similar.
During the training process of the model, the weight matrix

of the neural network obtained by each training was different
and had a certain contingency. Therefore, the three models
were trained and predicted 20 times. Using MAE as an
evaluation function, the results of models were analyzed.
Figure 13 shows the MAE distribution of the four models in 20
times. MAE of the MLP model are scattered and are generally

Figure 9. When the number of clusters is different, the clustering diagram of FCM and the quantification of clustering effect of the fuzzy partition
coefficient are shown. (a−f) clustering effects of different clustering quantities, respectively. The better the clustering effect, the higher the FPC.

Table 2. Performance Comparison of LSTM Models with Different Network Structures

model number of hidden layers parameter setting hyperparameters selected hyperparameter RMSE

LSTM 1 number of neurons in the first layer [40, 45, 50, 55, 60, 65, 70] 60 0.613
activation [tanh, sigmoid, relu] relu

2 number of neurons in the first layer [30, 35, 40, 45, 50, 55, 60] 50 0.595
number of neurons in the second layer [40, 45, 50, 55, 60, 65, 70] 65
activationr [tanh, sigmoid, relu] relu

3 number of neurons in the first layer [20, 25, 30, 35, 40, 45, 50] 30 0.589
number of neurons in the second layer [40, 45, 50, 55, 60, 65, 70] 50
number of neurons in the third layer [40, 45, 50, 55, 60, 65, 70] 50
activationr [tanh, sigmoid, relu] relu

Figure 10. Relationship between DAO yield MSE value and iteration
times in the LSTM model.

Figure 11. Comparison between the actual value of DAO yield in the
LSTM model and the predicted value of the LSTM model. (a)
Comparison of the actual value of DAO yield with the model value
and (b) absolute error between the actual DAO yield value and the
model value.
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larger than models of LSTM and CNN in terms of yield, CCR,
S, A, R, and As of DAO. Compared with CNN, the models
established by LSTM for yield, CCR, S, A, R, and As of DAP
had better performance.
3.4.4. Performance of the Multicondition LSTM Model

based on SDAE-FCM. In Section 3.4.1, it has been proved that
dimension reduction through SDAE can improve the accuracy
of clustering, and combined with FCM clustering algorithm,
SDA process data can be accurately divided into three
operating modes. The sub-samples of each operation mode
were further divided into training set, validation set, and test
set. The network structure and parameters of each LSTM sub-
model were optimized by the grid method. In the prediction
stage, the established multicondition LSTM model is predicted
by switch selection. The operation mode of input data was
identified by SDAE-FCM, and the corresponding LSTM sub-
model was selected to output the prediction results. Compared
with the ordinary LSTM model, the multicondition LSTM
model can output the corresponding prediction results
according to the different operation modes. Figure 14 shows
the performance comparison between the multicondition
LSTM model and the ordinary LSTM model. Although the
R2 of both models is more than 0.9, the performance of the
multicondition LSTM model is significantly better than that of
the ordinary LSTM model. More SDA industrial process data
were collected and used to further verify the predictive ability

of the multicondition LSTM model. Figure 15 shows the
prediction effect of the multicondition LSTM model on yield,
CCR, S, A, R, and As of DAO. Prediction results indicate that
the errors were very small, and R2 were all greater than 0.95.

3.5. Sensitivity Analysis of Operating Variables.
Through sensitivity analysis, the effects of some important
raw material properties and operating conditions on the yield
of the product were investigated, such as μVR, WCR, WS, TR1T,
and PR2T. Figure 16 shows the influence of the properties of
various raw materials and operating conditions on the yield.
The results show that the DAO yield decreases with the
increase of μVR, WCR, WS, nickel and vanadium content
(WNi+V), and WR, while the increase of WSH and WAH
contributes to the DAO yield. In terms of operating conditions,
the increase of TR1I, TR1T, TR2T, TR2FRJ, and RA is beneficial to
improve DAO yield, while the increase of TR2I, PR2T, and TR2B
will decrease DAO yield. In addition, μVR, WNi+V, and WR of
raw materials have great influence on DAO yield. The TR1I,
TR1T, TR2I, and RA also have great influence on DAO yield. It
can be seen that the effects of various raw material properties
and operational variables predicted by the LSTM model on
DAO yield all conform to the principle of two-phase
countercurrent extraction in the SDA process.

3.6. Benchmarking of the Method in the Tennessee
Eastman Process. The multicondition LSTM in this paper is
benchmarked with Tennessee Eastman process data. Multi-
condition LSTM is used to predict the future process
measurement, and OC-SVM is used for fault detection. The
model needs to be tested with a predefined fault margin

margin level 2 max(anomaly )count= ×

Table 3. Network Structure and Parameters of the
Optimized Models of CNN and MLP

model parameter
setting

hyperparameters
selected

hyperparameter

CNN number of conv_filters [16, 32, 64, 96] 64
conv_kernel size [1, 2, 3, 4] 2
activation [relu, tanh] relu
conv_strides [1, 2, 3] 1
pool_size [1, 2] 2
number of neurons in the fully
connected network

[30, 40, 50, 60,
70]

60

MLP solver [adam, sgd,
lbfgs]

lbfgs

number of neurons in the first
layer

[5, 10, 15, 20,
25, 30]

20

number of neurons in the
second layer

[5, 10, 15, 20,
25]

10

alpha 1e-4
activation [tanh, sigmoid,

relu]
relu

Figure 12. Performance comparison of CNN and MLP models with LSTM models at yield, CCR, S, A, R, and As of DAO. (a−c) Comparison of
model evaluation of RMSE, MAPE, and MAE respectively.

Figure 13. Comparison between the LSTM model, CNN, and the
MLP model on MAE.
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If the number of outliers exceeds the marginal level, the
tested window is predicted to be in an abnormal condition.
Otherwise, it is defined as in a normal operating condition.
This paper compares multicondition LSTM OC-SVM with
CNN-LSTM OC-SVM.18 Among them, the sampling window
size (window size is 100) and OC-SVM parameters of the two
methods are consistent. Tennessee Eastman process faults are
shown in Table 4, and the fault detection effect of
multicondition LSTM OC-SVM is shown in Figure 17. The
blue line in the figure is the fault margin. When the data
anomaly points exceed the blue line, a fault is considered to
have occurred. Compared with CNN-LSTM OC-SVM,
multicondition LSTM OC-SVM is not easy to appear as a
false alarm in the fault prediction of IDV4, IDV6, and IDV11
and can predict the fault earlier in the fault prediction of IDV1,
IDV6, and IDV12. The reason may be that the division of
working conditions makes the data more conducive to fault
detection. The performance of multicondition LSTM OC-
SVM in IDV5 fault prediction is not as good as that of CNN-
LSTM OC-SVM. It may be that IDV5 is insensitive to changes
in operating conditions. Compared with CNN-LSTM OC-
SVM, multicondition LSTM OC-SVM has better performance
in some fault prediction scenarios, including false alarms and
earlier fault prediction, which can provide better guidance for
the safety and effective control of the industrial process in time.

4. CONCLUSIONS
A time series model is applied to the SDA industrial process
effectively. Before modeling, RFs is used to analyze the
importance of each variable of SDA process data, and 21
variables with the greatest influence on yield are selected. On
this basis, the time lag effect of operating conditions of residue
and solvent mixing unit, extraction tower, and settling tower on
DAO yield is analyzed, and the results indicate that the model
needs to have the ability to deal with time lag data. The effects
of different dimensionality reduction methods on clustering
results are also investigated. The results show that SDAE has
the ability of accurate dimensionality reduction. At the same
time, the FCM clustering algorithm is combined to realize the
operating modes division of the SDA process. LSTM is used to
establish the model with the data of one of the operating
modes on yield, CCR, S, A, R, and As of DAO for dealing with
time lag relationship of the SDA process, and compare with
models of CNN and MLP. In the process of comparison, the
performance of each model is analyzed through MAE, MAPE,
RMSE, and the stability of each model on yield, CCR, S, A, R,
and As of DAO is further investigated through 20 training and
prediction models. It is concluded that the LSTM model has
the best predictive performance. Then, based on the results of
SDAE-FCM, a multicondition LSTM model is established.
Compared with the ordinary LSTM model, the prediction
accuracy of multicondition LSTM is higher. Through more

Figure 14. (a,b) Prediction accuracy of the multicondition LSTM model and the LSTM model at DAO yield.

Figure 15. (a−f) Prediction effect of the multicondition LSTM model on yield, CCR, S, A, R, and As of DAO.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.2c06624
ACS Omega 2023, 8, 5437−5450

5446

https://pubs.acs.org/doi/10.1021/acsomega.2c06624?fig=fig14&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c06624?fig=fig14&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c06624?fig=fig14&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c06624?fig=fig14&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c06624?fig=fig15&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c06624?fig=fig15&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c06624?fig=fig15&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c06624?fig=fig15&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.2c06624?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


SDA process data verification, the multicondition LSTM
model still has a good prediction effect. Finally, the effects of
the properties of raw materials and operating variables on the
yield are analyzed by sensitivity analysis, and the results are
consistent with the principle of two-phase countercurrent
extraction in the SDA process. In this paper, the proposed
methods are benchmarked with Tennessee Eastman process
data. Through comparison, it is found that the proposed
methods have better results in fault detection. Because the
proposed methods can reduce the possibility of false alarms
and predict the faults in advance, it can effectively prevent the
system from being in fault condition and ensure production
safety. Because the method in this paper can well solve the

Figure 16. Effects of feed properties and operating conditions on DAO yield (ΔYield is the change value of DAO yield after changing the
properties of raw materials or operating conditions).

Table 4. Tennessee Eastman Process Faults

fault ID description type

IDV1 A/C feed ratio, B composition constant
(stream 4)

step

IDV4 reactor cooling water inlet temperature step
IDV5 condenser cooling water inlet temperature step
IDV6 A feed loss (stream 1) step
IDV11 reactor cooling water inlet temperature random

variation
IDV12 condenser cooling water inlet temperature random

variation
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problems of the industrial process variable, the variable
working conditions, and the time series of process data, this
method can not only establish accurate yield prediction models
in the application of the SDA process but can also predict the
fault earlier and less false alarm in the fault detection of the
Tennessee Eastman process.
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■ NOMENCLATURE
cj the central value of clustering
uij membership matrix
i the sample
iti input gate
gti the update gate
cti the cell state
oti the output gate
hti the output value
t the input at time
σ the element-wise sigmoid
tanh the hyperbolic tangent functions
WO, Wf, Wi, Wg the input weight matrices
⊙ Hadamard product
bf, bi, bg, bo the bias parameters
n the number of test samples
Yi the actual value of the model
Yi

the predicted value of the model
Yi the average value of the model
ρVR density
μVR kinematic viscosity
wVR carbon residue content
ws sulfur content
wFe iron content
wNi nickel content
wV vanadium content
wSH saturated hydrocarbons
wAH aromatic hydrocarbons

Figure 17. Test result of Tennessee Eastman early fault detection.
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wR resin content
wA asphaltene content
FVR mass flow
TR1I inlet temperature of extraction tower
TR1T top temperature of extraction tower
TR1B bottom temperature of extraction tower
TR2I inlet temperature of settlement tower
PR2T top pressure of settlement tower
TR2T top temperature of settlement tower
TR2B bottom temperature of settlement tower
TR2FRJ diluent solvent temperature
RA the ratio of solvent to VR
wNi+V nickel and vanadium content

■ ACRONYMS
A aromatics
As asphaltenes
CCR Conradson carbon residue
DAO deasphalted oil
DCS distributed control system
DOA deoiled asphalt
FCM Fuzzy c-means
LIMS laboratory information management system
LSTM long short-term memory
MAE mean absolute error
MAPE mean absolute percentage error
MSE mean square error
Ni nickel
R resins
R2 R-square
RFs Random Forests
RMSE root mean square error
S composition of saturates
SDA solvent deasphalting
SDAE stacked denoising autoencoder
V vanadium
VR vacuum residuum
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