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Abstract: Many biopolymers exhibit a strong complexing ability for multivalent ions. Often such
ions form ionic bridges between the polymer chains. This leads to the formation of ionic cross linked
networks and supermolecular structures, thus promoting the modification of the behavior of solid and
gel polymer networks. Sorption of biopolymers on fiber surfaces and interfaces increases substantially
in the case of multivalent ions, e.g., calcium being available for ionic crosslinking. Through controlled
adsorption and ionic crosslinking surface modification of textile fibers with biopolymers can be
achieved, thus altering the characteristics at the interface between fiber and surrounding matrices. A
brief introduction on the differences deriving from the biopolymers, as their interaction with other
compounds, is given. Functional models are presented and specified by several examples from
previous and recent studies. The relevance of ionic crosslinks in biopolymers is discussed by means
of selected examples of wider use.

Keywords: multivalent ions; bivalent ions; biopolymers; crosslinking; complexation; polyamino
acids; glycoproteins; interface modification

1. Introduction

Biopolymers, with consideration of their functional groups, interact with multivalent ions due
to electrostatic interaction. This basic principle has been reported, and subsequently applied, in a
multitude of phenomena and applications. Pectins are important structural molecules in plant cell
walls which aggregate and structure in the presence of calcium ions [1], a phenomena used for decades
in jam processing [2,3]. Similarly, cross-linking was reported in the cell walls of specific brown algae
from the Fucales order. Besides cellulose microfibrils and sulfated polysaccharides, alginates structure
with present calcium ions and phenols [4]. Interaction of ions and pigments in printing pastes with
alginates has also been used for viscosity adjustment [5].

Ion interactions are also exploited in cellulose processing, both for their dissolution and
processing [6], as their modification [7]. In one approach, banana and orange peels have been proposed
to extract heavy metals from water. Due to their complexation capability these cellulose-based materials
have been found promising for water purification from e.g., copper, cobalt, and zinc at trace level
concentrations [8]. Complexation is also the basic principle for the production of ‘casein’ fibers [9]. In a
more recent approach to enhance elastomer performance, a special type of polyisoprene crosslinking
has been utilized. Ionic moieties on the polymers can hop continually between ionic aggregates, thus
resulting in elastomer behavior [10].
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Naturally, ion complexation is also used by silkworms for silk fibroin aggregation [11]. Also for
the dissolution of these, ionic solutions of calcium chloride in ethanol (EtOH) can be applied [12].

From these few examples the scope and universality of ion biopolymer interactions can be
outlined. However, electrostatic interactions are not limited to multivalent ions and biopolymeric
functional groups but obviously extend to polar, polar as other charged molecules, ions, and polymers.
For example, one of the basic principles of life is the iron(II)-complex in the heme of the hemo-
and myoglobin, which provides human blood oxygen supply [13]. Nevertheless, for the sake of
conciseness, the review is limited to multivalent ions with biopolymers, with a focus on polysaccharide
based systems.

The mechanisms behind these interactions are manifold. The basic principle depends on
stoichiometric considerations, ion type, and valence as present polymer functional groups. Confined
to the electrostatic effect, this basic principle can affect different scales. In the absence of biopolymers,
electrostatic interaction results in the formation of a hydration shell of the ion or ionic compound in
solution due to the presence of polar or polarisable solvent molecules. In the presence of possible
ligands, the formation of complexes is possible. Complex formation results in bridging, if ligands, or
more specifically their functional groups, are part of different oligo- or polymers. Amplification of
bridging, as decoiling of the biopolymers, can result in extensive viscosity increases of solutions, which
finally gel upon ligand percolation. Opposite effects can include the coiling of polymers in solvent, due
to reduced charge repulsion, hydrogen-bond separation, and thereby solubilization. Here the ionic
biopolymer interaction influences the macrostructures of mixtures. Cross-linking can also results in
coagulation of the biopolymers. In the presence of an interface, a surface, fiber, or something alike,
biopolymers can undergo fixation. Similar to the scale extent of interactions of multivalent ions with
ligands the manuscript is arranged.

We present common scientific understanding of interactions of multivalent ions with
polysaccharides and finally take a brief look to polyamino acids. Representative interaction and
crosslinking systems are presented and discussed.

After introducing hydrate shells of dissolved ions as ion complexes with simple sugar compounds,
we focus on single metal ion complexes. We focus on a gluconate system, which serves as a
basis for the succeeding cellulose interaction models. From these we extend our considerations to
ion–polysaccharide interactions. Cellulose interactions are reviewed as cellulose interactions have been
investigated in detail. Possible ionic solvents are shortly discussed. These interactions enable bridging
and crosslinking of biopolymers and we pursue discussing polysaccharide-ion cross-linked biopolymer
systems. Solution based crosslinking is discussed for alginate, carrageenan, and pectin systems. Specific
polymers were chosen for their unique ionic structuring patterns. Besides, adsorption of alginates and
pectins on cellulose surfaces are reported subsequently. This is done to extend the interaction model to
ionic surface sorption of biopolymers on cellulose. Finally, to extend the models and represent them in
a wider scope, we discuss the interaction of multivalent ions with polyamino acid structures. These
are used as a side-glance to glycoproteins, where ionic interaction is present in the polysaccharide as
the polyamino acid parts of the molecules. We present ionic interaction using polyamide as the model
system. Similar considerations, with respect to solvation and structuring, to cellulose are presented. We
then take a final look at silk fibroin and wool protein interactions with multivalent ions to demonstrate
the general principle of ionic crosslinking on other biobased macromolecules.

2. Ion Hydration and Monosaccharide Complexation

2.1. The Hydrate Shell of Ions in Water

Interactions between biopolymers and solvated ions can lead to the formation of coordination
compounds. The biopolymer takes the role of the ligand and the multivalent ion represents the center
of the complex.
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As the starting point for a structuring through ionic interactions between a biopolymer and an ion
present in aqueous solution we have to consider the structure of the hydrated ion in solution and the
ability of the biopolymer to take the function of a dissolved or insoluble ligand.

In aqueous systems, ions are surrounded by a hydrate shell, in which ligand exchange occurs. In
the case of Ca2+ ions, the first hydration layer is formed by six water molecules (see Figure 1), which
exchange rapidly, the second hydration layer contains on average 12 water molecules [14].
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Figure 1. A 2D-representation of the first and second hydrate shell of a dissolved calcium ion.

In aqueous solution, ions are surrounded by a hydrate shell. In this case, other dissolved or solid
ligands compete for complexation, the hydrate shell is replaced by ligands which are able to form more
stable complexes. The low rate of ligand exchange then permits identification of the complexes formed.

An important example for a stable Ca2+ complex is the formation of a stable Ca2+–Citrate3- ion
pair complex [15]. Highly stable Ca2+ complexes also are formed with L-tartaric acid, where the
formation of [Ca2+Tar2−H-1]− and [Ca2+Tar2−H-2]2− (Tar2− = tartrate) have been reported in alkaline
aqueous solution. In these complexes, the involvement of the hydroxyl groups present in tartrate in the
complex formation is discussed as one possible complex structure, another possible structure would
consider Ca2+-hydroxo-tartrato complexes [16].

Similarly a coordination number of 4 has been reported for Mg2+ in aqueous solutions, where
the ion [Mg(H2O)4]2+ is present, while a coordination number of 6 has been found for the primary
solvation sphere of Mg2+ in methanol, thus corresponding to [Mg(CH3OH)6] [17].

Fe3+ ions are present in form of defined hexaquo complexes [Fe(H2O)6]3+ only in highly acidic
solution with pH below 1, and tends to hydrolyze and condensate with formation of binuclear
or multinuclear hydroxo-complexes. In the presence of stronger ligands, defined complexes with
high stability are formed, e.g., the hexacyanoferrate complex [Fe(CN)6)]3- or the trisoxalato complex
[Fe(C2O4)3]3- [18].

The selective interactions based on ion-pair formation or complex formation form the chemical
basis for metal ion binding, crosslinking between polymers and formation of 3D-structures.

2.2. Complex Stability and Formation of Constants

For the formation of complexes in aqueous systems the concept of formation constants is a useful
tool to understand and describe the stability of a complex species formed [19]. Dependent on the
concentration of the center ion and ligand, as well as on pH, temperature, and ionic strength, different
species of a metal–ligand system can be identified.

A representative example for the formation of different species as a function of pH and metal/ligand
ratio has been shown for Fe3+-complexes with ß-d-gluconate [20]. In the presence of Ca2+-ions, the
formation of mixed complexes with both, Ca2+ and Fe3+ ions, has been reported.

The example of the rather “simple” sugar acid ß-d-gluconic acid demonstrates the variability in
complexes and interactions between a center ion and a polyhydroxy-carbonic acid. Often a dynamic
equilibrium between two, three, or more species is present in solution. Reactions 1–7 (Figure 2) describe
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the formation of different complex species as the competing hydrolysis and hydroxide formation
(reaction 7). At a ligand to metal ratio of 1, mainly 1:1 complexes between Fe3+ and D-gluconate (DGL)
are formed, in presence of Ca2+ 1:1:1 complexes of Ca2+/Fe3+/DGL are present. At a ligand to Fe3+ ratio
of 2 mainly 1:2 complexes for Fe3+-DGL and 1:1:2 complexes for Ca2+/Fe3+/DGL are formed (Figure 2).

The model of iron–sugar acid complexes demonstrates two major principles which are of
importance to understand the formation of ionic crosslinks between polysaccharide structures:

• In analogy to polyhydroxycarboxylic acids also polysaccharides will be able to form a high number
of complexes with multivalent ions, e.g., calcium and iron.

• The formation of complex species with 1:1:1 stoichiometry (e.g., [CaFeIIIH-3DGL]+ at pH 7)
indicates that the presence of a carboxylic group may support formation of stable complexes at
low pH, however participation of hydroxyl groups will also be contributing to complex formation.
As an example, in highly alkaline aqueous solution the formation of iron-complexes with sorbitol
complexes can be observed.

Polysaccharides in solid state as dissolving in water, thus, can be understood as multi-dentate
ligands, which can form a high number of complexes with multi-valent ions. In solid polysaccharide
structures, the amorphous parts of the material will be accessible for dissolved ions, where complexation
of metal ions occurs accordingly. The complex formation with a polysaccharide is in competition
with the formation of soluble complexes in water, e.g., aquo-complexes, as complexes with dissolved
ligands and with the presence of a rapidly exchanging hydrate shell.

Different reactions will be observed dependent on the type of polysaccharide, the competing
complex species in solution and the composition of solution used:

• Adsorption/complexation of metal ions e.g., Ca2+ and Fe3+ from aqueous solution into a solid
polysaccharide matrix occurs,

• Dissolution of polysaccharides into the concentrated metal complex solutions can be achieved,
e.g., dissolution of cellulose into alkaline Fe3+ tartaric complexes, and

• Gel-formation and precipitation of dissolved polysaccharides, e.g., alginates in presence of
multi-valent ions (Ca2+), occurs due to formation of metal complexes with reduce solubility. As a
result a polymer network is formed.
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Figure 2. Representative example for complex species distribution calculated for the system
Ca2+FeIIIDGL (calcium-iron-d-gluconate) with a molar ratio 1:1:1 c(Ca2+) = 0.01 mol dm−3, c(Fe3+) =

0.01 mol dm−3, c(DGL) = 0.01 mol dm−3, (ionic strength µ(KNO3) = 0.1 mol dm−3, T = 20.0 ± 0.1 ◦C)
and corresponding chemical reactions for complex formation.
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Stoichiometry Ca2+:Fe3+:DGL 1:1:1 increasing pH

Ca2+ + Fe3+ + DGL↔[CaFeIIIDGL]4+
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3. Metal Ion Interactions with Polysaccharide Structures

3.1. Metal Complex as Structure Model

Metal complexes with hydroxycarboxylic acids can serve as models to understand the interaction
of metal ions with polysaccharide structures. For example, citrate acts as a tridentate ligand with
involvement of two carboxylic groups as the hydroxyl group (Figure 3) [21]. The formation of [CaCitr]−
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Figure 3. Representative structure of a Fe2+– and Ca2+–citrate complexes at neutral pH conditions
(according to [21]).

To side-glance, this complexation of calcium ions by formation of chelate complexes with citrate
is used to remove calcium bound in caseins, thus modifying the texture and increasing the thermal
stability of milk while improving the processability of melting cheese [24].

Another example is tartaric acid which is able to form stable iron(III)-complexes in alkaline
solution. Dependent on the composition of the solution two main species are formed [(C4H2O6)Fe]Na
at a molar ratio of Fe3+:tartaric acid:NaOH of 1:1:1 and [(C4H3O6)3Fe]Na6 at a molar ratio of 1:3:6,
respectively [25]. A proposed structure for the complex between iron(III) and tartaric acid at a molar
ratio of 1:3 [(C4H3O6)3Fe]Na6 is shown in Figure 4. In concentrated solutions, these complexes dissolve
cellulose, the complexes with highest dissolution power were found with a molar ratio between iron
and tartaric acid of 1:3.
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Figure 4. Proposed structure of the [(C4H3O6)3Fe]Na6 complex [26] (left) and alternative proposal in
analogy to the iron–gluconate complexes with involvement of carboxylic groups (right).

In a similar manner, stable Fe3+ complexes have been reported to form with galactaric acid,
and D-glucosaminic acid. Low complex stability was reported for D-glucosamine, indicating the
importance of a carboxylic group for Fe3+ complexation [27].

Similar complexes with organic acids, e.g., oxalic acid, lactic acid, or citric acid did not lead to
dissolution of cellulose [28]. A major reason for this finding results from the lower formation constant of
the iron complexes, which hydrolyse in alkaline solution with precipitation of iron hydroxides. Thus, no
stable complexes for exchange of the ligand are formed in the highly alkaline solution, which however
would be required to achieve cellulose dissolution through formation of cellulose–iron complexes.

3.2. Ion-Uptake in Cellulose

In the cellulose molecule a high number of functional groups are present which can contribute to
the binding of metal ions. Each anhydroglucose unit bears in total three hydroxyl groups, one each at
carbon atom C-2, C-3, and C-6. The polymer chain is formed by a glycosidic linkage between the C-1
and C-4 of two glucopyranosyl units. Thus, at one end of the cellulose chain a free hydroxyl group is
present at a C-4 atom. This end of the polymer chain is called the non-reducing end, while at the other
end of the polymer an aldehyde groups is present, which easily becomes oxidized to the corresponding
carboxylic group (Figure 5). This so-called “reducing end” of the cellulose chain becomes oxidized
during purification and chemical processing of cellulose. Thus, dependent on the chain length of the
cellulose polymer a stoichiometric amount of carboxylic groups is present in processed celluloses.
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Representative values for cellulose fibers are in the dimension of 15–20 mM carboxyl groups per kg
of fibers. (Viscose fibers: 20 mM/kg, modal fibers 17 mM/kg, and lyocell type fibers 15–16 mM/kg) [29].

Due to other oxidative reactions also carboxylic groups can be formed at the C-6, e.g., by selective
oxidation with TEMPO (tetramethyl-piperidine-N-oxide) [30], or at C-3 and C-4. This, however, is
accompanied with destruction of the pyranoside ring and reduction in degree of polymerisation.

The accessible carboxylic groups and hydroxylic groups in swollen cellulose form a structure,
which is very similar to the dissolved hydroxycarboxylic acids previously discussed. Thus, cellulose
exhibits a high number of potential binding sites for binding of multivalent ions through ion-exchange
and complex formation. The uptake of Ca2+ ions in a cellulose structure follows a distinct stoichiometric
reaction. Thus, a saturation point is reached at a concentration where all accessible carboxylic groups
have been transferred into the corresponding Ca2+-salt (Figure 6).
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Figure 6. Binding of Ca2+ ions in the cellulose structure of a lyocell type fiber as function of Ca2+

concentration in solution at pH 9 and pH 5 [31].

The binding reaction corresponds to Equation (8):

Cellulose−COOH + Ca2+ + anion− → Cellulose−COO−Ca2+anion− + H+. (8)

The stoichiometry between carboxylic groups present and Ca2+ ions bound, stabilizes at a ratio of
1:1. As the number of carboxylic groups in the cellulose structure is rather low the geometric distance
to a next carboxylic group is too far to achieve a 2:1 salt with the stoichiometry of (Cellulose-COO)2Ca.

A similar behavior is observed in adsorption/complex formation with other metal ions, e.g.,
copper, iron, and zinc in cellulose. Accordingly, the binding of Fe3+ into the cellulose structure follows
a 1:1 stoichiometry between the carboxylic groups available and bound Fe3+ [32]. In the case of Cu2+

in alkaline solution, the amount of bound Cu2+ exceeds the number of carboxylic groups by far, thus
indicating a complex formation similar to the Cu2+ sorbitol complex system [33].

The selective uptake of multivalent ions, e.g., Ca2+ or Fe3+ from aqueous phase into a swollen
cellulose structure also forms the chemical basis for further attachment of polysaccharides and other
biopolymers to the surface of cellulose. The adsorbed multivalent ions builds a charged site, which can
act as an anchor for binding of polysaccharides or other charged molecules from solution.
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3.3. Cellulose Solvents

In this paragraph, the dissolution of cellulose will be taken as a representative example for the
interaction of metal ions with a polysaccharide. Dissolution of cellulose can be achieved through
different principles:

• by derivatisation of the functional groups (hydroxyl groups C-2, C-3, and C-6) e.g., through
xanthogenation, acetylation, or alkylation,

• formation of metal complexes, e.g., with iron-tartaric acid, copper-amino complexes, or the
• use of cellulose solvents, e.g., NMMO (N-methyl-morpholine-N-oxide) and ionic liquids.

The formation of soluble metal complexes between cellulose and an appropriate concentrated
aqueous metal complex can be regarded as a model for metal-complex-based bridging between
macromolecules, which share a common center ion. The polyhydroxy compound cellulose acts as a
polymer ligand, offering a high number of binding sites and thus forming a high number of complexes
along the polymer chain with the metal ions present in the solvent. During dissolution of cellulose, both,
amorphous and crystalline domains of the polymer, dissolve, therefore in solution these complexes are
formed along the full cellulose chain.

The dissolution of cellulose cannot be explained by involvement of the few carboxylic groups
present at the end of the cellulose chain at the reducing end, but also requires complex formation
with the hydroxyl groups on C-2, C-3, and C-6. The anhydroglucose units participate in the complex
to a major extent with their hydroxyl groups. According to the literature, mainly the glycol moiety
C-2 and C-3 are responsible for alkaline iron–tartaric acid complexation [34]. This is also the case for
cuprammonium [Cu(NH3)4](OH)2 cellulose solvent systems.

Figure 7 shows an example of the proposed mixed complex between the cuprammonium system
[Cu(NH3)4](OH)2 and cellulose. Figure 8 depicts a proposed structure for the complex formation
between the alkaline iron(III)–tartrate complex and cellulose [35].
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4. Metal Ion Based Cross-Linking of Polysaccharides

Crosslinking of polysaccharides occurs in case two polysaccharides share their function as a
ligand in a metal complex.

From the model consideration with hydrate shells, soluble metal complexes and the analogies to
cellulose solvents we can distinguish between three general principles of metal polymer interactions,
which form a chemical basis for crosslinking of biopolymers at surfaces and interfaces.

• Formation of ion-rich hydrate shells around biopolymers leading to dissolution of insoluble
polymers, e.g., carrageenan and silk [12,37].

• Formation of defined complexes with involvement of functional groups which permit complexation
at neutral pH, e.g., carboxyl groups and amino groups (Figure 9) [38].

• Formation of complexes at higher alkaline conditions with involvement of hydroxyl groups, e.g.,
the C-2 and C-3 groups [35].

For the formation of ion-rich hydrate shells the presence of highly concentrated solutions, e.g.,
CaCl2/ethanol/water of 8 M, urea or LiBr are required. Upon dilution, a destabilization of the solvent
state leads to precipitation and regeneration of the polymer. The center ion of these weak complexes
will then be released from the complexes and be washed out.
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In a similar manner, complexes which base on the involvement of the glycol moiety in highly
alkaline conditions will lose stability at lower pH, thus, polymer precipitation will occur upon dilution
and reduction in pH. Only a minor amount of complexes which involve the carboxylic groups present
in cellulose will be stable enough to exist at neutral pH.

Complexes which base on the second principle exhibit sufficient stability to form complex
structures at weakly acidic, neutral, and weakly alkaline conditions. Dependent on geometric
conditions, concentrations of metal ions, number of complex forming sites in the polysaccharide,
solution conditions, and method of preparation the metal complexes are formed by a polymer chain
alone or form a bridge between two polymer chains, which both act as ligands in a joint metal complex.
In the following, complexes based on the second principle will be described in more detail. For the
sake of representative system we limit the consideration to alginates, with an extension to similar
pectin cross-linking, and carrageenans before a side-glance to related biopolymers.

4.1. Alginate

Alginates are salt forms of linear copolymers of 1,4-linked β-d-mannuronic (M) and α-l-guluronic
(G) acid residues, known as alginic acid. They are extracted from different species of brown algae found
at the coasts of Asia, the northern Atlantic as South America [39]. These residues are arranged in blocks
where MG blocks alternate with mono-type block structures [40,41]. Composition of the copolymer
is statistically distributed and shares of the monomers depend on region, season and plant age at
harvesting [42]. Alginic acid itself is insoluble in water, which is not the case for its monovalent salt
form. Solutions of these polysaccharides are highly viscous, dependent on concentration and presence
of ionic species. Alginate molecules in solution were found to behave like extended flexible coils.

GG blocks in alginates selectively bind to calcium ions [41,43] as several other cations, including
iron (III), strontium, and barium. Bivalent ions lead to inter-chain association of the polymer
molecules. Associations of GG blocks with these bivalent cations was found to happen via an ‘egg-box’
structuring, stoichiometrically requiring half as many calcium ions as poly-l-guluronate dimers [43,44].
Computational simulations suggested a four-oxygen coordination [43]. Due to the configuration of the
G-units in the alginate molecules, adjacent monomer units form a three-dimensional-box structure,
which encapsulates these ions. Given a second box on the opposite side, a crosslink between two
polymers is formed. The computational model was further enhanced, revealing the difference in
parallel and antiparallel binding. Parallel chain association shows a fair electrostatic input from calcium
coordination by five oxygen atoms of the guluronate atoms and weaker hydrogen bonds between
O-3 and O-5’ of the adjacent chain. For the antiparallel arrangement, hydrogen bonds between O-2
and O-6’, as O-3 and O-5’, are mainly dominating the connection. The unique calcium coordination
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site in the antiparallel system is tetradentate with respect to the surrounding oxygen atoms [45]. The
‘egg-box’ model is therefore partly incorrect, though is still regarded as principally correct with respect
to the offered intuitive understanding. A sketch of the model was added in Figures 10 and 11.
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Figure 11. Representations (stick and van der Waals structures) of the best [chain–Ca2+–chain]
associations of 2-fold guluronate chains: (a) parallel arrangement and (b) antiparallel arrangement.
Positions of calcium ions have been reoptimized with respect to the dimer structures. Dark circles
represent calcium ions. Key: (s) calcium coordination; (- - -) hydrogen bonds. (Reprinted with
permission from Braccini, I. and Pérez, S. Molecular Basis of Ca2+-Induced Gelation in Alginates
and Pectins: The Egg-Box Model Revisited. Biomacromolecules 2, 1089–1096 (2001). Copyright 2001
American Chemical Society).

The distribution of these G-acid distributions along the alginate sample therefore limits the length
of the junction zones. The size of these junction zones can be estimated using SAXS [46]. Strength as
selectivity of the binding depends therefore directly on the size of the bivalent ion in the ‘boxes’. Ion
affinity was found to order with Ba2+ > Sr2+ > Ca2+ > Mg2+ [47,48]. Subsequent studies corroborated
with the model by Atkins et al. [49] showing a structural repetition in G-unit rich alginates of 0.87 nm
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in the acid form [50]. The molecular structure, with and without binding cations, was also investigated
in modeling simulations by Braccini et al. [51]. Results show that polyguluronic acid structures to
two-fold helices, in gel as solid form, in various salt forms. By contrast, polymannuronic chains can
also adopt to a three-fold helical structure in solid salt form. From the helical structure it is also shown
that for Ca-guluronate the most favorable sites are periodic, identical, and tetradental chelating along
the chains. This bases on the suggestion from Angyal [52] for an efficient hydroxyl binding pattern if
these are in an axial–equatorial–axial configuration with respect to the guluronate residues. Moreover,
Ca–guluronate binding is suggested to not be purely electrostatic, which is the case for polymannuronic
chains, the latter showing no calcium specificity. A more detailed conformational calculation for mixed
guluronic–mannuronic forms was not included in the study and probably is of lower significance due
to non-selectivity of ions of mannuronic residues. In contrast, crosslinking of long blocks of alternating
G- and M-units in alginates was experimentally found present, also leading to the formation of mixed
GG/MG junction zones [53]. These ‘secondary’ MG junctions enable syneresis in gels, if a certain
extension is present. Vice versa short junctions impair syneresis appearance. This finding was backed
by simulation results for affine deformation theory of Gaussian networks [54].

Alginate gelation has been described by a two-stage process [45]. After dimerization of the
polymers, these interact weakly through non-specific electrostatic interactions to form associates. From
dilute solutions the process was shown to include a third stage, which is monocomplex formation
before subsequent dimerization and associate formation [55]. These associates are suggested to form
from dimerized polymers packed on a hexagonal lattice structure. This hexagonality is not a true
geometrical as in crystallography, but rather a located order [50]. Lateral interaction of dimerized
polymers happens via hydrogen bonding, water molecules or present sodium and calcium ions [46,50].
It was also reported that calcium coordination reduces the ability for smectic lateral ordering, which is
more pronounced in the acid form and, thus, increases nematic ordering [50]. The resultant junction
zones depend therefore on block length distribution of G-units, concentration of binding ions as
polymer concentration. For alternating MG junctions, interaction findings were only based on the
presence of calcium ions [53].

Beside physically bound alginates, chemically cross-linked alginates have been produced.
Alginates can be derivatized by multiple approaches, cell receptors can be introduced onto the
polymer chain and mixtures with additional polymeric species was investigated on. Partly oxidized
alginate structures can also enhance biocompatibility. We point the interested reader to the reviews of
Andersen et al. [56], Sun et al. [57], and Yang et al. [58].

Interaction possibility with bivalent ions, crosslinking, and gelling properties of alginates led
to their use in a high number of applications. Alginates have been exploited as a functional
food ingredient [59], in textile printing and dying [5], as an immobilizing agent for enzymes and
cells [57,60,61], in pharmaceutical and medical uses [62–64], and various other applications [65]. In
textile printing and food applications usually the thickening and gelling properties are used, given
a sufficient amount of bivalent ions. Final adjustment in texture of the products is based on present
ionic species as cost sensitivity. Usually, the share of G/M of the alginates are of minor importance.
In medical and pharmaceutical uses, mostly the gelling ability of the alginates is exploited. Medical
application of alginates is possible due to the lack of an immunogenic response to the biopolymer,
given adequate purity of the compound [63,66,67]. One possibility of applications are pharmaceuticals
and enzymes packed into alginate gel beads. Due to the nanoporous structure these can diffuse out.
Alginate wound dressings, besides having a barrier function, are kept moist and enhance wound
healing. Due to low protein adsorption and the lack of cell receptors, alginates are a specific model
for cell culture and biomedical studies. The latter options have been exploited in tissue regeneration
studies. Blood vessel formation is driven by selective introduction of cells as angiogenic proteins
and genes in alginate matrices. A similar approach is the delivery of osteoinductive factors and cells
in bone regeneration, chondrogenic cells in damaged cartilage as cell transplantation and growth
factor in other tissues and organs [57,63]. Several trials of an injectable alginate matrix including cells
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have been conducted [61,64]. Studies and investigations are numerous and the above given overview
is just a brief scope. The G/M composition of the alginates is of high importance in medical and
pharmaceutical applications.

4.2. Carrageenans

Other marine polysaccharides widely used are carrageenans, which aggregate in ionic solutions
very different from alginate or chitosan, but similar to agarose. First, we present general information,
such as structuring, before crosslinking and ion selectivities are reported.

These extracts of various red seaweeds are collected in Asia, the northern Atlantic, and South
America. These polysaccharides are a hydrophilic family of biopolymers, their backbone consisting
both of sulfated and non-sulfated galactose and 3,6-anhydrogalactose (AG) monomers. The monomers
are linked by alternating α-(1,3) and β-(1,4) glycosidic bonds. The number of sulfate ester groups as
3,6-anhydrogalactose units in the polymers are used to categorize the polymers into different types.
Each of these types shows different properties in application due to differences in conformation and
configuration [39].

Main carrageenan types are divided into ι- (iota), κ- (kappa) and λ-carrageenans (lambda) with
precursor types µ- (mu) and ν- (nu), as postcursor θ-carrageenan (theta) and κ-related furcellaran (Fur),
which is referred to as β/κ-hybrid, where β are non-sulfated κ-carrageenans. More different types
were defined but since they are only of minor importance we did not include them. See Figure 12 for a
graphic representation of the different carrageenan types.
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In natural seaweed, substantial amounts of ν- and µ-carrageenans are randomly distributed in κ-
and ι-carrageenan. These are modified using alkali in the extraction procedure to derive more pure κ

and ι products [39]. Basic differences in ester sulfate content as 3,6-anhydrogalactose content for the
different types are given in Table 1. Carrageenans never are present in a pure form [68]. Heterotypes
might be present as separate chains or as distribution in the chain of the dominant type, be it randomly
or in regular patterns [69]. As mentioned for alginates, chemical composition of carrageenans is also
dependent on seasonal variability, age of plant, and region of harvesting [70].

Table 1. Sulfate ester and 3,6-AG content of different carrageenan types. Data estimates from * [39,71]
and + [72].

Carrageenan Type Sulfate Ester Estimate (%) 3,6 AG Estimate (%)

β + 0 26
Fur * 16–20 28–30
ι 32 26
κ 22 33
λ 37 ~0

ι-, κ-carrageenan and furcellaran are forming helical structures found in solid state as in solution
below a certain transition temperature. This temperature is difficult to specify as carrageenan samples
usually are polydisperse and dependent on ionic concentration present [69]. This is the first step in an
aggregation and gelation mechanism. The latter mechanism was proposed to happen via a ‘domain
model’ [73], which is sketched in Figure 13.
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Robinson, G., Cation-specific aggregation of carrageenan helices: Domain model of polymer gel
structure, Journal of Molecular Biology 138, 349–362 (1980). Copyright (1980), with permission
from Elsevier).

It is possible to form non-aggregated solutions of κ- and ι-carrageenan, though these are highly
dependent on temperature, concentration, and added salt [74].

ι-carrageenan is found to structure in right-handed double helices, half-staggered, where one
helix is exactly displaced half a pitch relative to the other, and parallel. The threefold helices order
in a pitch of 2.6 nm [69]. For κ-carrageenan the helical structures were derived from fitting models
to continuous X-ray diffraction data as direct measurements were not meaningful. Best solutions
were found for a three-fold double helix with a pitch of 2.5 nm. By contrast, the double-helices of
κ-carrageenan show an offset from a half-staggered position by 28◦ and 0.1 nm translation [75]. This
latter translation in κ-carrageenan has been questioned by Cairns et al. [76]. For Fur, showing nearly



Molecules 2020, 25, 1840 15 of 31

the same helical structuring as κ-carrageenan, the axial translation in the double helical conformation
is present though [76].

λ is a non-gelling carrageenan and does not form helices [69]. It shows considerable flexibility,
no evidence for association and dissociation in solution and a non-ideal behavior in polyelectrolyte
suppressing conditions, probably due to large excluded volumes [77]. Though, at high present ionic
concentrations even λ -carrageenan forms gels [39]. Besides, gelation of λ-carrageenan has been
reported in the presence of trivalent ions [78], which might enhance its applicability.

There is a high sensitivity of the mentioned types to present ions, which not only depends on
type and valence but also on the identity of the ions present. Since interaction and crosslinking with
ions is determined by the carrageenan type, we describe the different interaction mechanisms for
these separately.

4.2.1. κ -Carrageenan and Furcellaran

κ undergoes conformational transitions at present ion concentrations. Conformations are highly
selective for a selection of monovalent ions (e.g., Cs+, K+, and Rb+) and rather unselective to both
divalent ions (e.g., Mg2+, Ca2+, and Ba2+) and other monovalent ions (including Li+ and Na+). The
latter showing the lowest helix-forming efficiency [69]. It seems from various studies, that these
selective ions bind to the polymer even in non-aggregating conditions, whilst the non-specific including
the bivalent ions, rather interact via long-range coulombic interaction. Though binding is present, no
evidence of a cationic binding site could be determined. Cation specificity can be explained only by
the assumption of one–two binding sites per disaccharide [79]. Several anions (including I−, F−, and
Cl−) also have been found to stabilize helical conformation, which is suggested to happen through
binding to the molecule. There seems to be strong evidence for specific anionic and cationic binding
sites, but no final investigation proves these assumptions [69]. κ is mostly gelled and investigated on
using monovalent ions and minor influences of divalent ions are mentioned in several studies. For the
sake of concentrating on multivalent ions, we omit going into further detail.

Furcellaran shows a similar behavior with regard to present ions as κ-carrageenan. Transition
temperatures are higher for furcellaran than κ-carrageenan though [80,81].

4.2.2. ι-Carrageenan

In comparison to κ-, ι -carrageenan helices are strongly stabilized by divalent ions (e.g., Ca2+) [82],
mostly due to the higher valence of the ions interaction non-specific with the higher charge density
polymer [83,84]. Some studies found an influence by monovalent ions [85], which was later deduced to
probably derive from κ-carrageenan impurities [86]. Apart from minor transition temperature changes,
there seems to be no indication of cationic specificity for conformation transitions given a high purity
ι-carrageenan [69]. We can therefore conclude that divalent ions act rather unspecific, more markedly
than monovalent ions, and are frequently used in gelation of ι structures.

4.2.3. Aggregation and Gelation

κ forms bigger aggregates from double helices, which resemble microfibers. The exact structure
in these microfibers could not be deduced, but they were found to consist of several carrageenan
helices. Microfibers then seem to form bundles and bigger aggregates [87]. Further SAXS studies
revealed that microfibrilliar aggregates are polydisperse [88]. These microfibrils are a requisite for
gelation, which happens further through lateral accumulation [69], but could locally also be driven by
branching [89]. Yuguchi et al. [88] did not find any further aggregates for ι type systems after double
helix conformation. These helices network further through ionic mediation. There seems to be a higher
tendency for branching of double helices for ι-carrageenan than for κ. No aggregations details for
furcellaran were reported.

The water-holding, stabilizing, and thickening capabilities have been exploited in various different
applications. The main application of carrageenans is food processing [90,91]. There mostly is no single
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specific interaction of divalent ions with the carrageenans present, but rather a mixture of interactions,
including strong interaction with dairy ingredients (e.g., casein). Therefore we do not further specify all
different applications but refer the interested reader to the reviews of Campo et al. [92] and Piculell [69].

4.3. Pectin

Pectins are a family of polysaccharides, rich in galacturonic acids, which are present in primary and
secondary cell walls of plants. The backbone of the polymer comprises of 1,4-linked α-d-galacturonic
units, disturbed by 1,2 linked α-l-rhamnose residues [93]. The amount of disturbing rhamnose units is
dependent on the pectin source. It is further suggested that pectin structure interchanges between
rather regular galacturonic and irregular rhamnose rich regions. The former regions being smooth,
while the latter are described as hairy due to neutral sugar side chains attached to the rhamnose residues
or the glacturonic acids [94,95]. Side chains are mainly galactans, arabinan, or arabinogalactans, having
itself single xylose side chains or galactan side chains [96]. In special pectins, minor amounts of acetyl
and feruloyl groups are found [97]. Native pectins show complex structures including various sugars
bound to the galacturonic backbone and different grades of branching. Industrial pectins usually are
less complex due to hydrolysis breakdown in the extraction process.

The galacturonic acids’ carboxyl groups are present either in salt form or are esterified by methanol.
These carboxyl groups can be ionized, leading to classify pectin as polyanion. The linear charge density
of the molecules is mainly influencing the interaction between counter-ions and the polyelectrolytes.
Since the charge density is dependent on the degree of esterification (DE), the esterification is the main
influence determining the ion binding of pectins [97,98]. The DE also affects solubility, thickening, as
well as other properties. As direct consequence, the pH and the ionic strength affect cation binding to
pectins. It was found that calcium binding reaches a maximum level at pH 5– 7.5, and levels decrease
if ionic strength increases [99]. Calcium binding bases on nonspecific electrostatic interaction as on
coordinative binding. This cooperative binding is supposed to go along with conformational changes
of the polysaccharide, and has also been proposed for pectin gelation via the egg-box model [43,100].
Since pectins are highly prone to aggregation in solution, solvent quality, degree of esterification, and
charge density as neutral sugar content has to be controlled to obtain macromolecular solutions. The
lack of attention on all factors might have led to quite discrepant findings in light scattering studies, as
pectin data for the Mark–Houwink–Sakurada equation (see [97] for a detailed overview of values).
In dilute solutions pectin chains are found stiff and extended, due to the relatively rigid galacturonic
backbone. Rhamnose residues kink the pectin chains [101]. However, these kinking effects were
found to partly self-eliminate themselves due to successively paired rhamnose units [102]. Other
contradictory conclusions have been drawn about the influence of the DE on the pectin conformation.
While several studies suggest that there is no significant effect of the DE on the conformation [103,104],
others report decreasing hydrodynamic volumes [105] and increasing chain stiffness [106,107] if the
DE is decreased.

Gelation usually is divided into two categories. Gels of high- and low-methoxylated pectins. The
former are a complex mixture of intermolecular interactions and are usually formed in high sucrose
concentrations or other co-solutes and at low pH (2.5–3.5). The low ionization level of the few carboxyl
groups results in low electrostatic repulsion. Gels then form through helix aggregation, stabilized
through intermolecular hydrogen bonds, as hydrophobic grouping of methyl esters [108,109]. In the
case of low-methoxylated pectin gels, divalent cations, calcium being the standard example, mostly
bind to accessible ionized carboxyl groups on the galacturonate units. Egg-box bonds have been
proposed to occur in a two-step process, where molecular dimerization is followed by subsequent
aggregation of these dimers [100]. As mentioned for alginates above, the calcium ions are suggested to
occupy the electronegative center of a type of box structure that forms through clamping galacturonic
acid residues on adjacent chains. Walkinshaw and Arnott [108] further speculate that calcium might
bind to three oxygen functionalities on one chain and to two on the adjacent antiparallel chain. The
possible binding sites for calcium ions were corroborated by Braccini et al. [51], adjusting the model in a
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follow-up study [45]. This study accounts for the fact that the most favourable antiparallel associations
in polygalacturonate associations requires a shift (1.7 nm) of one chain compared to the other. This
shifts leads to efficient van der Waals contacts, it reduces the prior large cavity to subcavities in the
calcium ion size and it accounts for efficient intermolecular hydrogen bonding of the chains. The
authors refer to a ‘shifted egg-box model’.

As mentioned for the compounds above, the gelling and thickening properties of pectin have
been exploited in similar applications. Pectin mostly is used in food processing, including jams, soft
drinks, and tart glazings [97]. Besides pharmaceutical applications it is used in edible films, paper
substitutes, and many others [110]. We ask the interested reader to refer to the referenced studies.

4.4. Xanthan and Other Polysaccharides

Xanthan is a polysaccharide with a cellulose backbone and various possible side chains on C-3
of the glucose residues. Weak gelation is enhanced using bivalent or trivalent ions [111–113]. No
conclusive model for the structuring, single or double helicity, as for the aggregation of the chains
has been distilled out of the multiple studies performed on the structures. Due to the heterogeneity
of the compounds, structural investigations are difficult and various structures might be present in
parallel [114]. Studies show though that ionic interaction and linking of the polymer chains happens
partly via interaction of the end groups of side chains with present bivalent ions [113]. Xanthan shows
synergistic increase in viscosity if mixed with several galactomannans.

There are numerous other examples of interactions of polysaccharides with bivalent ions. For
the sake of the finiteness of this part, we direct the reader to the respective books and articles therein,
where further interaction systems are described [39,114].

5. Metal-Ion Based Crosslinking on Fiber Surfaces and Interfaces

Cellulose fibers represent a solid structure which offers binding sites for metal ions with
involvement of carboxylic groups. Thus, metal ion complexation can occur at neutral pH. The
complexation of positive metal ions in the structure also influences the negative zeta potential [8].
In sulfonated microcrystalline cellulose, the introduction of sulfonate groups led to an increase in
negative zeta potential from -14.3 mV in neutral solution to -37.9 mV. Uptake of metal ions Fe3+, Pb2+,
and Cu2+ reduced the negative potential to −6.24, −9.7, and 14.4 mV respectively [115].

The sorption of metal ions on the insoluble cellulose structure leads to the formation of possible
binding sites to form complex bridges with dissolved polysaccharides. Accessibility of the possible
binding sites is a decisive condition for the successful formation of such mixed ion-complex bridges.
Due to the size of these polysaccharides, the binding and deposition of a polymer will occur only at
the surface of the insoluble cellulose structure.

The surface modification of Ca2+-treated cellulose by sorption of pectin, alginate, and xanthan
could be demonstrated using a two-stage procedure [116]. In the first step, the cellulose fiber samples
(viscose or lyocell type fibers) were impregnated with CaCl2. Through spontaneous sorption the
binding sites for later sorption of a dissolved polysaccharide were formed. In a second step, the
samples were immersed into polysaccharide solutions. Due to the presence of carboxylic groups in the
polymer chain of pectin, alginate, and xanthan, sorption on the surface of the calcium containing fibers
occurred. The amount of sorbed polysaccharide increases from 0.02 mg/g polysaccharide on calcium
untreated fibers to 0.2 mg/g polysaccharide on calcium pre-treated ones. A representative molecular
structure for the principle of ionic crosslinking between carboxylic groups of cellulose (at C-6) and
pectin is shown in Figure 14.
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Figure 14. Proposed model structure for sorption of pectin on Ca2+-containing cellulose.

A reaction scheme can be formulated according to the Equations (9) and (10), where PS are
carboxyl-containing polysaccharides:

Cellulose−COO− + Ca2+
→ Cellulose−COO−Ca2+ (9)

Cellulose−COO−Ca2+ + PS−COO− → Cellulose−COO−Ca2+COO− − PS. (10)

In another approach, the metal complex with Fe3+ is formed in solution first. Then sorption of the
soluble polysaccharide complex on cellulose is achieved in the second step (Figure 15) [117]. Alginate
has been used as soluble ligand offering a number of sites to form metal complexes, which equilibrate.
In the presence of cellulose surfaces, the sorption of the complexes to the fibers surface occurs. In
this case, the swollen cellulose structure serves as insoluble ligand which offers binding sites to form
mixed complexes.
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In Figure 16, general structures for the Fe3+ based crosslinks between alginate and cellulose with
involvement of carboxylic groups at C-6 or at the former reducing end of the cellulose are proposed.

In a combination of Ca2+ and Fe3+ complexation, the aggregation of alginate coated hematite
nanoparticles could be controlled by addition of Mg2+ or Ca2+ ions. These reduced repulsion between
the negatively charged nanoparticles and led to ionic crosslinks during aggregation [118]. For Ca2+

ions the formation of an extended Ca2+-alginate network surrounding the alginate coated hematite
particles has also been reported by the authors. Thus, in this case, formation of aggregates is based on
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two principles. Bridging between two alginate coated hematite particles by calcium complexation
and in a second phase, formation of calcium–alginate gels, which form gel–nanoparticle clusters.
Resembling, ionic crosslinking of carboxylated cellulose nanofibrils could be observed by a number of
bivalent and trivalent ions e.g., Fe3+, Al3+, Cu2+, Zn2+, and Ca2+ [119]. The complex formation with
involvement of the carboxylate groups leads to formation of a hydrogel network. The interfibrillar
carboxylate–cation interactions determine the final structure and properties of the gel formed.Molecules 2020, 25, x FOR PEER REVIEW 20 of 33 
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Formation of iron (III)–polysaccharide complexes was also demonstrated as a method for the
formation of anticoagulant coatings for medical products. In a layer-by-layer approach, combining
FeCl3 layers of dextran sulfate and heparin, coatings with high hemocompatibility could be formed
on nitinol sheets [120]. As mechanism for the layer formation the presence of iron complexes with
involvement of anionic groups present in the polysaccharide, e.g., sulfate or carboxylate groups are
supposed. The anticoagulant activity of the coating is explained by an outermost layer of bound
heparin or dextran sulfate.

Similarly, cellulose films were modified with Ca2+ or Fe3+ cross-linked alginate layers to improve
biocompatibility. In comparison to Ca2+ cross-linked alginate, the Fe3+ cross-linked layers showed
higher adsorption of extracellular proteins and, thus, improved surface properties for cell adhesion
and proliferation. This is of value in the modification of surfaces for implant material [121].

6. Ionic Interaction in Non- and Mixed-Polysaccharide Polymers

Multivalent ion crosslinking and dissolution through ion complexation is present in a multitude
of systems. These mechanisms are not limited to hydroxylic or carboxylic functional groups but extend
to amine, amide, imidazole [122], and hydroxyproline [123] groups, among others. Complexation is
present in both polysaccharide and protein systems. These associating mechanisms are important to
biological mechanisms. Glycoproteins, compounds of covalently bond oligosaccharides to protein
chains, are important examples of mixed polysaccharide–protein systems [124,125]. These are known
to show multivalent ion complexation [126–128]. Glycoprotein association is assessed by a relevant
model. On the basis of a selected cross-linking and solubilizing mechanism of polyamide 6,6 and
protein structures ionic cross-linking is extended to the latter. The following section is therefore
added to:

• expand multivalent ion complexing and interaction models
• refer to multivalent ion protein interaction and glycoproteins
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6.1. Polyamide in CaCl2/Ethanol/Water Systems as the Model Compound for Polyamino Acid Structures

Polyamides, more specifically polyamide 6,6, can be considered to be synthetic polyamino acids.
Natural polyamino acid structures occur for example in silk and wool. Polyamide 6,6 is inert to most
common organic solvents and to alkali solutions, but is sensitive to acids such as sulfuric acid. It can
be dissolved in concentrated formic acid, phenol, and alcoholic calcium chloride (CaCl2) solutions.
The latter by formation of a Lewis acid–base complex.

The concept of Lewis acid–base complex formation between the polymer and Lewis acids can be
applied to rigid chain and ladder polymers and to polyamides [129,130]. In general, Lewis acid–base
complexation occurs between an electron donor (Lewis base) and an electron acceptor (Lewis acid).
The formed bonds are called coordinate covalent bonds or dative covalent bonds. Compared to the
covalent bonds the electrons are from the same atom.

Lewis acids (multivalent ions) mentioned in context with polyamide are for example GaCl3, AlCl3,
CaCl2, BF3, BCl3, and LiCl, where GaCl3 and AlCl3 are considered to be strong Lewis acids and CaCl2
and LiCl weak Lewis acids. In polyamide the N–H and the C=O can act as electron donors, and thus
be a complexation site for the Lewis acid. The nitrogen has a 2pz

2 “lone pair” and the oxygen has two
sp2 “lone pairs”. However, the 2pz orbitals of O, C, and N in the planar amide group are overlapping,
this causes the partial double bond character of the amide linkage and reduces the electron density of
the nitrogen atom. This results in the formation of a coordinate bond between the carbonyl oxygen
and the Lewis acid (see Figure 17) [131].
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Nevertheless, these two sites are also the hydrogen bond donor and acceptor sites in the polyamide.
Therefore, the hydrogen bond and the Lewis acid–base complex are competing. Complexation with
polyamide suppresses the hydrogen bonding between the polymer chains, as sketched in Figure 18 for
polyamide 6,6 and GaCl3 [129–131].

Molecules 2020, 25, x FOR PEER REVIEW 21 of 33 

 

of polyamide 6,6 and protein structures ionic cross-linking is extended to the latter. The following 
section is therefore added to: 

• expand multivalent ion complexing and interaction models 
• refer to multivalent ion protein interaction and glycoproteins 

6.1. Polyamide in CaCl2/Ethanol/Water Systems as the Model Compound for Polyamino Acid Structures 

Polyamides, more specifically polyamide 6,6, can be considered to be synthetic polyamino acids. 
Natural polyamino acid structures occur for example in silk and wool. Polyamide 6,6 is inert to most 
common organic solvents and to alkali solutions, but is sensitive to acids such as sulfuric acid. It can 
be dissolved in concentrated formic acid, phenol, and alcoholic calcium chloride (CaCl2) solutions. 
The latter by formation of a Lewis acid–base complex. 

The concept of Lewis acid–base complex formation between the polymer and Lewis acids can 
be applied to rigid chain and ladder polymers and to polyamides [129,130]. In general, Lewis acid–
base complexation occurs between an electron donor (Lewis base) and an electron acceptor (Lewis 
acid). The formed bonds are called coordinate covalent bonds or dative covalent bonds. Compared 
to the covalent bonds the electrons are from the same atom. 

Lewis acids (multivalent ions) mentioned in context with polyamide are for example GaCl3, 
AlCl3, CaCl2, BF3, BCl3, and LiCl, where GaCl3 and AlCl3 are considered to be strong Lewis acids and 
CaCl2 and LiCl weak Lewis acids. In polyamide the N–H and the C=O can act as electron donors, and 
thus be a complexation site for the Lewis acid. The nitrogen has a 2pz2 “lone pair” and the oxygen has 
two sp2 “lone pairs”. However, the 2pz orbitals of O, C, and N in the planar amide group are 
overlapping, this causes the partial double bond character of the amide linkage and reduces the 
electron density of the nitrogen atom. This results in the formation of a coordinate bond between the 
carbonyl oxygen and the Lewis acid (see Figure 17) [131]. 

 
Figure 17. Orbitals of the amide group. 

Nevertheless, these two sites are also the hydrogen bond donor and acceptor sites in the 
polyamide. Therefore, the hydrogen bond and the Lewis acid–base complex are competing. 
Complexation with polyamide suppresses the hydrogen bonding between the polymer chains, as 
sketched in Figure 18 for polyamide 6,6 and GaCl3 [129–131]. 

 

Figure 18. Polyamide 6,6 complexed with gallium chloride. Suggested structure by Roberts et al. [129,130].

In most cases, the Lewis acids are dissolved in low molecular weight alcohols or in the case of
GaCl3, nitromethane was used [129]. A more detailed dissolution mechanism of polyamide 6,6 in a
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CaCl2/methanol solution was suggested by Sun [132]. After adding polyamide to the solution, the
Lewis acid–base complex approaches the polymer because of intermolecular interactions between the
two groups, the O–H of the alcohol and the C=O of the polyamide. The affinity of the calcium ion is
higher towards the oxygen of the carbonyl group than to the hydroxyl group, thus a transfer of the
calcium ion occurs from the alcohol to the polyamide (Figure 19) [132].
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However, the complexation of polyamide and Ca2+ ions is only happening in alcoholic solutions.
Calcium chloride dissolved in water is surrounded by a solvation shell, thus it is thermodynamically
very stable. By the addition of ethanol, the solvation shell is disturbed and a complex formation
between the calcium ion and polyamide is thermodynamically preferred. The amount of water is
playing an important role on the kinetics of the dissolution [133].

The dissolution is based on two different transport processes: diffusion and disentanglement. In
solutions composed of calcium chloride and alcohol without water, these two processes are fast. The
solvent diffuses into the polymer and breaks the hydrogen bonds between the polymer chains. At the
same time, the polymer chains are disentangled and the polymer dissolves. The addition of water
is believed to increase the diffusion rate into the polymer but the polymer chains, complexed with
calcium ions, are not disentangling at the same rate, therefore a gel-like layer of complexed polyamide
6,6 emerges.

Different observations were made by Liu et al. [134] for polyamide 6 complexed with CaCl2. They
found a red shift of the FTIR N–H vibration band to a lower frequency of 3245 cm−1, which has also
been reported by Wu et al. [135] in polyamide 6,6 lithium salt complexes. They suggest a coordinating
model, which includes the formation of a six-member ring between the salt and the polyamide chains
(see Figure 20). In this ring, coordinate and hydrogen bonds coexist. This means the hydrogen bonds
are not severed but are stronger than in the non-complexed polyamide [134,135].Molecules 2020, 25, x FOR PEER REVIEW 23 of 33 
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Furthermore, the thermal properties of polyamide complexed with a Lewis acid are different
compared to pristine polyamide [129]. This is caused by the absence of the hydrogen bonds. No melting
point was observed, which indicates the lack of crystallinity of the complexed polyamide [129,130].
Polyamide 6,6 complexed with GaCl3 showed a Tg of –32 ◦C and no melting or crystallization [131,136].

Thus, complexation of polyamide with Lewis acids is also used to increase the draw ratio of
polyamide fibers [137–141]. The salt, e.g., calcium chloride, is added to the melt and PA6x(CaCl2)y

fibers are melt-spun [140] or the polyamide, dissolved in formic acid and calcium chloride, is added to
the solution and the fibers are prepared by the gel-spinning method [139].

The complexation of different salts (Lewis acids) with polyamide can be used as a model for the
complexation of salts with proteins. By the complexation, the solubility and thermal and chemical
properties of the polymer are changed.

6.2. Ion-Rich Hydrate Shells in Protein Fiber Dissolution

Silk fibroin consists of mostly linear protein chains, which in solid state are arranged in the
β-pleated-sheet structure. Strong hydrogen bond interactions between neighbouring chains are
present in the solid state. Due to the absence of covalent bonds, dissolution of fibroin can be
achieved by a number of concentrated aqueous salt solutions, among them CaCl2/water/ethanol [12],
CaNO3/methanol/water [142], LiBr [143], and NaSCN [144].

In solution considerable protein-protein associations between the fibroin chains lead to a strong
tendency to aggregate and to form micelles [145].

FTIR analysis and potentiometric titration of the fibroin solution in concentrated
CaCl2/water/ethanol allow to distinguish between complex formation and less specific interactions
between the solvent and fibroin [146]. The common model assumes that dissolution leads to formation
of an ion-rich hydration layer and interaction of calcium ions with charged and highly polar groups
present in fibroin. Formation of well-defined Ca2+-complexes is less probable. This is supported by the
low formation constants for Ca2+-complexes with the major fibroin constituents, e.g., glycine, alanine,
tyrosine, and serine [147]. Similar to the D-gluconate complexes, amino acids with carboxylic side
groups or basic amino groups could form more stable Ca2+ complexes however the share of these
amino acids is not sufficient to explain fibroin dissolution in CaCl2/water/ethanol solution [148].

Based on similarities to the calcium complex with ethylenediaminetetraacetic (EDTA) acid,
Figure 21 shows a model for a possible ion-interaction between Ca2+ ions and fibroin [149]. Involvement
of NH-groups of the peptide chain contributes to the formation of five-membered chelate structures.
For dissolution the complexation with the peptide backbone should be sufficient. Complexes of two
peptide chains are expected to be present in solution.

In a similar manner, wool keratin can be dissolved using a concentrated solution of
CaCl2/water/ethanol, however, addition of a suited reducing agent, e.g., thioglycolate, is required to
open the covalent disulfide bonds between the keratin chains [150].

Weak complexes formed in the hydrate shell of an ion-rich solvent, thus can lead to dissolution
of proteinaceous material in concentrated CaCl2/water/ethanol solutions. The regeneration of the
chemically unmodified protein then is possible by dilution with non-solvents or application of dialysis.
Such processes are highly interesting for shaping of protein based biomaterials in medical applications,
e.g., scaffolds and implants.
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Figure 21. Schematic presentation of Ca2+ interaction with fibroin in CaCl2/water/ethanol solution.

6.3. Metal Complexes in Protein Fibers Forming Ionic

While concentrated solutions containing calcium chloride lead to dissolution of protein material
via hydrate shell interactions, also stable and defined complexes can be formed between metal ions
and a protein structure.

Soluble keratin hydrolysates were shown to form stable complexes with Fe3+ ions and with Cu2+

ions. Experiments with use of model peptides e.g., poly-l-lysine demonstrated the ability of these
molecules to form stable metal complexes [151]. Formation of metal complexes with feather keratin
could be obtained with use of glycine metal complexes (e.g., Zn2+, Cu2+, Mn2+, and Ni2+), which
exhibits the ability of proteinaceous structures to act as solid ligands for bivalent metal ions [152]
(Figure 22). Complex formation of metal ions with wool also was demonstrated with sorption
experiments and polarographic analysis of the equilibrium concentrations using different metal ions
(e.g., Cu2+, Pb2+, and Cd2+) and different processed wool samples [153].Molecules 2020, 25, x FOR PEER REVIEW 25 of 33 
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Formation of larger assemblies of silk fibroin connected via divalent cations has been described
to appear with silk fibroin [11,154]. Copper complexes, which crosslink two peptide chains through
formation of a biuret type complex have been observed when silk fibroin has been treated with alkaline
Cu2+ complex solutions, e.g., the cuprammonium complex [155] (Figure 23). The formation of Cu2+

complexes with silk fibroin was found to be dependent on the structure of the fibroin, e.g., fibroin in
random coil structure forms Cu2+-chelate complexes more readily than fibroin present in antiparallel
β-structure [144].
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Similarly, the formation of a Ni2+ chelate complex could be achieved at pH > 10, while aqueous
fibroin solutions gelated in presence of Ni2+ at pH < 9 [156].

7. Synopsis

A model of multivalent ion complexation from monosaccharides to polysaccharides was developed
on the basis of selected studies. The final section expands the model to polyamino acids as model
components for the ion-bridging in glycoproteins. In these considerations, the similarity of the behavior
is demonstrated. The interactions derive from the ions species present as the polymers’ functional
groups. Solvent systems and competitive bonds influence the ion complexation of the biopolymer,
among others. The functional groups in a polysaccharide molecule determine the physical–chemical
basis, the strength of interaction and possible complex formation with a certain ion. The interaction
with ions present in solution, thus governs effects such as swelling, solubilisation, formation of a
distinct conformation in the dissolved state (e.g., random coil, helical, or linear), as well as coagulation
and precipitation.
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