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Abstract

Kisspeptin 1 is a neuropeptide hormone of the RFamide family, which act as an upstream

regulator of brain-pituitary-gonad (BPG) axis in most vertebrates including teleosts. In the

present study, a 16 amino acid long putative mature bioactive peptide (kiss 1) from preprokis-

speptin 1 of golden mahseer, Tor putitora (Hamilton, 1822), was synthesized and character-

ized using an integrated (experimental and in silico) approach. The far-UV circular dichroism

(CD) spectrum of this peptide was evaluated both in aqueous and membrane mimicking sol-

vents (TFE, HFIP and Dioxane). The results indicate that kiss 1 peptide adopted helical, turn

and β conformations in membrane like environments. The near-UV CD spectroscopy was

also carried out to examine the tertiary packing around aromatic residues of kiss 1 peptide

and the peptide-membrane complex. The kiss 1 peptide exhibited little signal in water, but a

prominent negative band was observed at around 275 nm when membrane mimetic solution

was added. The observed ordered conformations of kiss 1 peptide in the different solvents

indicated its potential biological activity which could enhance the secretion of gonadotropin-

releasing hormone (GnRH) at BPG axis. The conformational information generated from the

present study reinforces the application prospects of bioactive synthetic peptide analogs of

kisspeptin 1 in improving the reproductive performances of important cultivable fish species.

Introduction

Kisspeptin 1 (kiss 1), a neuropeptide encoded by kiss1 gene was first shown to play a role in the

reproduction, by the discovery that dysfunction of the GPR54/kiss-1 receptor (kiss1R) causes

idiopathic hypogonadotropin hypogonadism (iHH) in some patients [1,2]. In brain, the kis-

speptin neurons are mainly present in the arcuate and anteroventral periventricular nucleus of

hypothalamic region, and projecting into the preoptic area where kiss1R (GPR54) transcripts

are colocalized in gonadotropin-releasing hormone (GnRH) neurons [3–8]. Functionally, ago-

nistic and receptor binding abilities of N-terminal truncated kisspeptin-54 peptides have been

analyzed by calcium mobilization and competitive binding assays using CHO cells expressing

human kiss1R [9] and revealed that C-terminal 10-amino acid peptide, kisspeptin-10 (Kp-10),
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has 3-to10-fold more potent agonistic and receptor binding activities than the kisspeptin-54

for kiss1R. In fact, it is reported that the modified Kp-10 analog, [dY]1 Kp-10, exhibits an in
vivo bioactivity even higher than the endogenous peptide, Kp-10 [10].

Further, based on the analysis of receptor binding and activity of a number of human Kp-

10 analogs, Roseweir et al. [11] emphasized the importance of the five C-terminal amino acids

in receptor activation. Specifically, they found that amino acid substitutions at positions 1, 5,

and 8 resulted in a high-affinity kiss1R antagonist, suggesting the importance of these posi-

tions for the bioactivity of Kp-10. Similarly, in a decapeptide analog of kisspeptin (45–54)

developed by substitutions with specific amino acids at D-Tyr45, D-Trp47, azaGly51 and Arg

(Me)53, Asami et al. [12] found that replacement of amino acid at positions 45–47 or N-termi-

nal truncation of one amino acid (nonapeptide, kiss 1–305) substantially improves the receptor

agonistic activity and serum stability. Subsequent to their study, pharmacological profiling of

two other nonapeptide Kp analogs TAK-448 and TAK-683, revealed high receptor-binding

affinity and fully potent agonistic activity for rat kiss1R, comparable to Kp-10 [13].

Unlike mammals, long kiss peptides are reported to be more potent activators of kisspeptin

receptors in several fish species such as zebrafish (Danio rerio) [14], striped bass (Morone saxa-
tilis) [15], chub mackerel (Scomber japonicus) [16], medaka (Oryzias latipes) [17] and, Euro-

pean sea bass (Dicentrarchus labrax) [18]. Moreover, majority of the fish kisspeptin 1 have

-RY-NH2 motif at C-terminal as compared to -RF-NH2 motif reported in most mammals [14].

Among teleosts, GPR54 receptor in GnRH neurons was first identified in a cichlid fish, tilapia

[19]. Following this, kiss 1 and GPR54 systems have been identified in several species of tele-

osts [20,21]. GnRH, the downstream target of kisspeptin is known to play a significant role in

stimulating the synthesis and release of the gonadotropins (GTH) i.e. follicle-stimulating hor-

mone (FSH) and luteinizing hormone (LH), which in turn act on the gonads to stimulate the

release of sex steroids that induce gonadal maturation [22]. Therefore, the functional role of

kisspeptin as an upstream regulator of puberty and seasonal reproduction in various fishes is

assuming greater significance [23].

Aquaculture production has been enormously benefitted by the ability to stimulate

spawning as and when desired, even beyond the natural breeding season of a particular

species, by hormonal manipulation of gonadal maturation using exogenous LH or GnRH

agonists [24]. Recently, synthetic kisspeptin administration was found promising in hypo-

thalamic GnRH stimulation and induction of gonadal maturity in various fish species viz.

European sea bass [25], zebrafish [26], goldfish (Carassius auratus) [27] and yellow tail

kingfish (Seriola lalandi) [28]. However, there is no information on the solution conforma-

tion of fish kisspeptin 1 peptide in its native membrane environment, which is critical to the

development of potent synthetic kisspeptin peptide analogs. Considering the fact that the

functional activity and therapeutic potential of any peptide is dependent on its ability to

retain its native conformation in biological environment, the present study was undertaken

to analyze the conformation of a 16 amino acid long putative mature bioactive peptide from

preprokisspeptin 1 of a fish in various membrane mimicking environments by circular

dichroism (CD) spectroscopy and in-silico analysis.

Materials and methods

Materials

The solvents used for peptide synthesis were mostly of HPLC grade and dry in nature. The

Fmoc protected amino acids, rink amide 4-methylbenzhydrylamine (MBHA) resin, 1-hydro-

xybenzotriazole (HoBt), O-(Benzotriazol-1-yl)-N,N,N0,N0-tetramethyluronium hexafluoropho-

sphate (HBTU), diethyl ether, HPLC water were obtained from Merck (India and Germany)
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and GL Biochem (Shanghai, China). N, N-dimethylformamide (DMF), dichloromethane

(DCM), dioxane, piperidine, acetonitrile (ACN), acetic anhydride, trifluoroacetic acid (TFA)

and methanol were from SD Fine chemicals (India). Trifluoroethanol (TFE), hexafluoroiso-

propanol (HFIP) and diisopropyl ethylamine (DIEA) were from HiMedia (India).

Peptide synthesis and purification

The solid phase synthesis of the kiss 1 peptide of golden mahseer was carried out on 4-methyl-

benzhydrylamine (MBHA) rink amide resin (0.65 mmol.g-1) with standard methodology

using Fmoc-chemistry [29]. The purpose of using rink amide resin was to incorporate amide

group to the C-terminus of the peptide as amide group is crucial for its biological activity [30].

In brief, the resin was allowed to swell in N, N-dimethylformamide (DMF) at room tempera-

ture for 2 h in a peptide synthesis vessel. The Fmoc protecting group was removed from the

resin using 20% piperidine in DMF for 30 min and the resin was washed three times each with

DMF and Dichloromethane (DCM). Fmoc-protected amino acid (3 equivalents relative to

resin loading), 1-hydroxybenzotriazole (HOBt) (3 equivalents), O-(Benzotriazol-1-yl)-N,N,N0,
N0-tetramethyluronium hexafluorophosphate (HBTU) (2.9 equivalents) and diisopropyl ethy-

lamine (DIEA) (6 equivalents) were dissolved in dry DMF. The solution was mixed with the

resin and then left at room temperature for 2.5 h with continuous shaking at moderate speed.

The coupling efficiency of the first amino acid was monitored by Kaiser test. The free reactive

groups on the resin were capped by the treatment of the resin with a solution of DMF / DIEA /

acetic anhydride (193:6:1, v/v/v) to prevent the formation of truncated products and the same

was followed for every coupling cycle of new amino acid. After this, the resin was washed three

times each with DMF and DCM respectively. This process was repeated until the desired

length of the peptide was obtained. Following side chain protected amino acids were used for

synthesis of kiss 1 peptide, Asparagine, Glutamine, Serine: trt; Arginine: Pbf; Tyrosine: tBu.

After completion of the whole coupling cycle, the resin was washed three times each with

DMF, DCM and methanol and dried overnight in a desiccator. The dry resin (50 mg) was trans-

ferred to clean 2.0 mL tubes and a 500 μL solution of trifluoroacetic acid (TFA): phenol: thioani-

sole: ethanedithiol (EDT): water (82.5:5:5:2.5:5, v/v/v/v/v) (cleavage mixtures) was added. The

mixture was allowed to stir at room temperature for 3 h. The mixture was filtered and the resin

was rinsed thrice with TFA cleavage solution and the filtrates were pooled together. The filtrate

was washed with cooled diethyl ether that allowed the crude peptide to precipitate and the solu-

tion was centrifuged at 5000 rpm for 10 min to form a pellet of crude peptide. Ether was

decanted, and the crude peptide was dried overnight in a vacuum desiccator.

The crude peptide was purified by reversed phase-high performance liquid chromatography

(RP-HPLC) on a reverse phase C-18 column using water (A)/acetonitrile (B) gradient containing

0.1% TFA. Purification was carried out by injecting 200 μL of a solution of kiss 1 peptide (10 mg

mL-1) at a time into a C-18 semi-prep scale HPLC column (7 × 300 mm; 10 μ particle size). The

RP-HPLC experiment was performed with gradient conditions: initial fixed composition 1% B

to 100% B over 35 min and brought down to 1% within 2 min, and held for 3 min. Flow rate was

2.0 mL min-1. The total time of the gradient run was 40 min. Repeated runs were carried out fol-

lowing the same methodology to get enough purified peptide for further studies. Then, from the

pure eluted fraction, the organic solvent was evaporated and finally lyophilized to yield the puri-

fied peptide. The purity of the collected fraction was further analyzed on RP-HPLC using the

analytical C-18 column (4 × 150 mm; 5 μ particle size) employing same gradient as semi-prepar-

ative RP-HPLC. Mass of the peptide was confirmed by matrix-assisted laser desorption/ioniza-

tion-time of flight-mass spectrometry (MALDI-TOF-MS) from Sandor Life Sciences, India. The

matrix used for molecular weight analysis is sinapic acid (Sigma). For Calibration, protein

Synthesis and characterization of a fish kisspeptin 1 peptide

PLOS ONE | https://doi.org/10.1371/journal.pone.0185892 October 4, 2017 3 / 16

https://doi.org/10.1371/journal.pone.0185892


calibration standard (ProtMix, Bruker Daltonics) was used. The instrument used was MALDI-

TOF/TOF MS (Bruker Daltonics ULTRAFLEX III) and was run in positive mode.

In silico structural analysis

Kiss 1 peptide sequence was analysed by online available secondary structure predictive meth-

ods, PSIPRED [31] and GOR4 [32]. Three-dimensional (3D) structure of the peptide was cre-

ated using PEP-FOLD tool [33] and visualized by Jmol.

Circular Dichroism Spectroscopy

The far-UV circular dichroism (CD) spectroscopy of kiss 1 peptide (0.1 mg mL-1) was carried

out using a Jasco J-810 CD spectropolarimeter (Jasco Corp., Japan). Spectra were recorded

in the far-UV region (190–250 nm) with 1 mm path length, 0.1 nm step resolution, 100 nm

sec-1 speed, 1 s response time, and 1 nm bandwidth. The CD contributions of water/solvents

were subtracted from each spectrum. Each spectrum was recorded as an average of four

scans with continuous mode. The mean residue ellipticity [θ] (given in deg cm2 dmol-1) was

calculated as [θ] = 100ψ/c.l, where ψ is the observed ellipticity in millidegree, c is the con-

centration of the sample in mol litre-1, and l is the optical path length of the cell in cm. The

CD spectropolarimeter was calibrated using the standard solution of ammonium d-10-cam-

phor sulfonate. The computer simulation of CD spectra was used to provide the quantitative

estimation of different secondary structures of the kiss 1 peptide in solution when analysed

using secondary structure estimation software (Spectra Manager). The CD spectra were

recorded in HPLC grade water and trifluoroethanol (TFE) (45 and 90%, v/v), hexafluoroiso-

propanol (HFIP) (90%, v/v) and dioxane (90%, v/v) to mimic the extracellular matrix and

membrane mimicking environments [34,35]. The near-UV CD (255–320 nm) spectra for

kiss 1 peptide (1 mg mL-1) were also recorded in water, TFE and dioxane solvents using

10 mm cuvette for tyrosine side chain residues.

Fluorescence spectroscopy

The intrinsic fluorescence emission spectra of kiss 1 peptide were measured in the presence of

water and TFE (90%, v/v). Measurements were made using a fluorescence spectrophotometer

(LS-55 Perkin Elmer, USA) with excitation at 274 nm in a 1 cm path length quartz cuvette.

Emission spectra were recorded over the wavelength range from 290 to 450 nm.

Results

Synthesis and purification of peptide

A 16 amino acid long putative mature bioactive peptide, kiss 1 (RQNVAYYNLNSFGLRY-NH2)

from preprokisspeptin was chosen based on deduced amino acid sequence (NCBI GenBank pro-

tein id = "AJT39600.1") of golden mahseer (Tor putitora) kisspeptin 1 cDNA (Accession no.

KP710729). The peptide was synthesized on an MBHA rink amide resin using Fmoc chemistry.

The sample was eluted as a single major peak with retention time (RT) 20.73 min (Fig 1) after

optimizing the water/acetonitrile gradient containing 0.1% TFA and the fraction was collected

manually. The molecular mass of purified kiss 1 peptide was determined by MALDI-TOF-MS

(Fig 2). The detected mass (1977.58 Dalton) of the peptide was found to be consistent with theo-

retical mass (1977.19 Dalton). The physicochemical properties of the kiss 1 peptide are provided

in Table 1.
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In silico analysis

Analysis of secondary structure using PSI-PRED and GOR4 showed the presence of β and ran-

dom coil conformations (Fig 3). In addition, three dimensional (3D) structure of kiss 1 peptide

was generated using PEP-FOLD (Fig 4). The predicted 3D structure contains well defined heli-

cal and β segments at N- and C- terminal respectively. The predicted structure was further cor-

roborated with CD data.

Circular Dichroism Spectroscopy

The secondary structures of kiss 1 peptide were analyzed using far-UV CD spectroscopy (Figs

5 and 6). CD spectra of kiss 1 peptide were recorded in water and low polarity solvents viz.

TFE (45 and 90%, v/v), HFIP (90%, v/v) and dioxane (90%, v/v) as they mimic the extracellular

matrix and membrane environment [34,35]. As shown in Fig 5, the spectrum obtained in

water had a negative trough around 195 nm but was devoid of any alpha helical conformations.

It is consistent with the negative minimum at around 195 nm (n! π� shift) and the absence of

positive band around 222 nm (π! π� shift). It indicates a random coil structure. The structure

of the peptide was also analyzed in different concentrations of TFE. At 45% TFE (in water),

Fig 1. Semi-preparative RP-HPLC chromatogram of kiss 1 peptide at 280 nm using C-18 column. Desired peak is marked by arrow.

Retention time is 20.73 min.

https://doi.org/10.1371/journal.pone.0185892.g001
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there was an increase in negative ellipticity at around 210–220 nm along with positive elliptic-

ity (+3000 deg cm2 dmol-1) at around 190–200 nm. Further increase of TFE concentration to

90%, led to a sharp increase in positive ellipticity (+8000 deg cm2 dmol-1) at around 190–200

nm and the negative band around 208 nm was clearly visible. Increment of TFE (45% to 90%,

v/v) concomitantly decreased the 195 nm negative band with a crossover to have strong posi-

tive CD band with a negative double dichroic band at 208 nm with 220 nm shoulder. Further,

the presence of a negative band at around 218 nm indicates the presence of β structure in the

peptide. There was also a weak negative shoulder at around 222 nm. Inception of such CD fea-

tures is due to induction of alpha helical population. It is clearly proved that polarity (biologi-

cal environment) has significant effect on peptide backbone conformation and increment of

TFE concentration or decrease in polarity led to increase in more ordered conformation and it

was at the expense of random coil conformation in peptide. The CD spectra of kiss 1 peptide

in 90% HFIP and 90% dioxane also showed similar features having mixed type of random,

alpha helical, turn and beta being the major structure (Fig 6).

Fig 2. MALDI-TOF mass spectrum of kiss 1 peptide. MS calculated: 1977.19 Dalton, found: 1977p.58 Dalton.

https://doi.org/10.1371/journal.pone.0185892.g002

Table 1. Physicochemical properties of kiss 1 peptide.

Number of residues 16

Molecular weight 1977.19

Iso-electric point pH 10.4

Net charge at pH 7 3

Extinction coefficient 3840 M-1cm-1

https://doi.org/10.1371/journal.pone.0185892.t001
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Fig 3. Secondary structure analysis of kiss 1 peptide using online PSI-PRED (A) and GOR4 (B) tools.

https://doi.org/10.1371/journal.pone.0185892.g003
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In order to study the tyrosine side chain conformational changes as a result of changes in

polarity, CD spectra were recorded in near-UV region (255–320 nm). Fig 7 depicts CD spectra

Fig 4. Three dimensional structure analysis of kiss 1 peptide using PEP-FOLD and visualized by Jmol.

https://doi.org/10.1371/journal.pone.0185892.g004
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Fig 5. Far-UV CD spectra of kiss 1 peptide in water and TFE. (a) CD spectrum in water. (b) CD spectrum in 45% TFE. (c) CD spectrum in 90%

TFE.

https://doi.org/10.1371/journal.pone.0185892.g005

Fig 6. Far-UV CD spectra of kiss 1 peptide in water, HFIP and dioxane. A: (a) CD spectrum in water. (b) CD spectrum in 90% HFIP. B: (c) CD spectrum in

water. (d) CD spectrum in 90% dioxane.

https://doi.org/10.1371/journal.pone.0185892.g006
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of aromatic tyrosyl side chain in kiss 1 peptide in different solvents used to simulate different

low polarity environments that peptide may experience in biological systems. CD spectrum

was recorded in water and have undefined feature suggestive of disordered conformation

around tyrosine side chain. When the polarity of the environment was reduced using different

concentrations of apolar solvent, TFE, there was inception of negative ellipticity with well

defined negative trough at around 275 nm that concomitantly increased with increasing con-

centration of TFE. Further increase in negative ellipticity was observed when 90% dioxane was

used. The results obtained from near-UV CD spectroscopy were further corroborated with

fluorescence spectroscopy of kiss 1 peptide. The peptide showed different fluorescence max-

ima in water and TFE environment (Fig 8).

Discussion

One of the fundamental principles of biology is that protein structure determines protein func-

tion. Based on this, small peptide mimetics of protein structures are emerging as new biomole-

cules which takes advantage of the chemical properties of the parent molecules.

In the present study, a 16 amino acid long putative mature bioactive peptide from prepro-

kisspeptin 1 of golden mahseer was synthesized and characterized using an integrated (experi-

mental and in silico) approach. The kiss 1 peptide was synthesized using Fmoc-chemistry, and

its C-terminal was amidated as C-terminal amide group is crucial for all RFamide family

Fig 7. Near-UV CD spectra of tyrosine side chain residues of kiss 1 peptide in different environments. (a) CD spectrum in water. (b) CD

spectrum in 45% TFE. (c) CD spectrum in 90% TFE. (d) CD spectrum in 90% dioxane.

https://doi.org/10.1371/journal.pone.0185892.g007
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proteins [30]. The peptide was eluted at around 60% acetonitrile with a retention time of 20.73

min which indicates that the peptide is slightly hydrophobic in nature. It is a basic peptide,

and the iso-electric point is 10.4. The molecular mass characterized by MALDI-TOF-MS

shows the unimolecular largest mass peak of 1977.58 Dalton, which conforms to the calculated

mass of the peptide (1977.19 Dalton) and this validates the efficiency of synthesis.

In order to understand the conformation of the synthesized fish kiss 1 peptide, CD spec-

troscopy in different microenvironments was performed. In aqueous solution, CD spectrum

of kiss 1 had a well defined negative extremum at 195 nm, which is a feature of random coil

conformation [36]. Presence of random coil might provide flexibility for the adoption of

ordered structures in different environments that occur in biological systems. In agreement,

the peptide structures generated in PSI-PRED and GOR4 prediction tools also showed random

coil to be the major conformational populations. With the addition of apolar solvent, i.e., TFE

up to 45 and 90%, the CD spectrum showed interesting changes with the appearance of double

dichroic negative band at nearly 208 and 220 nm, and a cross over strong positive maxima at

195 nm. Such features are attributed to the induction of alpha helical population in the peptide

at the expense of random coil. These conformational changes in fish kiss 1 were discrete from

previous observations in some mammalian kiss 1 counterparts such as human Kp10 in dode-

cylphosphocholine (DPC) micelles. Nuclear magnetic resonance (NMR) analysis of human

Kp10 (in DPC micelles) showed that the region surrounding the residues tryptophan 3 to phe-

nylalanine 10 contained several tight turn structures, but no helical conformation, with leucine

8 in the same hydrophobic cluster as phenylalanine 6 and 10 [37]. However, in sodium dodecyl

sulfate (SDS) micelles, NMR studies of human Kp13 showed helical structure which suggests

that the disruption of this conformation could be possible reason for the lower activity of

Fig 8. Fluorescence spectra of kiss 1 peptide. (a) Spectrum in water. (b) Spectrum in 90% TFE.

https://doi.org/10.1371/journal.pone.0185892.g008
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improperly substituted compounds [38]. It is interesting to note that the conformation of

human kisspeptin depends on the composition of membrane in which it is located. On the

other hand, rat Kp10 mainly adopts a combination of helical and disordered conformations in

diphenylcarbodiimide (DPCD) micelles [39]. Corresponding to the CD spectum, the 3D

model of fish kiss 1 peptide also suggests the presence of a stretch of helical structure. The dif-

ferential in-silico structures of fish kiss 1 peptide observed in PSIPRED, GOR and PEPFOLD

concurs with a previous observation on the conformation of an antimicrobial peptide P2-Hp-

1935 from skin secretions of frog,Hypsiboas pulchellus [40]. The peptide, P2-Hp-1935 had ran-

dom coil conformations in PSIPRED and GOR tools as major population but no helical struc-

ture. However, the same peptide exhibited helical structure in 3D modelling as analysed by

PEPFOLD and CD in TFE.

We also observed beta turn segment in the C-terminal of the fish kiss 1 peptide using CD

spectroscopy and in-silico analysis, as reported in case of mammalian kisspeptin peptide,

where turn structures were shown to be associated with biological activity [37]. Importance of

the five C-terminal residues in receptor binding and activation has already been demonstrated

in human kisspeptin analogs [41]. In structure-activity relationship studies of mammalian Kp-

10 by different group of researchers, it was found that the nature as well as orientation of the

side chains of five C-terminal residues are important for receptor binding and activation,

whereas the N-terminal residues are more lenient towards substitution by L-alanine or enan-

tiomer residues [38,41–45]. Moreover, we observed increase in the turn structures (6.8 to

15.5%), when shifting from aqueous to low polarity environment using dioxane. Our synthetic

analog of golden mahseer kiss 1 exhibited disordered conformation in water but adopted

ordered structure when exposed to membrane mimicking solvents like TFE, HFIP and diox-

ane. Specifically this peptide adopts a high proportion of β structure in different membrane

mimetic environment due to the presence of aromatic amino acids corroborating with a recent

study that reported ovine kisspeptin 14 adopts dominant β conformation in solvents such as

TFE and HFIP [46]. Importance of aromatic residues, phenylalanine and tyrosine in agonistic

activity was confirmed by alanine scanning experiment on rat Kp10 [39]. The chirality as well

as aromatic properties of the C-terminal residues (arginine and phenylalanine or tyrosine) are

also critical to human Kp10 activity because replacement of these amino acid residues by their

D-enantiomers [41] or substitution by saturated-side-chain amino acids [38] significantly

reduces their biological activity. Change in structural conformation of fish kiss 1 peptide in dif-

ferent solutions, from being random in aqueous to more ordered in biological environment

mimetic solutions is similar to that of antimicrobial peptides (AMPs), which adopt a random

coil structure in aqueous environment but changes to more ordered conformation while

encountering bacterial membrane mimetic environment [47]. In fact, the fish kiss 1 peptide

adopts more regular conformations, helical, turn and β-strand in membrane mimetic environ-

ment. Besides, the fish kiss 1 peptide had a significant random coil structure in both polar and

apolar solvents. This random coil portion may favour the non-putative receptor binding for its

multifunctional role, such as suppressor of cancer metastasis [48].

The near-UV CD spectroscopy that we carried out to examine the tertiary packing around

aromatic residues of fish kiss 1 peptide and the kiss 1 peptide-membrane complex revealed a

CD spectrum in water that had undefined features suggestive of disordered conformation

around tyrosine side chain. Decreasing the polarity using different concentrations of apolar

solvent (TFE) resulted in the inception of negative ellipticity with a well defined negative

trough at around 275 nm, which was to increase concomitantly with increasing concentration

of TFE. Likewise, the negative ellipticity was observed to increase further when the peptide was

exposed to dioxane. Taken together, near-UV CD spectra of the peptide in water, TFE and

dioxane are suggestive of different conformation for the tyrosine side chain. This was also
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corroborated by the fluorescence spectra of fish kiss 1 peptide in water and TFE which showed

fluorescence maxima at different wavelengths. Tyrosine residues in the peptide may interact to

form a hydrophobic cluster in aqueous environment which gets disrupted when secondary

structure enhancer solvent like TFE was added to induce ordered helical population, resulting

in exposure of the tyrosine side chains.

Conclusion

In short, we synthesized and characterized a 16 amino acid long peptide derived from prepro-

kisspeptin 1 of golden mahseer, and subjected it to solution conformational analysis. The pep-

tide was found to adopt ordered helical, turn and β conformations in various membrane

mimicking environments, which may favour the putative receptor binding of the peptide.

Eventually, this peptide-receptor interaction may stimulate the secretion of GnRH at BPG axis

and induce gonadal maturation. To the best of our knowledge, this is the first report on solu-

tion conformational study of a fish kiss 1 peptide. Further, the information generated in the

present study can be utilized for designing highly potent bioactive synthetic peptide analogs

which could improve the reproductive performances of commercially important fish species.
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