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Abstract

Acute inflammation is a severe medical condition defined as an inflammatory response of the body to an infection.
Its rapid progression requires quick and accurate decisions from clinicians. Inadequate and delayed decisions makes
acute inflammation the 10th leading cause of death overall in United States with the estimated cost of treatment

inflammation.

about $17 billion annually. However, despite the need, there are limited number of methods that could assist
clinicians to determine optimal therapies for acute inflammation. We developed a data-driven method for
suggesting optimal therapy by using machine learning model that is learned on historical patients’ behaviors. To
reduce both the risk of failure and the expense for clinical trials, our method is evaluated on a virtual patients
generated by a mathematical model that emulates inflammatory response. In conducted experiments, acute
inflammation was handled with two complimentary pro- and anti-inflammatory medications which adequate
timing and doses are crucial for the successful outcome. Our experiments show that the dosage regimen assigned
with our data-driven method significantly improves the percentage of healthy patients when compared to results
by other methods used in clinical practice and found in literature. Our method saved 88% of patients that would
otherwise die within a week, while the best method found in literature saved only 73% of patients. At the same
time, our method used lower doses of medications than alternatives. In addition, our method achieved better
results than alternatives when only incomplete or noisy measurements were available over time as well as it was
less affected by therapy delay. The presented results provide strong evidence that models from the artificial
intelligence community have a potential for development of personalized treatment strategies for acute

Introduction
Acute inflammation is a progressively severe medical
condition defined as an inflammatory response of the
body to a trauma, a surgery, a burn, or an infection. Fast
progression of acute inflammation requires quick and
accurate decisions from clinicians. Inadequate and delayed
decisions make acute inflammation the 10th leading cause
of death overall in United States, with the estimated cost
of treatment about $17 billion annually [1]. However,
despite the need, there are no computational methods that
can help clinicians in planning optimal therapies for acute
inflammation.

Model predictive control (MPC) is a method often used
in clinical applications for planing of optimal treatment
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[2-5] mainly due to its inherent capability to handle
clinically relevant constraints and to take into account
multiple variables at the same time. A predictive model is
the most important part of MPC, which is deployed to
estimate patient’s response to the therapy. These estima-
tions together with a set of clinically relevant constraints
are used in MPC to compute optimal therapies that will
lead the patient to the healthy condition. The efficacy of
MPC based treatment is completely dependent on model’s
capability to accurately estimate the patient’s response to
therapy.

To construct an accurate predictive model, practitioners
often rely on domain-based assumptions about patients’
behavior. Such a domain-driven model was previously
used as a component in MPC to find optimal acute
inflammation treatment [6]. The authors showed that
pro-inflammatory and anti-inflammatory medications
within MPC setup decreased the mortality rate. However,

© 2013 Radosavljevic et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative

( BioMVed Central

Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver

(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.


mailto:zoran.obradovic@temple.edu
http://creativecommons.org/licenses/by/2.0
http://creativecommons.org/publicdomain/zero/1.0/

Radosavljevic et al. BMC Medical Genomics 2013, 6(Suppl 3):57
http://www.biomedcentral.com/1755-8794/6/S3/S7

therapy outcome was greatly dependent on the set of
parameters used in the model.

To relax the dependency on parameter settings, a data-
driven predictive model that learns patients’ responses
from observed data and doesn’t rely on any domain-based
hypothesis can be used instead. MPC with data-driven
predictive models was successfully applied in medical
applications, including optimal glucose control [7], the
control of anticancer medications dosage [8], the control
of ventilation [9], and finding an adequate dosage of
anesthesia [10]. The main objective of this study is to
show that MPC with a data-driven predictive model can
improve the overall quality of acute inflammation
treatments.

Our preliminary results [11] indicated that a data-driven
MPC method significantly improved the number of
healthy outcomes when compared to acute inflammation
therapy strategies from literature and clinical practice.
This paper reports a more detailed study by evaluating the
data-driven MPC and alternative approaches over different
clinically relevant setups as follows. All experiments are
done on virtual patients generated by a mathematical
model that emulates inflammatory response, which is a
standard approach in pharmacological research. We show
that in achieving results presented in [11], our method
used much lower doses of medications than other
methods. Furthermore, our method provides good accu-
racy even in the presence of incomplete measurements,
as well as additive Gaussian noise. It is also less affected
by possible therapy delay than the alternatives. We also
identified characteristics of patients who may benefit the
most from application of our method. Consequently, our
data-driven tool for the optimal treatment of acute inflam-
mation along with domain-based knowledge may provide
a platform for the development of personalized treatment
strategies that will increase survival rates.

The rest of the paper is organized as follows. In the next
section we introduce a virtual patient model that emulates
therapy response and we define clinically relevant therapy
constraints. Then we propose a data-driven predictive
model that determines optimal therapy, which is followed
by evaluation of the model. In the final section we give
a conclusion.

Mathematical model for virtual patient and
treatment constraints

Virtual patients are carefully developed mathematical
models made to mimic the human body behavior when
exposed to circumstances that are in the interest of
a study. They allow biomedical researchers to perform
various types of experiments on the same patient as well
as to compare the outcomes. Thus, the main purpose of
having virtual patients is to reduce expense for clinical
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trials and to lower chance of failures. A mathematical
model in the form of the system of ordinary differential
equations (ODE), recently proposed in [6], simulates
inflammatory response to an infection, including medica-
tion effect on inflammatory response. It models the
dynamics of concentration of:

« bacterial pathogen (P),

« early pro-inflammatory mediators (N),
» tissue damage markers (D),

« anti-inflammatory mediators (CA),

which are regulated by anti-inflammatory (AIDOSE) and
pro-inflammatory (PIDOSE) medications via following
equations
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Mathematical model in this form is capable of modeling
the complex cascade of inflammation initiated by patho-
gen (P). An increase of pathogen level P leads to the series
of positive and negative feedback reactions that are all suc-
cessfully modeled by ODE. In particular, an increase of P
causes the development of a pro-inflammatory response
(the increase of N) and the development of tissue damage
(the increase of D). Equation (1) simulates a positive effect
of inflammation, where an increase of N reduces level of
pathogen P. However, (3) simulates a negative effect of
inflammation, where an increase of N further damages tis-
sue causing rapid increase of D. An increase of D activates
a negative feedback in (4), or anti-inflammatory response
(CA), which lowers the level of N and prevents tissue
damage (decrease of D) [6]. The strength of positive and
negative feedbacks depends on the parameter values in
ODE. By varying parameter values we can simulate varia-
bility among patients.
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A diverse population of patients is generated by random
initialization of parameters kg, Kc,, k.4, and initial condi-
tions Py and CAy from uniform distribution on valid
ranges (k,, € [0.3, 0.6], k., € [0.03, 0.05], k,,; € [0.015,
0.025], Py € [0, 1], CAo € [0.0938, 0.1563]). Other para-
meters were set to constant values as in [6] except k.4
that covaries with k., and k,,, that covaries with k,,; [6].
Patients in all simulations are observed in hourly steps ¢,
starting from ¢ = 0 when parameters and patient state are
initialized. Then, patient state changes over time following
ODE for 168 hours (one week) when simulation is over.
As in [6], we consider three possible outcomes depending
on the patient state [P N D CA] at the end of simulation
time (Figure 1):

« healthy (P <1, N <0.05, D <1),
« aseptic death (P <1, N >0.05, D >1),
« septic death (P >1, N >0.05, D >1).

Evolution of the patient to the final state can be modu-
lated by carefully constrained pro-inflammatory (PIDOSE)
and anti-inflammatory (AIDOSE) medications. Therefore,
model predictive control is applicable to inflammation
therapy only if constraints on medication doses obey clini-
cal rules. Oppositely, for example, a large amount of medi-
cation given at once can cause the death of a patient due
to overdose. Also, the prescription of a high level of anti-
inflammatory doses with long duration may predispose the
patient to other infections, which might cause death. We
follow well-defined medication constraints for inflamma-
tion treatment stated in [6]:

+ 0 < PIDOSE < PIDOSEM*X, where PIDOSEYAX is
the difference between N,,,, (N, = 0.5) and the
current level of N = Nj;

« 0 < AIDOSE < AIDOSEMAX, where AIDOSEMX is
the difference between a maximum allowable level of
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« saturation of anti-inflammatory mediator: the satura-
tion of CA for long durations is avoided in clinical
practice because of other infections that can occur and
endanger organ recovery. Thus, if the level of CA has
been elevated for 48 hours, then CA,,,, was halved.

Model predictive control (MPC)

Model predictive control finds an optimal set of control
inputs by minimizing an objective function while prevent-
ing violations of predefined constraints. The objective
function is based on the difference between outputs of the
predictive model and reference trajectory. In the case of
inflammation therapy, when the reference trajectory is set
to D = 0 and P = 0, MPC finds the set of medication doses
which would lead the patient to a healthy state [6] (see
Figure 2). In order to find medication doses at certain
time point k, we need to define following:

o prediction horizon (p) is the time window that
governs how many future outputs of the predictive
model will be used in the objective function;

« predicted patient states ([P N D CAljj= 1, ..., p}
are estimations of output variables obtained from the
predictive model;

« control horizon (c, ¢ < p) is the time window that
governs how many future controls (medication dosage)
will be determined by the optimization algorithm;

« future medication doses ([PIDOSE AIDOSE;,j= 0, ..., c—1)
are doses that are obtained by the optimization algo-
rithm assuming constant doses from k + ctok+p - 1

set to the values of. [PIﬁOSE AIBOSE]

k+c—1

At the k-th time point, values of medication doses at the
next ¢ time points are calculated to minimize regularized
predicted deviations from the reference trajectory over the
prediction horizon while satisfying the constraints
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Figure 1 Progress over time of pathogen (P), pro-inflammatory mediator (N), tissue damage (D), and anti-inflammatory mediator (CA)
for patients with septic (red), aseptic (green), and healthy (blue) outcomes when no therapy was applied.
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Figure 2 Block scheme of model predictive control strategy for finding optimal medication doses.

subject to as past medication doses. Let us denote patient’s state at
. time point k as y; and medication doses as uy
0 < AIDOSE,j—1 < AIDOSE)X,,
Vi = [Pr N Dy, CAL]T (8)

- MAX
0 < PIDOSEyj-1 < PIDOSEy;,, up= [AIDOSE, PIDOSE]T )

where wp, wp, and w, are weighting constants. Then, the
first doses AIDOSE), and PIDOSEjare applied to a virtual
patient model to obtain new patient state at k + 1. At the
next time point k + 1, the optimization procedure is

Functional form of the sub-model responsible for
predicting pover prediction horizon given patient’s states
and medication doses up to k can be written as

repeated and a new sequence of doses is obtained. Py = Fo (Juujors oo Fhers Voo s Viejomy Gt G Wit Wi ) (10)
Finding successful treatment by applying two medica-
tions is a challenging problem. Applying a large amount of where j = 1,..., p; Fp is a function with unknown para-

AIDOSE would increase the level of CA, which would meters Bp; 1, and n,, are time lags. Other sub-models
reduce the level of D. On the other hand, this might cause ~ responsible for prediction of N, D, and CA have similar
extreme growth of pathogen P. Also, applying a large ~ functional forms, but with different parameters By, Bp,
amount of PIDOSE would increase the level of N, which ~ and Bca.

would reduce the level of P. However, this can trigger pro- The next step is to define input-output functional rela-
inflammatory response to focus on eliminating P, after ~ tions Fp, Fx, Fp, or Fc, in terms of model parameters.
which the level of tissue damage D could not be controlled ~ Data driven non-linear predictive models such as Gaussian
anymore. Thus, both medication doses and their timing ~ Processes [12], neural networks [13], particle filters [14]

are critical for successful treatment. have been successfully developed for industrial applica-
tions, although designing non-linear models in control
Predictive model theory is difficult task [15]. Also, non-linear models

Accuracy of the predictive model over the prediction require much more data to be trained then linear models.
horizon directly affects the quality of model predictive =~ Moreover, in the case of multivariate process, the differ-
control. Design of our data-driven predictive model ence in necessary training data is even larger. Due to high
involves two steps: 1) specification of model structure 2)  cost and limited availability of clinical data we applied
learning model parameters from training data. These steps  linear functional forms in terms of Bp, Bx» Bp, Bca-

will be further explained in following paragraphs. For the  Learning of DD-MPC predictive model

sake of clarity we named our predictive model as DD-MPC.  To follow a real life scenario regarding the availability of
Structure of DD-MPC predictive model representative training data, we assume that the data come
We propose a predictive model that is composed of four  from a small population of diverse patients. To generate
sub-models, each assigned to one of the outputs P, N, D, training data we select N, virtual patients represented by
and CA. We use the same set of input variables in all ~ ODE and consider that hourly measurements are available
sub-models. This set includes past patient states as well ~ for a whole week. During the data generation process,
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initial conditions and parameters for each patient are
randomly chosen from valid ranges while dosages are
determined as follows.

In spite of control theory where control signals are
randomly generated, random generation would not be
clinically relevant for medication doses and thus we
designed the following approach. We use MPC for each
patient in the training set, deploying its own ODE as
a predictive model. In this setup, the predictive model
provides perfect predictions for patient’s future states
because predictions and future observations are the same
at every time point. Therefore, by applying MPC we obtain
ideal medication dosage. Ideal dosage is neither realistic
in clinical practice nor suitable for learning data-driven
models. Therefore, we added random Gaussian noise to
the ideal sequence of doses, obtaining dosage that is close-
to-ideal. On the other hand, close-to-ideal doses applied
every hour over an entire week would lead many patients
to a non-healthy state. Instead, close-to-ideal dosage
strategy is applied in the first 10 hours of therapy (the
most critical period) and then therapy is continued with
the ideal doses. This strategy is called close-to-ideal
dosage strategy.

Evaluation

Parameters of DD-MPC

In order to evaluate DD-MPC we need to decide on time
lags, prediction horizon, and control horizon. The model
with time lags equal to 2 had significantly larger predictive
accuracy than the models with time lags different from 2.
Therefore we use the model with time lags set to 2 in all
of our experiments. The duration of the prediction
horizon had to be set to achieve an equilibrium between
following requirements: (1) the duration should be long
enough in order to allow the therapy to fully manifest, (2)
the duration should be short enough since predictive
models are usually less reliable as the duration increases.
The best performance was achieved with the length of
prediction horizon window set to 5. The longer duration
of control horizon makes response to be faster, but the
system then becomes susceptible to model uncertainties
[15]. Therefore we set the window length of control
horizon to 2. Weights wp, wp, and w, in objective function
were set to 3, 1, and 1 respectively in order to amortize
the effect of unequal scalings.

Number of patients to train DD-MPC

Obtaining the data is expensive in clinical applications.
Hence, it is important that we investigate the least number
of patients who are needed for the training data set so that
the model learned on such data achieves acceptable accu-
racy. We generated a population of 65 virtual patients
with the close-to-ideal dosage strategy for each of them.
Each patient was observed for 168 hours and data were
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recorded on hourly bases. Finally, there were 43 healthy,
14 aseptic, and 8 septic patients’ outcomes. It is worth
noting that during training of the proposed data-driven
model we did not take into account any prior knowledge
about the data generation process.

We sampled N, patients from population of 65 patients
to train our predictive model with the assumption of equal
number of healthy, aseptic, and septic patients in the
sample. In order to determine minimal Ny, for which
predictive model gives acceptable accuracy, we evaluated
percentage of healthy outcomes for MPCs with predictive
models trained on varying number of N;, = 3, 6,9, ..., 24
patients. The validation of these models was performed on
a population of 50 patients generated separately from the
population used in training. The average number of
healthy, aseptic, and septic outcomes for each N, is
presented in Table 1 together with standard deviation
from 10 repeated samplings. From Table 1 we can see that
models trained on a small number of patients are not
successful in finding MPC based treatment. The balance
between number of aseptic and septic outcomes and num-
ber of patients in training set was achieved for N;, = 18.
Also, for N;, = 18 the result is stable over 10 repeated
experiments with low standard deviation which suggest
that for N;, = 18 the performance does not depend on the
specific patients selected for training. Therefore, in next
sections we use a DD-MPC model trained on 18 patients.

Dataset

The proposed DD-MPC was evaluated on a population
of 500 virtual patients recorded for 168 hours (1 week)
by hourly measurements of P, N, D, and CA. In the case
when treatment is not applied, the population has
85 septic, 117 aseptic, and 298 healthy virtual patients.
In order to determine which patients require treatment,
we follow the criteria from [6]. According to [6], if N
exceeds 0.05 at any time point, then the corresponding
patient needs to receive treatment. We found 321 out of
500 patients who were supposed to be treated. These

Table 1 Average number of healthy, aseptic and septic
patients after DD-MPC therapy on a set of 50 patients.

N, Healthy Aseptic Septic

3 241 £ 97 127 £ 90 132 +74
6 266 £ 121 100 + 58 134 £ 92
9 378 £ 111 74 +47 48 + 8.1
12 417 + 35 60 + 20 23 +£46
15 417 £ 32 5823 25+50
18 441 £ 1.1 58 £07 03+£10
21 443 £ 12 53 +£05 0412
24 436 £ 08 59 +£09 05+12

Predictive model was learned on N,, patients.
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patients represent a population on which we compare
DD-MPC and baseline methods.

Baseline methods
We compare therapy outcomes of our DD-MPC to
models used in [6]:

« no therapy applied model (Placebo);

« the therapy currently used in the clinical practice: a
constant anti-inflammatory therapy; we simulated this
kind of therapy by applying AIDOSE = 0.005 hourly
during the fist 72 hours from therapy onset (N >0.05),
after 72 hours the therapy was terminated (Static);

« therapy based on MPC that used the mathematical
model which parameters were fixed to parameters
from a single patient [6] (Mismatch).

Results

Therapy outcome was classified based on patient state at
the end of 168 hours of simulation. If the patient did not
reach stable state after 168 hours, then the simulation was
extended for an additional 300 hours with no therapy
applied. We report percentage and number of septic, asep-
tic and healthy outcomes at the end. In addition, we dis-
tinguish different groups of patients based on the effect of
therapy:

« harmed - designates cases when the outcomes of
therapy without using any medications (Placebo) were
healthy, while outcomes after applying therapy were
aseptic or septic (the lower percentage of harmed the
better);
« rescued - designates cases when outcomes after ther-
apy were healthy, while outcomes without therapy
were aseptic or septic (the higher percentage of rescued
the better).
Fully observed data
Results of treatments using DD-MPC and baselines on
fully observed patients who were assigned to receive ther-
apy are reported in Table 2. DD-MPC achieved around
8.5% higher percentage of healthy outcomes than
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Mismatch and around 50% higher than Placebo and Static.
At the same time DD-MPC managed to keep 0 harmed
patients out of 119 for whom the outcome of Placebo
therapy was healthy. In addition, application of DD-MPC
rescued 87% of 202 patients that would otherwise be
aseptic or septic within a 168 hours period. In contrast,
Mismatch rescued only 73% of patients.

In Figure 3 we illustrated an example of a therapy
common for the rescued virtual patients. As we can
see, at the early stadium of acute inflammation a high
pro-inflammatory medication was applied in order to
fight against invasive pathogen. Once the pathogen
level was reduced, the therapy continued by applying
anti-inflammation medication to reduce inflammation
and recover the patient to healthy state.

To identify patients (represented by initial conditions
and model parameters) who benefit the most from using
DD-MPC, we compare the outcomes of the DD-MPC
model to the outcomes of Mismatch. According to
possible outcomes, we split patients into two groups:
(1) 266 patients who were successfully treated by
both models, and (2) 33 patients who were successfully
treated by DD-MPC but not Mismatch. The group of 33
patients is characterized by high initial level of pathogen
Py (Py = 0.78 + 0.13). In order to detect the conditions
for which DD-MPC outperforms Mismatch, we compare
33 patients to a subset of 165 patients from another
group who had similar Py (Py = 0.79 + 0.12). Average
values of parameters k., and k,, were significantly
different between the group of 33 patients and the
subset of 165 patients according to two tailed t-test with
95% confidence. We discovered that the Mismatch
mathematical model had similar values of k., and k,,; to
the ones found in the subset of 165 patients. On the
other hand, the difference in the parameter values of
Mismatch and the group of 33 patients affected predictive
power of Mismatch on these patients and thus it was not
able to provide adequate therapy. Oppositely, data driven
DD-MPC generalized well what it learned on training data
which resulted in succesful treatment outcomes on both
groups of patients.

Table 2 Number and fraction of patients on fully observed data for: model with no therapy applied (Placebo), model
with constant anti-inflammatory dose (Static), MPC with mathematical predictive model with set of parameters equal
to parameters of a single patient (Mismatch) and MPC with data-driven predictive model learned on small data
sample (DD-MPC) and MPC with data-driven predictive model learned on small data sample with 5% additive

Gaussian noise in observations (DD-MPC+noise).

Healthy (total 321) Aseptic (total 321)

Septic (total 321) Harmed (total 119) Rescued (total 202)

Placebo 119 (37.07%) 7 (36.45%)
Static 0 (43.61%) 96 (29.91%)
Mismatch 267 (83.18%) (1 5.58%)
DD-MPC 294 (91.59%) 4 (841%)
DD-MPC+noise 284 (88.47%) (1 0.28%)

85 (26.48%) N/A N/A
85 (26.48%) 3 (2.52%) 24 (11.88%)
4 (1.25%) 0 (0%) 148 (73.27%)

0 (0%) 0 (0%) 75 (86.63%)

4 (1.25%) 0 (0%) 65 (81.68%)
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Figure 3 An example of successful optimal therapy found by DD — MPC: Placebo (solid red) and DD —MPC (dashed red). Dosage found
by DD — MPC: AIDOSE (solid green) and PIDOSE (dashed blue).

Therapy efficiency

Therapy efficiency was evaluated by the average area-
under-the-curve (AUC) of pathogen level P and tissue
damage D over the patients with healthy outcome that
were assigned to the treatment. The lower the AUC is, the
more effective therapy is. DD-MPC outperformed
Mismatch by achieving lower average AUC(P) and lower
average AUC(D) (Table 3). We also compared the average
AUC of PIDOSE and AIDOSE used per healthy outcome.
Drugs have potential harmful side effects as well as finan-
cial costs, so the lower usage the better, but only if it does
not affect the quality of therapy. From Table 3 we see that
DD-MPC by using lower dosage, achieved a higher
percentage of healthy outcomes than Mismatch.

Delay in diagnosis

To show the importance of timely diagnosis of acute
inflammation, we performed an experiment where we
delayed the onset of a therapy and measured the effect
of the delay on final outcome. In particular, instead of
initiating therapy when N reached 0.05 we initiated it with
1,2, ... 24 hours delay. Figure 4 shows the effect of the
delays on final outcomes when DD-MPC and Mismatch
were applied. The DD-MPC outperforms Mismatch for
shorter delays while for longer delays both methods
are equally good. The percentage of rescued patients of
DD-MPC decreases at a rate of about 12% per hour in first
few hours after acute inflammation was identified. This
simulation result suggests that acute inflammation therapy
requires timely application in order to be effective for
treatment.

Noisy data

Since measurement noise is inevitable, we tested the
robustness of DD-MPC to additive 5% Gaussian noise
(standard deviation is 5% of the measurement) that influ-
enced each hourly measurement of all four outputs. From
Table 2 we can notice that there was no significant
decrease in results compared to the results obtained with
an ideal noise free system.

Partially observed data

We considered the clinically relevant scenario that only
incomplete measurements are available over time
(we assumed that complete data was only available for
training). We followed the approach from [6] by assuming
that hourly measurements for N and CA were available at
any time. Level of tissue damage D was impossible to
quantify at all, while an indirect measurement of the
pathogen level P was available every four hours. Every four
hours, pathogen levels predicted by the predictive model
were compared to pathogen levels obtained from the
patient model. When pathogen level in the predictive
model was significantly different than pathogen level in
the patient model then: (1) if pathogen level in the predic-
tive model was lower than pathogen level in the patient
model, then the predictive model’s pathogen level for the
next step was reset to P = 0.5, or (2) if pathogen level in
the predictive model was higher than pathogen level in the
patient model then the predictive model’s pathogen level
was reset to zero. As suggested in [6], the use of the patho-
gen levels in this way was clinically relevant, reflecting the
fact that in a clinical setting an infection can be identified

Table 3 Comparison of therapy strategies with respect to average per healthy patient of: area under curve (AUC) of
pathogen level P, AUC of tissue damage D, anti-inflammatory therapy AIDOSE, and pro-inflammatory therapy PIDOSE
(lower score is better).

AUC(P) AUC(D) PIDOSE AIDOSE
Mismatch 4.56 182.23 0.3053 0.8301
DD-MPC 4.39 14746 0.2261 0.7814
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based on other parameters, such as high fever. On the
evaluation data, DD-MPC used predictions of P and D
from a previous time step as inputs in the next time step,
confirming the assumption that these values are not
observable. Results are presented in Table 4. Although
accuracy decreases compared to the case when all mea-
surements were available, DD-MPC with partially observed
measurements achieved better results than Placebo and
Static from Table 2 and was comparable to Mismatch that
used all variables. Mismatch accuracy also decreased when
compared to accuracy on fully observed data.

Conclusion
We presented a data-driven method for acute inflam-
mation therapy (DD-MPC), which was evaluated

through a number of experiments performed on vir-
tual patients. We demonstrated that a population of
18 healthy, aseptic and septic patients was enough to
learn an efficient data-driven predictive model.
Obtained results showed that DD-MPC outperformed
clinically relevant alternatives, providing good results
even in the presence of incomplete measurements as
well as additive Gaussian noise. Furthermore, the ther-
apy based on DD-MPC did not harm any of the
healthy patients, which is a property of high impor-
tance when the method is applied in practice. Finally,
promising results presented in this paper provide evi-
dence that research on acute inflammation treatment
can benefit from methods from the machine learning
community.

Table 4 Number and fraction of healthy, aseptic and septic patients on partially observed data for: MPC with
mathematical predictive model with set of parameters equal to parameters of a single patient (Mismatch) and MPC
with data-driven predictive model learned on small data sample (DD-MPC).

Healthy (total 321) Aseptic Septic (total 321) Harmed (total 119) Rescued (total 202)

(total 321)
Mismatch 250 (77.88%) 59 (18.38%) 12 (3.74%) 2 (1.68%) 133 (65.84%)
DD-MPC 267 (83.18%) 12 (3.74%) 42 (13.08%) 0 (0%) 148 (73.27%)
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