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There have been published risk stratification approaches to predict complications following percutaneous coronary interventions
(PCI). However, a formal assessment of such approaches with respect to predicting length of stay (LOS) is lacking. Therefore,
we sought to assess the performance of, an easy-to-use, tree-structured prognostic classification model in predicting LOS among
patients with elective PCI. The study is based on the New York State PCI database. The model was developed on data for 1999-2000,
consisting of 67,766 procedures. Validation was carried out, with respect to LOS, using data for 2001-2002, consisting of 79,545
procedures. The risk groups identified by the model exhibited a strong progressively increasing relative risk pattern of longer LOS.
The predicted average LOS ranged from 3 to 9 days. The performance of this model was comparable to other published risk scores.
In conclusion, the tree-structured prognostic classification is a model which can be easily applied to aid practitioners early on in
their decision process regarding the need for extra resources required for the management of more complicated patients following
PCI, or to justify to payors the extra costs required for the management of patients who have required extended observation and
care after PCI.

1. Introduction

A number of models predicting prognosis after percutaneous
coronary intervention (PCI), most of them predicting in-
hospital mortality, have been reported [1–16]. Such models
are valuable in optimizing care for patients undergoing PCI.
They can assist health care providers, patients, and their
families understand the attendant risks of the procedure and
provide an objective basis for determining suitable treatment
options [17]. Currently, the procedural success rates are
high with low-attendant periprocedural complications [18].
Nevertheless, individual patients with high risk profiles and
complicated hospital courses continue to need advanced
cardiac care. Also important are other postprocedural
outcomes such as length of stay (LOS). LOS in particular is
an index of patient safety and is a driver of health care expen-
diture [19]. LOS is likely to be influenced by both patient

presenting features and procedural complications; therefore,
it is logical to assess the performance of postprocedural risk
classification models with respect to LOS.

An easy-to-use tree-structured prognostic classification
model was shown to perform well in risk stratifying patients
undergoing urgent and emergent PCI [15, 16]. Compared to
the traditional log-linear models, this alternative modeling
approach is more likely to detect nonlinear relationships,
lend itself to easier interpretation, and may be better suited
for real-time prognostic classification [20]. Therefore, we
report herein the application of a tree-structured prognostic
classification model with regard to LOS in elective PCI
setting. Our model is compared with the Mayo Clinic Risk
Score [12, 13], and another risk score developed using
the New York State Percutaneous Coronary Interventions
Reporting System (PCIRS) [14].
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2. Methods

The analysis was based on the New York State PCIRS data-
base which the New York State Department of Health and its
Cardiac Advisory Committee established. The PCIRS is the
largest state-oriented collection of audited data on patient
outcomes from angioplasty nationwide with a standardized
data collection form and quality control mechanism [6, 21].
We restricted our analysis to “elective” procedures, as plan-
ning consideration for LOS is more relevant in an elective
setting. We defined “elective” PCI as all procedures that
were not urgent/emergent, that is, PCI not within 24 hrs of
MI, and excluding patients with shock and hemodynamic
instability. We also defined LOS as the number of days
between admission and discharge, with a minimum of a day.

The Mayo Clinic Risk Score (MCRS) for in-hospital com-
plication was derived from a multivariable logistic regression
model [12, 13]. In brief, it is computed as the sum of
integer scores based upon the following patient’s presenting
features, age (+1 for each decade after 30), cardiogenic shock
(+5), serum creatinine >2.5 mg/dL or renal failure requiring
dialysis (+3), being an urgent/emergent procedure (+2), New
York Heart Association (NYHA) functional class III/IV heart
failure (+2), the presence of angiographic thrombus (+2),
left main disease (+5), and multivessel disease (+2). Based
on the total risk score, patients were classified into risk
categories of very low risk (MCRS = 0–5), low risk (MCRS
= 6–8), moderate risk (MCRS = 9–11), high risk (MCRS
= 12–14), and very high risk (MCRS ≥ 15). Multivessel
disease was defined as the presence of at least one lesion
with ≥70% diameter stenosis in at least two vessels. Some
discrepancies in definition between the variables used in the
original MCRS derivation and those available in the PCIRS
database were noted, and these discrepancies were resolved
on the basis of practical considerations as described in
earlier publication [22]. The MCRS involves both presenting
and procedural characteristics. In the current analysis, the
contributions to the score from cardiogenic shock and being
an urgent/emergent procedure are dropped due to restriction
to elective PCI.

The second comparison model, the approach by Wu
et al. [14], also employed a multivariable logistic regression
model to develop a risk score for in-hospital mortality using
the method described by Sullivan et al. [23]. In brief, they
computed for each risk factor in their final model distance
from its base (reference) category in regression coefficients
units. This distance was then divided by a constant, which
is equivalent to the increase in risk in regression coefficients
units associated with an increase of five years in age, to derive
the variables’ point score. The variables in their final model,
along with the corresponding scores, are shown in Table 1.
In their approach, the summary risk score ranges from 0 to
40. Unlike the MCRS, the authors did not provide cutpoints
to classify patients into risk categories. However, one of the
attractive features of this risk score is that it is based largely
on preprocedural characteristics.

A prediction tree is a particular kind of decision tree.
The “decision” is to make a specific prediction regard-
ing outcome, say in-hospital complications, given certain

Table 1: Risk score based on Wu et al.’s approach.

Risk factor Score

Age (years)

56–64 1

65–74 3

75 and older 5

Women 1

Hemodynamic state

Unstable∗ 6

Shock∗ 9

Ejection fraction

<20% 3

20–29% 2

Preprocedural myocardial infarction

<24 h with stent thrombosis∗ 9

<6 h without stent thrombosis∗ 7

6–23 h without stent thrombosis∗ 6

1–14 days 4

>14 days 2

Peripheral arterial disease 2

Current heart failure 4

Past heart failure 3

Renal failure

Renal failure, creatinine >2.5 mg/dL 3

Renal failure, requiring dialysis 4

Left main coronary artery disease 3
∗

Not applicable to “elective” patient population.

demographic and clinical characteristics. In brief, tree con-
struction involves recursively partitioning the data set on the
basis of a set of simple binary (yes/no) questions phrased in
terms of the covariates. For example, is age ≥70? The algo-
rithm proceeds starting from the whole data set until further
partitioning is not possible either because of homogeneity
or small size of the resulting subgroups. The final resulting
structure is a binary tree [20]. Potentially, it is possible to
grow a very large tree with homogeneous or pure subgroups
containing very few subjects, hence, leading to overfitting. To
avoid the problem of overfitting, cross-validation along with
computationally light model selection approach is employed
to select the final tree [24, 25]. The subgroups derived from
the final tree constitute the prognostic classes. For a more
detailed treatment of tree growing, we refer the reader to
Breiman et al. [20].The statistical summaries characterizing
the prognostic classes can be presented using comparative
measures such as odds ratios or relative risks. While the
development of a tree-structured prognostic classification is
computationally intensive and unfamiliar to practitioners, its
actual application is far simpler than other alternative models
due to its visual representation as a binary tree structure.

Since in the current analysis LOS is defined as >0, a zero
truncated model for count data, that is, the negative binomial
model was employed [26]. Model comparison was based
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Table 2: Distribution of covariates by data set.

Covariate
Learning (%)
(N = 67766)

Testing (%)
(N = 79545)

Age (Years) 64.1 (11.8)∗ 64.7 (11.8)

Body mass index 28.7 (5.4)∗ 28.9 (5.6)

Women 32.1% 32.6%

White 86.9% 83.2%

Black 6.5% 7.3%

Other 6.6% 9.6%

Hispanic 6.5% 7.3%

Current smoker 16.7% 16.9%

Diabetes mellitus 25.8% 28.6%

Hypertension 71.0% 76.2%

Heart failure 5.5% 5.5%

Vascular disease 8.9% 9.4%

Renal failure
(including dialysis)

2.3% 2.8%

Chronic lung disease 5.3% 6.1%

Malignant ventricular
arrhythmias

1.4% 0.8%

Prior myocardial
infarction

6.9% 6.9%

Prior percutaneous
coronary intervention

30.6% 35.3%

Prior open heart
surgery

18.0% 19.7%

Previous stroke 4.0% 4.3%

Left Main disease 2.7% 2.9%

Multivessel coronary
disease

46.0% 47.0%

∗
Age and body mass index are presented as mean (SD).

on the validation/testing data set (i.e., data set restricted to
2001-2002) employing test for comparing nonnested models
[27]. For each approach, the estimated relative risk (RR)
and associated 95% confidence interval (CI) comparing each
prognostic group to the best prognostic group in terms of
LOS are presented. A robust variance estimation procedure
was employed to account for clustering of patients within
providers [28]. In addition, we assessed the performance of
the alternative models by considering extended LOS, that is,
LOS ≥10 days, as a binary outcome.

3. Results

Table 2 shows the distribution of covariates considered for
analysis. The learning and testing data sets were comparable
with respect to the distribution of age at admission, gender,
heart failure, smoking status, and other comorbidities. The
learning data set was used to develop the tree-structured
prognostic classification model for postprocedural compli-
cations among patients with “elective” procedures. Postpro-
cedural complication was defined as the combined endpoint
of in-hospital death, stroke or coronary bypass surgery.
In addition, the learning data set was also used to derive

79545
3.87

CHF
Yes

Yes

No

No

Age

GenderMale FemaleRenal
failure

75139
3.58

4406
8.78

47670
3.29

27469
4.08

46652
3.22

1018
6.43

16046
3.86

11423
4.5

<70 ≥70

Figure 1: Tree-structured prognostic classification for elective
procedures: testing data set. Plain figures are number of procedures
in a node, and bold figures are predicted (conditional mean) LOS.

cutpoints for the Wu et al.’s risk score. Since our emphasis is
validation, in the following, we present results based on the
validation/testing data set.

The average LOS based on the MCRS stratification is
presented in Table 3. LOS monotonically increased with
higher MCRS. Compared to patients with very low risk,
patients classified as moderate, high, or very high risk
incurred progressively higher relative risk of longer LOS
(Table 4).

In the original reporting of Wu et al.’s approach, cut-
points for risk stratification were not suggested. However,
an intensive search of cutpoints on the learning data set did
result into groups that are somewhat distinct in their risk
profile. Here, we report results of data-driven cutpoints that
were subsequently verified on the testing data set: very low
risk (score = 0–5), low risk (score = 6–10), moderate risk
(score = 11-12), high risk (score = 13–15), and very high risk
(score ≥16). As was the case for MCRS, LOS monotonically
increased with higher risk groups (Table 3). Compared to
patients in the very low-risk group, patients classified as
low, moderate, high, or very high risk incurred progressively
longer LOS (Table 4).

The tree-structured prognostic classification model for
predicting risk of complications, among patients undergoing
“elective” PCI, identified patients presenting with CHF as
very high risk for postprocedural complications. Among
patients presenting without CHF, those who were <70 years
and with renal failure incurred the next highest risk for
postprocedural complications followed by female patients
≥70 years and presenting without CHF. Male patients ≥70
years and presenting without CHF are classified as low risk
for postprocedural complications. The remaining patients
constituted the best prognostic group (see Figure 1).

LOS progressively increased with the ordering of the
above defined prognostic classes (Table 3). Moreover, the
prognostic classes are distinct from each other with respect
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Table 3: Length of stay (in days) by risk category.

Risk category

Very low Low Moderate High Very high

Testing data set (%)

MCRS† 18.7% 65.7% 11.3% 3.7% 0.6%

Wu et al.‡ 53.2% 40.2% 3.2% 2.4% 1.0%

TSPC§ 58.7% 20.2% 14.4% 1.3% 5.5%

Conditional mean of LOS from
corresponding model

MCRS 3.2 3.5 5.8 7.8 9.4

Wu et al. 3.3 4.3 6.9 9.1 11.1

TSPC 3.2 3.9 4.4 6.4 8.7

Legend: MCRS = Mayo clinic risk score; TSPC: tree-structured prognostic classification.
†Sum score for very low (MCRS = 0–5), low (MCRS = 6–8), moderate (MCRS = 9–11), high (MCRS = 12–14), and very high (MCRS ≥15).
‡Sum score for very low (0–5), low (6–10), moderate (11-12), high (13–15) and very high (≥16).
§Very low = (no heart failure and <70 years and without renal failure), low = (no heart failure and ≥ 70 years and male), moderate = (no heart failure and
≥70 years and female), high = (no heart failure and <70 years and with renal failure), and very high = (heart failure present).

Table 4: Relative risk comparing each risk group with the reference
group with respect to LOS based on the testing data set.

Risk group MCRS∗ Wu et al.†

Very low 1.0 1.0

Low 1.13 (1.10, 1.16) 1.55 (1.50, 1.59)

Moderate 2.11 (2.01, 2.20) 2.64 (2.49, 2.81)

High 2.88 (2.72, 3.06) 3.37 (3.16, 3.60)

Very high 3.56 (3.20, 3.96) 4.42 (4.09, 4.79)

LL‡ −170178.25 −168971.91

Legend: MCRS: mayo clinic risk score.
∗Sum score for very low (MCRS = 0–5), low (MCRS = 6–8), moderate
(MCRS = 9–11), high (MCRS = 12–14), and very high (MCRS ≥15).
†Sum score for very low (0–5), low (6–10), moderate (11-12), high (13–15),
and very high (≥16).
‡LL: log likelihood.
¶P = 0.000 comparing MCRS with Wu et al.’s risk score suggests that Wu et
al.’s model providing a better fit.

to their LOS experience. Considering the best prognostic
class, consisting of patients presenting without CHF and who
were <70 years of age and without renal failure, as reference,
relative risk for longer LOS, and associated 95% CIs are
presented in Table 5.

Defining extended hospital stay (≥10 days) as a binary
outcome, the discrimination capacity of the tree-structured
prognostic classification and the Wu et al.’s risk score were
comparable, 0.734 (95% CI: 0.727, 0.742) and 0.744 (0.737,
0.752), respectively. The MCRS has a slightly lower perfor-
mance, 0.690 (95%CI: 0.681, 0.698). A further comparison
with respect to net-integrated discrimination improvement
revealed that the difference between the tree-structured prog-
nostic classification and the Wu et al.’s model was minimal,
albeit statistical significance; the integrated discrimination
improvement was 0.004 (95% CI: 0.001, 0.007), not clinically
significant.

Table 5: Relative risk comparing each risk group with the reference
group with respect to LOS based on tree-structured prognostic
classification.

Risk group Testing data set

Very low
(no heart failure and <70 years and without
renal failure)

1.0

Low
(no heart failure and ≥70 years and male)

1.26 (1.23, 1.30)

Moderate
(no heart failure and ≥70 years and female)

1.48 (1.43, 1.54)

High
(no heart failure and <70 years and with renal
failure )

2.29 (2.06, 2.54)

Very high
(heart failure present)

3.20 (3.05, 3.34)

LL∗ −169549.66†
∗

LL: log likelihood.
†P = 0.002 comparing tree-structured prognostic classification with Wu
et al.’s risk score suggests that Wu et al.’s model providing a better fit.

4. Discussion

In this analysis, we applied a novel, tree-structured prog-
nostic classification model as a tool for assessing the risk
of longer hospital stay after PCI in patients with elective
procedure. This model is based on only four presenting
features (heart failure, age, gender, and renal failure) and has
a performance that is comparable to the Wu et al.’s risk score
[14]. We observed that the risk of longer LOS progressively
increases with the ordering of the prognostic classes, that
is, from low to very high risk. The extra LOS incurred, on
average, ranged from about a day to 6 days.

The MCRS has been employed extensively [12, 13, 22].
However, in order to determine MCRS, in addition to clinical
characteristics such as age, renal insufficiency, heart failure,
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angiographic characteristics such as presence of angiograph-
ically evident thrombus, left main coronary disease and mul-
tivessel coronary disease are needed which are not available
before angiography. As a result, real-time computation of
risk score necessarily is delayed until all such information is
available. In addition, while one intuitively expects inclusion
of intraprocedural variables to improve LOS prediction, our
current analysis shows this not to be the case, at least,
for MCRS. The risk score by Wu et al. [14] exhibited a
statistically better fit in the current analysis and comparable
performance with the tree-structured model. However, this
approach is based on a relatively larger number of clinical
presenting features and one angiographic characteristic (i.e.,
left main coronary disease). Therefore, it is likely to be
considered burdensome to use in an ongoing fashion in the
clinical setting. One has to weigh the small gain in accuracy
against ease of implementation.

By contrast, the tree-structured prognostic classification
model utilizes only 4 clinical presenting features that can
be readily assessed any time prior to catheterization. This
simpler, truly a priori approach enjoys a performance, for all
practical purposes, comparable to the approach of Wu et al.
With such a large testing data set, very small differences may
reach statistical significance. Representation of our model
as a binary tree structure enhances its utility in the clinical
setting. The need for simplicity in such prediction models
has been emphasized in the literature [17]; the proposed tree-
structured prognostic classification model meets that need.

The PCIRS database has a rigorous quality control
mechanism in place, that is, a standard form is employed
for data collection, and accuracy of data is maintained by
continuous auditing of medical records [6, 21]. Nonetheless,
additional variables that were not available in the database
(i.e., STEMI status and glomerular filtration rate) and the
way some variables were collected (i.e., the way renal failure
was assessed: creatinine >2.5 mg/dL) may have limited the
possibility of developing a prediction model with even higher
performance and does limit comparison with the recently
published National Cardiovascular Data Registry (NCDR)
risk score [29].

We restricted our analysis to patients with elective
procedure by excluding all patients with urgent/emergent
indication for PCI, shock and hemodynamic instability. Our
restriction is compatible with the definition of elective PCI
adopted by others in the literature [8]. A potential limitation
of our study is that the patient mix in the PCIRS database
might be different from those treated in other places.
However, this database is from a state-wide experience with
obvious heterogeneity of patient population and setting.
Furthermore, the variables included in our model have been
repeatedly shown to be relevant in various databases and
studies [14, 29–32].

The tree-structured prognostic classification model
allows the efficient and early identification of high-risk
groups to facilitate frank discussion of risks and benefits of
potential treatment strategies in a clinical setting. Moreover,
as length of stay is related to patient morbidity, our approach
allows a more accurate consent process with the patient, as
more of the relevant risk will be identified preprocedure.

This is of an important bioethical consideration, even
medical legal.

Furthermore, our model permits an evidence-based
dialogue between the practitioner and the insurance payers
about the need (or lack thereof) for admission to hospital
after procedure. Hence, enhancing rational, cost-effective,
patient care decisions in this regard, and permitting advance
planning for a longer than average observation. Similarly,
patients deemed to be at low risk might be managed
less intensively following PCI, with the possibility of early
discharge in order to channel valuable resources to those
who need it most. Therefore, the tree-structured prognostic
classification model will aid the practitioner, early on,
in the decision process regarding the need for extended
observation after PCI. This early on assessment should be
augmented by the individual patient’s specific condition after
the procedure, as recommended by a recent consensus panel
[19].

In summary, we have shown in this study that the tree-
structured model could be employed to determine the risk
of a longer length of stay for patients with elective PCI.
This approach is easy to use, involves only four presenting
features, and has a comparable performance with other risk
scores. The model identifies patients with a wide range of
anticipated length of stay, that is, on average, up to 9 days.
This wide range, potentially, would have an implication in
optimal patient management, resource allocation, quality
assessment, and utilization reviews.
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