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Abstract: At present, research on the influence of human activities (especially urbanization) on
the microbial diversity, structural composition, and spatial distribution of rivers is limited. In this
paper, to explore the prokaryotic community structure and the relationship between the community
and environmental factors in the Jialing River Basin of Chongqing, so as to provide a basis for
monitoring microorganisms in the watershed. The V3–V4 region of the 16 S rRNA gene was analyzed
by high-throughput sequencing and the microbial community of the waters of the Jialing River was
analyzed for the diversity and composition of the prokaryotic community as well as the species
difference of four samples and correlations with environmental factors. The main results of this
study were as follows: (1) The diversity index showed that there were significant differences in the
biodiversity among the four regions. At the genus level, Limnohabitans, unclassified_f_Comamonadaceae,
and Hgcl_clade were the main dominant flora with a high abundance and evenness. (2) A Kruskal–
Wallis H test was used to analyze the differences of species composition among the communities
and the following conclusions were drawn: each group contained a relatively high abundance of
Limnohabitans; the Shapingba District had a higher abundance of Limnohabitans, the Hechuan District
had a wide range of unclassified_f_Comamonadaceae, and the Beibei District had a higher Hgcl_clade.
(3) Through the determination of the physical and chemical indicators of the water—namely, total
nitrogen, total phosphorus, chemical oxygen demand, chlorophyll A, and an analysis by an RDA
diagram, the results demonstrated that the distribution of microbial colonies was significantly affected
by the environmental factors of the water. Chemical oxygen demand and ammonia nitrogen had
a significant influence on the distribution of the colonies. Different biological colonies were also
affected by different environmental factors.

Keywords: prokaryotes; high throughput sequencing; biological information analysis; commu-
nity structure

1. Introduction

Microbial communities in aquatic ecosystems play an important role in degrading
organic matter and participating in nutrient cycling, but they are sensitive to the external
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environment [1,2]. At present, the research on bacterial community diversity and its
relationship with environmental factors is growing [3]. However, most studies focus on
coastal areas, lakes, and oceans [4,5], and there are few studies on rivers. Due to the
increasingly serious pollution of urban rivers, the response of aquatic biota in urban rivers
has gradually attracted researcher’s attention.

Rivers are an important part of the global water cycle and one of the important water
sources for human industrial and agricultural production as well as for life; they can
provide an early warning to the overall quality of the water environment [6]. The Jialing
River Basin in Chongqing is an ecological security barrier in the southwest of the country.
The Jialing River is an important water source for industrial and agricultural production as
well as domestic water and fishery in the urban area of Chongqing. It is also an important
water source conservation area in the upper reaches of the Yangtze River. The water
quality of the Jialing River affects the economic and social development of Chongqing [7].
Therefore, it is significant to study the characteristics of flora in the Jialing River Basin.

Microorganisms are an important part of ecosystems and are highly adaptable and
prone to variation. Their structures and functions follow the changes of environmental
factors. Microorganisms can maintain the overall stability of the ecosystem [8,9] and play a
vital role in water quality control [10]. They have significant ecological functions in nutrient
cycling, pollution reduction, soil protection, climate regulation, and water conservation [11].
As a key part of the composition of the biosphere, bacteria play an extraordinary role in
the flow of matter and energy. The compositional diversity, distribution characteristics
and inter-community structure of bacterial communities in lake ecosystems are the basis
and prerequisite for understanding the structure and maintenance mechanism of lake
ecosystems, and provide an important basis for basic theoretical research and environmental
monitoring of lake microbial ecology.

In this paper, the research method based on high-throughput sequencing was used to
conduct sampling at four sampling points in the Jialing River Basin, the Hechuan District,
the Beibei District, the Shapingba District, and the Jiangbei District. The total microbial
DNA was extracted from the samples, a PCR library was constructed, and the V3–V4 of the
fragment 16S rDNA fragment was used as the research object. The structural diversity of
bacterial flora in Jialing River water was analyzed by high-throughput sequencing, their
relationship with environmental factors was analyzed by redundancy analysis (RDA) [12],
and the biological community was analyzed by bioinformatics and metagenomics methods.
To explore the prokaryotic community structure and the relationship between the commu-
nity and environmental factors in the upper, middle, and lower reaches of the Jialing River
Basin, so as to provide a theoretical basis for microbial monitoring in the entire river basin
in Chongqing.

2. Materials and Methods
2.1. Experimental Materials

A bacterial genomic DNA extraction kit (Baimaike Biotechnology Co., Ltd., Beijing,
China) and a PCR kit (Baimaike Biotechnology Co., Ltd., Beijing, China) were used in
addition to sulfuric acid, nitric acid, potassium persulfate, phenolphthalein, potassium dihy-
drogen phosphate, sodium hydroxide, potassium iodide, potassium dichromate, potassium
dihydrogen phosphate, and acetone (Meiji Biotechnology Co., Ltd., Shanghai, China). All
chemical reagents of absolute ethanol, boric acid, hydrochloric acid, and potassium phthalate
(Meiji Biotechnology Co., Ltd., Shanghai, China) are of analytical grade. A vertical pres-
sure steam sterilizer (YXQ-LS-50A), UV-Vis spectrophotometer (TU-1901, T68), and small
Benchtop Refrigerated Centrifuge (Centrifµge 5418R) were also used in the experiments.

2.2. Sample Collection

The sample collection took place between July–September 2020, as this was the high-
water season of the Jialing River. To analyze the characteristics of microbial colonies in
the Chongqing area of the Jialing River, four sampling points (as shown in Figure 1) were
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selected for sampling. The four sampling points were the Nanping Bridge of the Jialing
River in the Hechuan District (upstream, indicated as H), the Beibei Jialing River Bridge
(upper and middle reaches, indicated as B), the Shapingba Shimen Bridge (middle and
lower reaches, indicated as S), and the Jiangbei QianSimen Bridge (downstream, indicated
as J). Each sampling point is divided into upper, middle, and lower vertical levels. Due
to the large variation in the river water depth, the upper sampling depth (height from the
river water surface) was approximately 0.5 m, the middle layer was approximately 3–5 m,
and the lower layer was approximately 5–10 m. The tertiary water was then mixed and
repeated three times for each sampling point. A total of 1 L of the water sample was filtered
through a 0.22 µm microporous membrane and stored at −80 ◦C. This was then sent to a
sequencing company for 16S rDNA transcriptome sequencing.
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2.3. Determination of Physical and Chemical Indicators of Water Bodies

Four sampling points were in the Jialing River Basin, the Hechuan District, the Beibei
District, the Shapingba District, and the Jiangbei District. The reason for choosing Shap-
ingba District and Jiangbei District is that they belong to the upper end of the Jialing River
and have a large population base. Beibei District belongs to the middle section of the
Jiangling River and has a medium population. Hechuan District belongs to the lower end
of the Jialing River, which is a suburb and has a small population. The determination
of physical and chemical indicators of the samples obtained, water quality total nitrogen
(GB-11894-1989), total phosphorus (GB-11893-1989), ammonia nitrogen (GB-7479-87), chem-
ical oxygen demand (GB-11914-1989), and chlorophyll A (HJ-897-2017) were performed in
accordance with the national standards.

2.4. Bacterial Genomic DNA Extraction

The total bacterial DNA extraction was performed according to the Bacterial Genomic
DNA Extraction Kit Manual in Table 1. Electrophoresis of 1% agarose gel was then used to
detect the amount of DNA extracted, and NanoDrop2000 (micro-ultraviolet spectropho-
tometer) was used to determine the concentration and purity of DNA. A total of 100 µL
of buffer B1 was added to 0.5 mL of a bacterial solution, and then 100 µL of buffer B2
were added. This mixture was well-shaken, placed in a centrifuge, and centrifuged at
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12,000 rpm/min for 2 min. After centrifugation, 100 µL of the supernatant were pipetted
into another clean centrifuge tube for use as a template.

Table 1. DNA extraction kit product content.

Product Composition KG203-02 (50 Preps) KG203-03 (200 Preps)

Buffer B1 6 mL 24 mL
Buffer B2 6 mL 24 mL

2 × Det PCR MasterMix 500 µL 2 × 1 mL
Grinding Pesties 10 ↑ 20 ↑

2.5. PCR Amplification

Bacterial 16S rDNA PCR operation steps, establishment of a PCR reaction system, and
20 µL system in Table 2. After adding TransStart FastPfu buffer, dNTPs, upstream primers,
downstream primers, TransStart FastPfu DNA polymerase, and template DNA were added
to produce a 20 µL mixture. All reagents were collected at the bottom of the tube by brief
centrifugation. The 16S rRNA gene V3-V4 variable region was PCR amplified using 338F(5′-
ACTCCTACGGGAGGCAGCAG-3′) and 806R (5′-GGACTACHVGGGTWTCTAAT-3′) in
triplicate per sample.

Table 2. PCR reaction system.

Product Composition Volume

5 × TransStart FastPfu Buffer 4 µL
2.5 mL dNTPs 2 µL

upstream primer (5 uL) 0.8 µL
downstream primer (5 uL) 0.8 µL

TransStart FastPfu DNA polymerase 0.4 µL
Template DNA 10 µL

2.6. Data Statistical Analysis

The bases were filtered with a tail quality value below 20 of the reads, a 50 bp window
was set, and the reads were filtered below 50 bp after quality control. The reads containing
N bases were then removed, according to the overlap relationship between the PE reads.
The paired reads were then merged into one sequence; the minimum overlap length was
10 bp, and the maximum mismatch ratio allowed in the overlap region of the spliced
sequence was 0.2. The samples were distinguished according to the barcodes and primers
at the beginning and end of the sequence, and the sequence direction was adjusted. The
number of mismatches allowed by a barcode was 0, and the maximum number of primer
mismatches was 2. Using UPARSE software (version 7.1) [13], the sequences were OTU
clustered with a similarity of 97% [14,15], and chimeras were eliminated. The RDP classifier
(version 2.2) [13] was used to classify and annotate each sequence, and then compared with
the Silva 16S rRNA database (v138) with an alignment threshold of 70%. Solexa was then
used, which is sequencing-by-synthesis (SBS) technology that uses DNA clustering, bridge
PCR, and reversible blocking methods to read the base sequences in DNA in turn. Optical
equipment is used to read and record the fluorescent signal; finally, the computer converts
the analysis results into sequencing information.

The data obtained in the experiment were analyzed and processed using the Origin 8.0
software, OriginLab, (OriginLab, Redmond, WA, USA) processing system, and Windows
Excel and Word (2003, 2010 editions) office software, (Microsoft, OriginLab, Redmond,
WA, USA.) All determinations were carried out in triplicate, and the mean values were
presented. The data are reported as the averages of three separate experiments± SD (n = 3).
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3. Results and Discussion
3.1. Water Quality Measurement Results

As important freshwater habitats for microorganisms, urban rivers are mainly affected
by the terrestrial environment and human activities. When pollutants flow into the river,
basic parameters such as pH, temperature, dissolved oxygen, salinity, and nitrogen and
phosphorus content in the water body change, which is of great significance for regulating
the complex microbial community and further reshapes the bacterial community struc-
ture [16–18]. For the microbial community structure at the water–sediment interface found
in the Chaka Salt Lake (China) study, the apparent changes in the lake water salinity were
associated with a decrease in lake water [19]; studies in the Ebro River (Iberian Peninsula,
Spain) revealed that electrical conductivity, temperature, and dissolved inorganic nitrogen
are the main environmental factors affecting the composition of phytoplankton commu-
nities [20]. The water quality indicators of the sampled water bodies were measured; the
results are shown in Table 3. The sampling areas had obvious differences, particularly the
Hechuan District, which had a high ammonia nitrogen content, a high total nitrogen con-
tent, and a low chemical oxygen demand. Furthermore, by monitoring the water quality of
the four sampling points, it was found that the water quality of the four points was polluted
to a certain extent. The indicators of nitrogen and phosphorus exceeded the normal values
of the water body; in particular, the indicators of algae and chlorophyll a exceeded the
average value of the river body. Therefore, it is speculated that the four sampling points
are prone to the risk of water eutrophication in summer and autumn. Changes in the river
environment can affect the balance between alien bacteria introduced by surface runoff
and indigenous communities, predation or competition in the food chain, and directly
or indirectly affect the function of bacterial communities [21]. Therefore, understanding
river bacterial community diversity and spatial distribution has profound implications for
monitoring ecosystem health.

Table 3. Measurement results of water quality indicators.

Sample
Collection

Place

Ammonia
Nitrogen

mg/L

Chemical
Oxygen
Demand

mg/L

Total
Phosphorus

mg/L

Total
Nitrogen

mg/L

Chlorophylla
µg/L

Shapingba 0.033 24 0.15 0.52 4.1
Hechuan 0.094 7 0.30 1.06 4.2
Jiangbei 0.035 18 0.27 0.51 5.4
Beibei 0.035 12 0.21 0.55 3.9

3.2. Alpha/Beat Diversity Analysis

Alpha analysis is a composition analysis—the similarity of the species composition
of each sample or group could be reflected. Determining bacterial metabolic potential
through river bacterial diversity is an extremely important but under-recognized scientific
issue. Changes in the bacterial structure of rivers can further lead to changes in metabolic
and environmental information processing pathways [22,23]. From the upper to the lower
reaches of the Danube, the relative abundance of its typical freshwater flora gradually
increased due to a decrease in microbial richness and evenness [24]. The microbial diversity
of the Yenisei peaked in the middle section, which may be associated with high flow
and rapid turbulence [25]. As seen in Figure 2, the Shannon indices of the samples were
all between 3.2 and 4.5 and the species composition richness and diversity of the four
groups were relatively high. PCA analysis showed that the four groups could clearly be
distinguished, indicating that the four groups had significant differences in the composition
of the biological community. The R value was relatively close to 1, indicating that the
difference between the groups was slightly greater than the difference within the group.
There were obvious differences in the community composition structure of the four groups
and the community composition in the different regions was different. The reason for
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this may be that Jiangbei District has the largest industrial area, agricultural area, and
population, which has a greater impact on water bodies, so the diversity of bacterial species
is the highest; Beibei District and Hechuan District are rich in ecological communities,
so the microorganisms in the riparian zone may be due to rainwater washed into the
lake, so the microbial community is relatively rich, while the Shapingba area has the
weakest community diversity because the industrial area, agricultural area, and ecological
community zone are relatively less than the above-mentioned sampling points. Therefore,
identifying the bacterial diversity of rivers can help to determine the impact of the metabolic
potential of river bacterial communities.
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3.3. Community Composition Analysis
3.3.1. Venn Diagram Analysis

A Venn diagram permits a macroscopic reflection of the number of species in the
community through an intersection, which can reflect the composition of species. As seen
in Figure 3, the Hechuan District and Beibei District shared 308 species, the Hechuan District
and Shapingba District shared 217 species, the Hechuan District and Jiangbei District trict
shared 319 species, the Beibei District and Shapingba District shared 243 species, the
Beibei District and Jiangbei District shared 232 species, and the Shapingba District and
Jiangbei District share 248 species. The Beibei District had the greatest number of distinct
species (109 species), and the Shapingba District had the smallest number of distinct species
(9 species). This may be due to riparian influences leading to the proliferation of exotic
bacteria (i.e., soil and groundwater) and indigenous flora (i.e., increased bacterial richness).
For example, studies on the Mississippi River (US) [26], Thames River (UK) [27], and
Amazon River [28] have found that the “heterologous input process” or “mass effect” in
the riparian zone further indicates that the diffusion rate of organic matter exceeds the
local bacterial extinction rate, making the exogenous input bacteria [29–31]. The diversity
is much higher than the river itself.
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3.3.2. Community Bar Chart Analysis

Through a bar chart analysis, it could be seen that the measured water samples had
a significantly high bacterial diversity. Figure 4 showed the bar map at the phylum level.
The community composition structure of the Beibei District and Jiangbei District was
relatively similar. The higher relative abundance in the Hechuan District were unclassified-
f -Comamonadaceae [32], unclassified-f -Rhodobacteraceae [33], and the Hgcl_clade [34]. The
dominant flora was the Hgcl_clade, and its abundance in the three samples in this group
was 12.35, 12.25, and 15.28%, respectively. The relatively high relative abundance levels
in the Beibei District were unclassified_f_Comamonadaceae, the Hgcl_clade, and Acinetobacter.
The dominant flora was Hgcl-clade, whose abundances in the three samples were 12.98,
10.78, and 11.57%, respectively. In the Shapingba District, the relative abundances form
Limnohabitans, Acinetobacter, and Vogesella. The dominant flora was Limnohabitans, whose
abundances in the three samples were 13.17, 14.65, and 17.51%, respectively. The most
abundant species in the Jiangbei area were Limnohabitans, unclassified-f-Comamonadaceae,
and the CL500-29-marine-group. The dominant flora was Limnohabitans, whose abundances
in the three samples were 11.18, 11.56, and 11.81%, respectively.
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3.3.3. Heatmap Analysis of Community Composition

The heatmap displayed the species composition information of the community by
reflecting the number of species through a color ladder. As can be seen in Figure 5, the
community composition of the three samples collected from the Jiangbei District and the
Beibei District was relatively uniform; one of the three samples collected from the Hechuan
District and the Shapingba District had a few differences. The community composition of
Hechuan and Beibei was the most similar. Limnohabitans [35], comamonadaceae, hgcl_clade,
and CL500-29-marine-group had a higher abundance in the four samples; in the Shapingba
Distric, it also contained high levels of Acinetobacter and Vogesella, and Hechuan District
also contains high levels of Aquabacterium. Bacilli are the predominant flora in urban
river water and sediments, which are associated with the gut flora of many mammals and
humans, and are effective fecal surrogate indicators. The higher abundance of bacilli in
the downstream may be due to the high concentrations of nitrate, ammonia, feces, etc. in
medical waste liquid and domestic wastewater [36]. The results of this study showed that
the concentration of pollutants gradually increased along the flow direction of the river
due to the discharge of domestic and industrial wastewater, which seriously affected the
abundance changes of the bacterial community in the river.
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Figure 5. Heatmap analysis.

3.3.4. Pie Chart

We statistically analyzed the species abundance of the samples at a certain taxonomic
level and present the analysis results in the form of pie charts to present the composition of
the species in different groups.

Figure 6a reflects the species composition of the Beibei District, which can clearly
reflect that unclassified_f_Comamonadaceae, Hgcl_clade, and the CL500-29 marine group were
the dominant species in the Beibei District with a relatively high relative abundance that
accounted for the total community of 28.8%. Figure 6b reflects the species composition of
the Shapingba District, which clearly reflects that Limnohabitans, Vogesella, and Acinetobacter
were the dominant species in the Shapingba District. The relative abundance of Limnohabi-
tans was relatively high, accounting for 15.12% of the total community. Figure 6c reflects the
species composition of the Jiangbei District, which clearly reflects that Limnohabitans, unclas-
sified_f_Comamonadaceae, and the CL500-29 marine group were the dominant species in the
Jiangbei District. The relative abundance of Limnohabitans was high, accounting for 11.52%
of the total community. Figure 6d reflects the species composition of Hechuan District,
which clearly reflect that unclassified_f_Comamonadaceae, the Hgcl_clade, and the CL500-29
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marine group were the dominant species in the Hechuan District. The relative abundance
of unclassified_f_Comamonadaceae was high, accounting for 13.30% of the total community.
Combining Venn diagrams, community Bar diagrams, Heatmap diagrams of community
composition, and pie diagram test results can help us explore the species composition of
the communities at the four sampling points, including the number of species and species
abundance, by comparing samples or groups. The differences in species composition
can reflect the composition information between them more clearly, and provide detailed
parameters for monitoring and judging the pollution of the entire Jialing River.
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Figure 6. (a) Community composition analysis map of the Beibei District, (b) community composition
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3.4. Analysis of Species Differences
3.4.1. Kruskal–Wallis H Test Analysis

In this study, the Kruskal–Wallis H test was used to analyze the species difference
of the samples. As seen in Figure 7, each group contained the genus Limnohabitans, the
genus unclassified_f_Comamonadaceae, and the genus of the Hgcl_clade with a relatively high
relative abundance. Compared with other groups, the species with significant differences in
the Shapingba District were Acinetobacter [37], Vogesella, and Pseudomonas, all of which had
a higher relative abundance, whereas Cavicella had a lower relative abundance. The species
with significant differences in the Hechuan District were Aquabacterium, Novosphingobium,
and Cavicella with a higher relative abundance, whereas norank_Vicinamibacteraceae had a
lower relative abundance. The species with significant differences in the Beibei District had
a higher relative abundance of norank_Vicinamibacteraceae and a lower relative abundance of
Vogesella. The species with significant differences in the Jiangbei District were Acinetobacter,
Vogesella, and Aquabaterium; all of which had relatively low relative abundances.
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3.4.2. LefSe Analysis

A LefSe analysis is used to analyze species with significant differences between sam-
ples or groups, reflecting each taxonomic level from high to low from inside to outside.
As seen in Figure 8, among the four groups, the species with significant difference in the
Beibei District is Actinobacteriota and its LDA value is 4.94825; the species with significant
difference in the Shapingba District was Gammaproteobacteria, which had the greatest impact,
and its LAD value was 4.857, The species with a significant difference in the Hechuan
District was Comamonadaceae, whose LDA value was 4.857 and the species with a significant
difference in the Jiangbei District was Pseudomonadale, whose LDA value is 4.975. In an
ecosystem, there are always high-abundance and low-abundance species. By using Kruskal–
Wallis H test analysis and LefSe analysis, it can help us find out the differences between the
species at these four sampling points, and successfully construct the ASV set to obtain the
differences in the species distribution of different microbial communities, and then to infer
the species status of the entire Jialing River in Chongqing. To sum up, hospital waste liquid,
agricultural sewage, and urban wastewater contain some antibacterial agents, drugs, and
high-concentration pollutants. By exerting selective pressure, these substances promote the
emergence of indigenous bacterial diversity, which in turn differentiates high-abundance
bacteria in the watershed [38,39]. Therefore, as the main source of drinking water in cities,
the discharge of sewage directly poses a threat to human health and the ecological security
of the river basin.



Int. J. Environ. Res. Public Health 2022, 19, 5525 11 of 16Int. J. Environ. Res. Public Health 2022, 19, x FOR PEER REVIEW 12 of 17 
 

 

 

Figure 8 . H represents the Hechuan District, S represents the Shapingba District, J represents the 

Jiangbei District, and B represents the Beibei District; the yellow nodes represent five significantly 

different species, the colored nodes represent species with significant differences, and the corre-

sponding colors represent the corresponding regions. 

3.5. RDA/CCA Analysis 

Using the RDA map to analyze the relationship between the water environmental 

factors and the bacterial colonies, we could detect the relationship between the environ-

ment, the colony, and the sample as well as their inter-relationships. Studies have shown 

that pH, turbidity, and nutrients are the dominant factors leading to changes in bacterial 

community composition. Turbidity is an important driving force for biological metabo-

lism in rivers, and has the greatest contribution to the changes of bacterial community 

composition in the river basin. Phosphorus and inorganic nitrogen concentrations are gen-

erally considered to be important drivers of biological metabolism in flowing water, and 

phosphorus was shown to be the most determinant factor significantly associated with 

changes in plankton bacterial communities [40,41]. As seen in Figure 9, ammonia nitrogen, 

the chemical oxygen demand, and total nitrogen all had significant effects on the distri-

bution of bacterial colonies; among them, ammonia nitrogen had the greatest impact. Am-

monia nitrogen had a greater impact on samples 1 and 2 and samples 3 and 2 in the Hech-

uan District. The influence of chlorophyll A on sample 1 and sample 3 as well as sample 

2 and sample 3 in the Shapingba Distric was quite different; samples 1 and 2 and samples 

1 and 3 in the Jiangbei District were significantly affected by the environmental factor of 

chlorophyll A. The figure shows the correlation between the five species and environmen-

tal factors. Among them, Acinetobacter was the most abundant and its distribution was 

Figure 8. H represents the Hechuan District, S represents the Shapingba District, J represents the
Jiangbei District, and B represents the Beibei District; the yellow nodes represent five significantly dif-
ferent species, the colored nodes represent species with significant differences, and the corresponding
colors represent the corresponding regions.

3.5. RDA/CCA Analysis

Using the RDA map to analyze the relationship between the water environmental
factors and the bacterial colonies, we could detect the relationship between the environment,
the colony, and the sample as well as their inter-relationships. Studies have shown that pH,
turbidity, and nutrients are the dominant factors leading to changes in bacterial community
composition. Turbidity is an important driving force for biological metabolism in rivers,
and has the greatest contribution to the changes of bacterial community composition in the
river basin. Phosphorus and inorganic nitrogen concentrations are generally considered
to be important drivers of biological metabolism in flowing water, and phosphorus was
shown to be the most determinant factor significantly associated with changes in plankton
bacterial communities [40,41]. As seen in Figure 9, ammonia nitrogen, the chemical oxygen
demand, and total nitrogen all had significant effects on the distribution of bacterial
colonies; among them, ammonia nitrogen had the greatest impact. Ammonia nitrogen had
a greater impact on samples 1 and 2 and samples 3 and 2 in the Hechuan District. The
influence of chlorophyll A on sample 1 and sample 3 as well as sample 2 and sample 3 in the
Shapingba Distric was quite different; samples 1 and 2 and samples 1 and 3 in the Jiangbei
District were significantly affected by the environmental factor of chlorophyll A. The figure
shows the correlation between the five species and environmental factors. Among them,
Acinetobacter was the most abundant and its distribution was most affected by chemical
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oxygen demand. Its colony distribution was positively correlated with chemical oxygen
demand, and the ammonia nitrogen, total phosphorus, and chlorophyll A were negatively
correlated. The relative abundance of unclassified_f_Comamonadaceae was the smallest, and
its distribution was most affected by the chemical oxygen demand. The distribution of the
colony was positively correlated with ammonia nitrogen and total phosphorus content; it
was negatively correlated with chlorophyll A and the chemical oxygen demand.
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Figure 9. Correlation analysis between community structure and environmental factors. (H represents
the Hechuan District, S represents the Shapingba District, J represents the Jiangbei District, and B
represents the Beibei District. The longer the red arrow, the greater its influence and the longer the
blue arrow, the greater its abundance, COD represents chemical oxygen demand, NH4N represents
ammonia nitrogen, and Chla represents chlorophyll A.).

3.6. Evolutionary Analysis

An evolutionary analysis was comprehensively considered using the maximum like-
lihood method [42]. As seen in Figure 10, the evolutionary distance between Methyloten-
era and norank_Methylophilaceae was relatively close. The evolutionary distance between
unclassified_Rhodobacteraceae and Pseudorhodobacter as well as Novosphingobium and unclas-
sified_Sphingomonadaceae was also relatively close. Dinghuibacter and Sediminibacterium
were relatively close; the Hgcl_clade and norank_Sporichthyaceae were also relatively close.
By an ML maximum likelihood analysis, it was ascertained that the evolutionary dis-
tance between Methylotenera and norank_Methylophilaceae was relatively close. There was an
unclassified evolutionary distance between Rhodobacteraceae and Pseudorhodobacter. Novosph-
ingobium had a close evolutionary distance to unclassified_Sphingomonadaceae. Dinghuibacter
and Sediminibacterium had a close evolutionary distance and the evolutionary distance
between the Hgcl_clade and norank_Sporichthyaceae was also close. Based on the above
experimental results, the analysis of Heatmap and RDA shows that Limnohabitans, un-
class_f_comamonadaceae and hgcl_clade are the dominant bacterial groups in the Jialing
River waters in Chongqing during the wet season, indicating that the prokaryotic com-
munity in this watershed has high genetic diversity. Its distribution is greatly affected by
ammonia nitrogen and chemical oxygen demand.
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4. Conclusions

In this paper, high-throughput sequencing was used to analyze the V3-V4 of 16srDNA,
and the microbial community in the Jialing River waters in Chongqing was analyzed from
the prokaryotic community diversity, community composition and species differences of the
four samples, as well as the correlation analysis with environmental factors. The diversity
index showed that there were obvious differences in the biodiversity of the four regions,
with the highest biodiversity in Jiangbei District and the lowest in Shapingba. At the genus
level, Limnohabitans, unclass_f_comamonadaceae, and hgcl_clade were the main dominant flora
with greater abundance and uniformity. The Kruskal–Wallis H test was used to analyze
the differences in species composition among the communities. It was found that the
Shapingba area has higher abundance of Limnohabitans, the Hechuan area has a wide range
of unclass_f_comamonadaceae, and the Beibei area has higher hgcl_clade. By measuring the
physical and chemical indicators of the water body, namely total nitrogen, total phosphorus,
chemical oxygen demand, and chlorophyll, and using the RDA chart to analyze, the results
show that the distribution of microbial colonies is greatly affected by environmental factors
in the water body, and the chemical oxygen demand and ammonia nitrogen have a greater
impact on the distribution of colonies, and different biological colonies are affected by
different environmental factors differently. This subject provides technical parameters for
inferring the water quality of the Jialing River, and provides an important basis for the
basic theoretical research and environmental monitoring of lake microbial ecology in China.
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In the following research work, a long-term mechanism should be established for the
monitoring of the watershed ecosystem. We should consider sampling in different seasons
and years in terms of time, compare and analyze the interannual differences in microbial
diversity and structure, and explore their laws, so as to provide a scientific theoretical basis
for river water quality monitoring and water ecological changes.
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