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Abstract

Structural changes after ischemic stroke could affect information communication extensively in the brain network. It is likely
that the defects in the white matter (WM) network play a key role in information interchange. In this study, we used graph
theoretical analysis to examine potential organization alteration in the WM network architecture derived from diffusion
tensor images from subjects with no dementia and experienced stroke in the past 5.4–14.8 months (N = 47, Mini-Mental
Screening Examination, MMSE range 18–30), compared with a normal control group with 44 age and gender-matched
healthy volunteers (MMSE range 26–30). Region-wise connectivity was derived from fiber connection density of 90 different
cortical and subcortical parcellations across the whole brain. Both normal controls and patients with chronic stroke
exhibited efficient small-world properties in their WM structural networks. Compared with normal controls, topological
efficiency was basically unaltered in the patients with chronic stroke, as reflected by unchanged local and global clustering
coefficient, characteristic path length, and regional efficiency. No significant difference in hub distribution was found
between normal control and patient groups. Patients with chronic stroke, however, were found to have reduced
betweenness centrality and predominantly located in the orbitofrontal cortex, whereas increased betweenness centrality
and vulnerability were observed in parietal-occipital cortex. The National Institutes of Health Stroke Scale (NIHSS) score of
patient is correlated with the betweenness centrality of right pallidum and local clustering coefficient of left superior
occipital gyrus. Our findings suggest that patients with chronic stroke still exhibit efficient small-world organization and
unaltered topological efficiency, with altered topology at orbitofrontal cortex and parietal-occipital cortex in the overall
structural network. Findings from this study could help in understanding the mechanism of cognitive impairment and
functional compensation occurred in patients with chronic stroke.
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Introduction

Ischemic stroke is one of the leading causes of adult disability,

resulting from cessation of blood supply due to an occlusion of a

cerebral artery. Patients suffered from ischemic stroke are at

increased risk of developing vascular cognitive impairment [1,2],

which ranges in severity from mild and/or isolated cognitive

impairment to vascular dementia. Vascular cognitive impairment

with no dementia is a prodromal, mild stage of dementia, lying on

a continuum between normal cognition and dementia [3]. Among

survivors of ischemic stroke, the prevalence of post-stroke

dementia is about 30%, and the risk of dementia is doubled as

compared with subjects who have not had stroke [4]. Hence,

identification of factors that cause cognitive impairment would

benefit interventions to prevent the progression to dementia.

Multiple magnetic resonance imaging (MRI) techniques have

been used to investigate the structural and functional changes in

the brains of post-stroke patients. Structural MRI analyses

included white matter (WM) lesion distribution [5], gray matter

atrophy [6], and frontal lobe atrophy [7] were used to evaluate the

cognitive impairment after ischemic stroke. Furthermore, resting-

state functional MRI (rs-fMRI) was also used to identify the post-

stroke connectivity changes [8–10]. Since diffusion tensor imaging

is sensitive to detect the microstructural changes in WM [11],

recent studies have investigated the post-stroke abnormalities of

diffusion tensor measurements, such as mean diffusivity, fractional

anisotropy (FA), and apparent diffusion coefficient [12–14]. In

addition, complex network graphs that quantify interactions

between brain regions have recently given new insights into the

spontaneous reorganization of functional and structural brain

networks after stroke [15–17]. Although WM damages have been

found to be potentially associated with the development of

cognitive impairment after ischemic stroke [14,18], it remains
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unknown whether the overall WM organization of brain are

affected in patients with no dementia after ischemic stroke.

Since diffusion MRI tractography is advantageous for investi-

gating WM pathways and visualizing brain structural connectivity

in vivo [19–21], graph theoretical approaches have been proposed

to characterize the organization and architecture of the structural

networks of the human brain [22–24]. Indeed, the alteration in

topological organization of brain WM network have been

demonstrated useful to understand the cognitive functions [25]

and to find the characteristic mechanisms of psychiatric and

neurological diseases [26–31]. These studies indicate that it is

feasible to employ DTI tractography to investigate structural

networks in patients with chronic stroke. Our goal in this study is

to apply WM tractography and graph theoretic analysis to

investigate abnormalities in the organization and architecture of

the structural connectivity pattern at the macroscopic scale in

patients after ischemic stroke, based on the following hypotheses:

(i) Patients with chronic stroke could exhibit efficient small-world

topology, as has been successfully established in several disease

models including stroke model in rats [32]. On this basis we would

like to further identify the possible alterations of overall topological

properties compared with normal controls. Because either

decreased small-world metrics related to impaired neural circuits

directly caused by infarct lesions, or increased measurements

reflecting excessive neuronal clustering and wiring after stroke [32]

or as a compensation mechanism as described previously in

schizophrenia [33], possibly occurs in chronic stroke patients; (ii)

Regions previously considered to be responsible for a certain type

of cognitive impairment (e.g., post-stroke depression [34], execu-

tive dysfunction [35]) could be identified with altered nodal

characteristics, thus help to give an anatomical & topological

manifestation of post-stroke functional abnormality; (iii) Correla-

tions between Mini-Mental Screening Examination (MMSE) or

National Institutes of Health Stroke Scale (NIHSS) scores and

network characteristics can be possibly established. Since there are

evidences suggest that functional or structural connectivity

changes are correlated with MMSE score in amnestic mild

cognitive impairment (aMCI) and Alzheimer’s disease [36], and

reflect the post-stroke motor network alterations [37] and severity

of stroke in rat model [32].

Materials and Methods

Subjects
All the subjects were right-handed and were all informed and

signed with a verbal and written consent form. Ethical approval

was obtained from the Ethics Committee in the Chinese

University of Hong Kong. Forty-seven patients with no dementia

after ischemic stroke (29 males and 18 females; 68.769.6 years

old) and 44 age- and gender-matched normal controls (NC) (21

males and 23 females; 68.868.3 years old), were recruited from

the Prince of Wales Hospital in Hong Kong. Inclusion criteria for

patients after ischemic stroke and no dementia were: (1) ischemic

stroke within the past 5.4–14.8 months (average time

7.762.2 months), defined according to NINDS Stroke Data Bank

criteria [38]; (2) age $50 years; (3) MMSE score $16; (4)

competent to complete neuropsychological tests [39]; (5) verbal

and written consent; (6) available to collect patients’ medical

history from their caregivers (spent at least three days per week

nursing the patients in the last five years). Inclusion criteria for

NCs were: (1) age $50 years; (2) competent to complete

neuropsychological tests; please refer to the NINDS-CSN proto-

cols in [39]; (3) verbal and written consent; (4) MMSE score $24.

The patient and NC groups had median MMSE scores of 25

(range 18–30) and 29 (range 26–30), respectively. Exclusion

criteria for both NC and patient group included history of central

nervous system disorder or disease. Twenty patients with chronic

stroke possibly had cognitive impairment (MMSE ,24). No

Figure 1. Distribution of infarct location of whole post-stroke group overlaid on 4 different slices in the ICBM152 template in MNI
space. The number of infarcts was color-coded and superimposed on the ICBM152 template.
doi:10.1371/journal.pone.0081388.g001

Table 1. The number of stoke patients with infarcts within
different brain regions.

Location of infarct # Patients

Frontal Left side only 7

Right side only 3

Bilateral 4

Parietal-occipital Left side only 2

Right side only 1

Bilateral 1

Temporal Left side only 0

Right side only 0

Bilateral 1

Basal ganglia Left side only 3

Right side only 7

Bilateral 6

Thalamus Left side only 3

Right side only 6

Bilateral 1

Infratentorial 15

Infarct Volume (mm3) (median (IQR)) 169.5 (648.0)

doi:10.1371/journal.pone.0081388.t001
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significant differences were found in age, gender and education

between the two groups (all p.0.05).

MRI Acquisition
All subjects were scanned using a clinical 3T MRI scanner with

an 8-channel Sense head coil (Achieva, Philips Medical Systems) at

the Prince of Wales Hospital in Hong Kong. For each subject, T1-

weighted (T1W) images, fluid attenuation inversion recovery

(FLAIR) images, and diffusion tensor images (DTI) covering the

whole brain were acquired in the axial orientation. T1W images

were obtained using 3D fast field echo imaging sequence with the

following parameters: (repetition time [TR] = 6.7 ms, echo time

[TE] = 1.6 ms, number of excitation [NEX] = 2, field of view

[FOV] = 220 mm, flip angle = 15u, matrix = 2566256, slice = 128,

voxel size = 0.8660.8661.4 mm3. FLAIR image was obtained using

following parameters: TR = 11000 ms, TE = 200 ms, Inversion

Time [TI] = 2800 ms, NEX = 1, FOV = 220 mm, flip angle = 90u,
matrix = 7046704, slice = 58, voxel size = 0.3160.3163 mm3. DTI

was obtained using single-shot echo planar imaging sequence

with the following parameters: 15 diffusion weighted volumes

(b = 750 s/mm2), one non-diffusion-weighted volume (b = 0 s/mm2),

TR = 10900 ms, TE = 84.5 ms, NEX = 2, FOV = 220 mm,

flip angle = 90u, matrix = 2566256, slice = 55, voxel

size = 0.8660.8663 mm3.

Delineation and Mapping of Infarcts
The FLAIR image of each subject with chronic stroke was first

co-registered to T1W images using FMRIB’s Linear Registration

Tool (FLIRT) [40]. The infarcts of each patient were manually

delineated on FLAIR images with T1W image loaded as a

reference by an experienced neuroradiologist (YYX). Then T1W

image was co-registered to the ICBM152 template in Montreal

Neurological Institute (MNI) space using FMRIB’s Non-linear

Image Registration Tool (FNIRT) [41], and the delineated infarcts

was transformed to MNI space. The infarcts were masked out

during the registration by setting their voxel values in the

weighting volume as zero. Then the infarcts on gray matter and

white matter were mapped to automated anatomical labeling

(AAL) [42] and ICBM DTI-81 white matter labels atlas [43]

respectively. The location of infarcts for each subject was

determined by AAL and DTI-81 atlas with visual quality control,

and the spatial distribution of infarcts of whole patient group was

obtained (Table 1 and Figure 1).

Connectivity Network Construction
Image Preprocessing. The whole schematic flowchart of

WM connectivity network construction is shown in Figure 2.

Artifacts induced by head motion and eddy current in DTI data

were processed by affinely registering diffusion-weighted volumes

to the non-diffusion-weighted b0 volume using the FMRIB’s

Diffusion Toolbox of FSL [44]. Skull and non-brain tissue were

removed in the masked and corrected diffusion data by applying

the FSL Brain Extraction Tool [45] to b0 image. The T1W image

of each individual subject was co-registered to their b0 image and

transformed to native DTI space using FLIRT.

White Matter Tractography. For each individual subject,

diffusion tensor model was first estimated using the linear least-

squares fitting method [46]. White matter tracts of the whole brain

were subsequently reconstructed using the fiber assignment by

continuous tracking (FACT) algorithm [47] with the FA threshold

at 0.15 and tracking turning angular threshold at 35u between two

connections. Afterwards, a spline filtering was applied to smooth

the streamline tractography. Diffusion Toolkit 0.6 (http://www.

nitrc.org/projects/trackvis/) was used for DTI data processing

and tractography in this work.

Brain Parcellation. The brain was automatically partitioned

into 90 non-cerebellar regions (45 cortical and subcortical regions

in each hemisphere, Table 2) using the AAL parcellation atlas. For

each subject, individual T1W image in the native DTI space was

mapped to the ICBM152 template in MNI space using FNIRT,

and the AAL atlas was inversely warped to the native DTI space

by applying nearest-neighbor interpolation. The regions with

detected infarcts were masked out before performing image

registration, so that image registration was based on reliable

information from image of normal tissues.

Structural Connectivity Mapping. In the native DTI

space, two AAL regions were considered to be connected if at

least one fiber was presented between them [19]. The fiber

connection density between two AAL regions was defined as the

normalized number of fibers per unit volume [23,48,49]. The

number and length of fibers connecting each pair of AAL regions

were used to calculate the fiber connection density,

wij~
2

VizVj

X
f [Fe

1=lf ð1Þ

where Vi and Vj denote the volume of AAL regions i and j,

respectively, Fe denotes the set of fibers connecting regions i and j,

and lf denotes the length of fiber f along its trajectory. Taking fiber

connection density between two AAL regions as its connection

weight, a weighted 90690 structural connectivity matrix for each

subject was generated. Each node of the constructed network

corresponded to one AAL region.

Network Graph Analysis
The topological organization of the weighted structural

connectivity network was characterized at the nodal and global

levels using the Brain Connectivity Toolbox [50] based on graph

theory. The nodal behavior was quantified in terms of connection

strength, local clustering coefficient, betweenness centrality,

regional efficiency and vulnerability. The global network archi-

tecture was described in terms of the global connection strength,

global clustering coefficient, characteristic path length, global

betweenness centrality, global vulnerability, normalized clustering

coefficient, normalized path length, and small-worldness. Each

metric provided a different viewpoint to describe major features of

the large-scale architecture.

Regional Nodal Characteristics. The connection strength

Sw
i of each node i in the weighted network was computed as the

sum of the weights of all its connections, which provided

information on the total level of connectivity [30,50],

Sw
i ~

X
j[N

wij ð2Þ

where wij is the weight between nodes i and j in the network, and N

is the set of all nodes in the network.

The local clustering coefficient Cw
i of each node i in the

weighted network was defined as the likelihood that its neighbors

were interconnected to each other, which described the strength of

one node and its neighbors were clustered [51,52],

Cw
i ~

1

ki ki{1ð Þ
X

j,h[N
wij wjh wih

� �1=3 ð3Þ

where ki is the node degree defined as the number of connections

Abnormal White Matter Network in Ischemic Stroke
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to node i. The local clustering coefficient of the nodes with less

than two connections was set as zero.

The betweenness centrality Bw
i of each node i in the weighted

network was defined as the fraction of all shortest paths in the

network that pass through it, which was essentially a measurement

of the influence of a node over the information flow between itself

and other nodes [53,54],

Bw
i ~

1

n{1ð Þ n{2ð Þ
X

j,h[N,h=j,h=i,j=i

rhj ið Þ
rhj

ð4Þ

where rhj ið Þ is the number of shortest path between nodes h and j

that passed through node i, n is the total number of nodes.

Figure 2. Whole schematic flowchart of WM network construction, (1) brain extraction, (2) DTI preprocessing and diffusion tensor
model estimation, (3) white matter fiber tracking, (4) co-registration T1W image with non-diffusion-weighted b0 image, (5)
mapping T1W image to ICBM152 template and warping the AAL atlas to native DTI space, (6) structural connectivity mapping and
connectivity matrix generation, (7) weighted WM network construction.
doi:10.1371/journal.pone.0081388.g002
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The regional efficiency Ew
i of each node i in the weighted

network was defined as the inverse of harmonic mean of the

shortest path length between itself and all other nodes, which was

used to quantify the importance of a node in the communication

within the network [55],

Ew
i ~

1

n{1ð Þ
X

j[N, j=i
1=dw

ij ð5Þ

where dw
ij is the length of the shortest weighted path between nodes

i and j in the weighted network,

dw
ij ~

X
u,v[gw

i<j

1=wuv ð6Þ

where gw
i<j indicates the shortest weighted path between nodes i

and j.

The vulnerability Vw
i of each node i in the weighted network is

defined as the drop in global efficiency when this node and its

connections are removed from the network graph, which was used

to identify the most indispensable node to network efficiency

[24,56],

Vw
i ~ Eglob{Ei

glob

� �
=Eglob ð7Þ

where Eglob is the global efficiency of the network, Ei
glob ið Þ is the

global efficiency of the network after removing node i. The global

efficiency is defined as the inverse of the harmonic mean of the

shortest path length between every two nodes in a network,

Eglob~
1

n n{1ð Þ
X

i,j[N,j=i
1=dw

ij ð8Þ

Overall Graph characteristics. The global strength Sw
G of

the weighted network was computed as the mean connection

strength across all nodes in the network,

Sw
G~

1

n

X
i[N

Sw
i ð9Þ

The global clustering coefficient Cw
G was defined as the average

of the local clustering coefficient Cw
i over all nodes in the network

[52],

Cw
G~

1

n

X
i[N

Cw
i ð10Þ

The weighted characteristic path length Lw
G of the entire

network was measured by the harmonic mean of the shortest path

between every two nodes and was equivalent to the inverse of the

Table 2. Brain regions in the AAL atlas.

AAL index
(left, right) Regions Abbr.

AAL index
(left, right) Regions Abbr.

2001, 2002 Precentral gyrus PreCG 5021, 5022 Lingual gyrus LING

2101, 2102 Superior frontal gyrus (dorsolateral) SFGdor 5101, 5102 Superior occipital gyrus SOG

2111, 2112 Superior frontal gyrus (orbital) ORBsup 5201, 5202 Middle occipital gyrus MOG

2201, 2202 Middle frontal gyrus MFG 5301, 5302 Inferior occipital gyrus IOG

2211, 2212 Middle frontal gyrus (orbital) ORBmid 5401, 5402 Fusiform gyrus FFG

2301, 2302 Inferior frontal gyrus (opercular) IFGoperc 6001, 6002 Postcentral gyrus PoCG

2311, 2312 Inferior frontal gyrus (triangular) IFGtriang 6101, 6102 Superior parietal gyrus SPG

2321, 2322 Inferior frontal gyrus (orbital) ORBinf 6201, 6202 Inferior parietal gyrus IPG

2331, 1232 Rolandic operculum ROL 6211, 6212 Supramarginal gyrus SMG

2401, 2402 Supplementary motor area SMA 6221, 6222 Angular gyrus ANG

2501, 2502 Olfactroy cortex OLF 6301, 6302 Precuneus PCUN

2601, 2602 Superior frontal gyrus (medial) SFGmed 6401, 6402 Paracentral lobule PCL

2611, 2612 Superior frontal gyrus
(medial orbital)

ORBsupmed 7001, 7002 Caudate CAU

2701, 2702 Rectus gyrus REC 7011, 7012 Putamen PUT

3001, 3002 Insula INS 7021, 7022 Pallidum PAL

4001, 4002 Anterior cingulate gyrus ACG 7101, 7102 Thalamus THA

4011, 4012 Median cingulate gyrus MCG 8101, 8102 Heschl gyrus HES

4021, 4021 Posterior cingulate gyrus PCG 8111, 8112 Superior temporal gyrus STG

4101, 4102 Hippocampus HIP 8121, 8122 Temporal pole (superior) TPOsup

4111, 4112 Parahippocampal gyrus PHG 8201, 8202 Middle temporal gyrus MTG

4201, 4202 Amygdala AMYG 8211, 8212 Temporal pole (middle) TPOmid

5001, 5002 Calcarine cortex CAL 8301, 8302 Inferior temporal gyrus ITG

5011, 5012 Cuneus CUN - - -

doi:10.1371/journal.pone.0081388.t002
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global efficiency, which expressed how well the overall network

was connected and represents the capacity to exchange informa-

tion [57,58],

Lw
G~1=Eglob ð11Þ

The global betweenness centrality Bw
G was calculated as the

average of the values of the nodal betweenness Bw
i over all nodes,

Bw
G~

1

n

X
i[N

Bw
i ð12Þ

The global vulnerability Vw
G of the entire network was defined as

the maximum vulnerability for all of its nodes [56],

Vw
G~ max

i[N
Vw

i ð13Þ

The measure of small-worldness sw
G was defined as ratio

between the normalized clustering coefficient cw
G and the

normalized characteristic path length lw
G, which denoted the

small-world organization of the weighted network [59].

cw
G~Cw

G=Cw
random, lw

G~Lw
G=Lw

random, sw
G~cw

G=lw
G ð14Þ

where the Cw
random and Lw

random are the average of global clustering

coefficient and characteristic path length of 100 matched random

networks that preserved the same number of nodes, edges, and

degree distribution as the real network.

Hub Identification. The putative hubs were usually the

nodes with high connection strength, high betweenness centrality,

high regional efficiency, low clustering coefficient, and/or high

vulnerability, which played a crucial role in fast information

transferring and efficient integration of information in whole

network communication [22,30,60–62]. The hubs of the structural

brain network were identified using the hub score, a rank-based

analysis of the multiple mean nodal metrics. The hub identifica-

tion criteria included (1) within the top 20% nodes showing the

highest mean strength Sw
i ; (2) within the top 20% nodes showing

the lowest local clustering coefficient Cw
i ; (3) within the top 20%

nodes showing the highest betweenness centrality Bw
i ; (4) within

the top 20% nodes showing the highest regional efficiency Ew
i ; (5)

within the top 20% nodes showing the highest global vulnerability

Figure 3. Group comparison of the overall graph characteristics, i.e., connection strength (Sw
G), global clustering coefficient (Cw

G),
characteristic path length (Lw

G), global betweenness centrality (Bw
G), global vulnerability (Vw

G ), normalized clustering coefficient (cw
G),

normalized path length (lw
G), and small-worldness (sw

G). Single asterisk (*) represents a significant difference level at p,0.05, while a double
asterisk (**) represents a significant difference level at p,0.01.
doi:10.1371/journal.pone.0081388.g003
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Vw
i . For each node, a hub score between 0 to 5 was assigned.

Nodes with a hub score of 2 or higher were considered as hubs.

[22,61].

Statistical Analysis
Overall Graph Characteristics. Differences in overall

graph characteristics (Sw
G , Cw

G, Lw
G , Bw

G , Vw
G , cw

G , lw
G , and sw

G )

between the patient and NC groups were examined using

permutation testing [30,31,60]. First, the observed values of the

test were calculated as the differences in the measured overall

graph characteristics between the two groups. Then the subjects in

both groups were pooled and randomly assigned to either one of

two groups consisting of the same size as the original patient and

NC groups. The differences in overall graph characteristics

between the two random groups were computed. This procedure

was repeated for 5,000 times. The one-tailed p-value was then

calculated as the proportion of sampled permutations where

differences that were greater than (or smaller than) the observed

values. A significance threshold of p = 0.05 (uncorrected) was used

for testing the overall graph characteristics.

Regional Nodal Characteristics. The statistical analysis for

the regional nodal characteristics was similar to those for global

network characteristics. The regional characteristics (Sw
i , Cw

i , Bw
i ,

Ew
i , and Vw

i ) of each node in the network were compared between

the patient and NC groups for all nodes using the above-

mentioned permutation test. The one-tailed p-value was calculated

and the false discovery rate (FDR) [63] with q = 0.05 was used to

correct the multiple comparisons. The FDR was the expected

proportion of false positives among significant results.

Correlation with the MMSE and NIHSS score. The

Pearson partial correlation between the MMSE score and the

network properties, and between the NIHSS score and the

properties at both the global and nodal levels were evaluated in

patient group while controlling for age and gender. The

significance level for testing the overall graph characteristics was

set at p,0.001 (uncorrected). A statistical significance level of

p,0.001 (uncorrected) was used for testing the regional nodal

characteristics.

Results

Overall Topological Properties
Both normal controls and patients with chronic stroke exhibited

efficient small-world topology (sw
Gw1) in structural networks (NC:

sw
G~4:25+0:27, patients: sw

G~4:37+0:29). In addition, a

significant increase of small-worldness (p = 0.0226) and a decrease

of normalized characteristic path length (p = 0.0026) in patient

group were observed (Figure 3). Furthermore, as compared with

the overall graph characteristics of patients, no significant

differences in global strength Sw
G global clustering coefficient Cw

G ,

characteristic path length Lw
G, and global vulnerability Vw

G (all

p.0.05) were found (Figure 3). The global betweenness centrality

Bw
G (p = 0.0104) was significantly decreased in patient group

(Figure 3).

Distribution of Hub Region
In both NC and patient groups, 25 hubs were identified by

multiple nodal metrics (Table 3, Figure 4). In particular, 23 of

them were identified in both groups e.g. bilateral orbital part of

superior frontal gyrus [ORBsup], bilateral olfactory cortex [OLF],

bilateral rectus gyrus [REC], bilateral parahippocampal gyrus

[PHG], bilateral calcarine cortex [CAL], bilateral fusiform gyrus

[FFG], bilateral precuneus [PCUN], bilateral orbital part of the

inferior frontal gyrus [ORBinf], right medial orbital part of

superior frontal gyrus [ORBsupmed.R], bilateral insula [INS],

right hippocampus [HIP.R], right lingual gyrus [LING.R], and

bilateral putamen [PUT]. For hub scores between post-stoke to

NC, hub (hub score post-stokeRhub score NC): OLF.L (3R4) and

PCUN.R (2R3) were increased. OLF.R (4R3), PUT.R (4R3),

ORBinf.L (3R2), and INS.L (4R2) were decreased. Two regions,

the left caudate [CAU.L] (2R1) and left lingual gyrus [LING.L]

(2R1), were identified as hubs in the patient group but not in the

NC group. Two regions, left hippocampus [HIP.L] (1R2) and

right cuneus [CUN.R] (0R3), were identified as hubs in the NC

group but not in the patient group.

Nodal Characteristics Alteration
The nodal characteristics (Sw

i , Cw
i , Bw

i , Ew
i , and Vw

i ) of each

cortical and subcortical region between the two groups were

further compared. The Sw
i , Bw

i , and Vw
i of a number of regions

were altered (Table 4, Figures 5, 6, and 7). No significant

alteration of the local clustering coefficient Cw
i and regional

efficiency Ew
i (FDR critical p-value = 0) were found between the

two groups. The Sw
i , Bw

i , Vw
i of left superior occipital gyrus

[SOG.L] were significantly increased.

Table 3. Hubs and hub scores in NC and post stroke patients.

NC Post-stroke

Hubs Hub score Hubs Hub score

ORBsup L 4 ORBsup L 4

ORBsup R 4 ORBsup R 4

OLF L 4 OLF R 4

REC L 4 REC L 4

REC R 4 REC R 4

PHG R 4 INS L 4

CAL R 4 PHG R 4

FFG L 4 CAL R 4

FFG R 4 FFG L 4

OLF R 3 FFG R 4

CUN R 3 PUT R 4

PCUN R 3 ORBinf L 3

PUT R 3 OLF L 3

ORBinf L 2 ORBint R 2

ORBinf R 2 ORBsupmed R 2

ORBsupmed.R 2 INS R 2

INS L 2 HIP R 2

INS R 2 PHG L 2

HIP L 2 CAL L 2

HIP R 2 LING L 2

PHG L 2 LING R 2

CAL L 2 PCUN L 2

LING R 2 PCUN R 2

PCUN L 2 CAU L 2

PUT L 2 PUT L 2

doi:10.1371/journal.pone.0081388.t003
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Correlation with MMSE and NIHSS scores
No significant correlations were found between MMSE score

and the network properties in patient group at both the global and

nodal levels. The NIHSS score of patient is correlated with the

betweenness centrality of right pallidum [PAL.R] (p = 0.0000,

r = 0.644) and the local clustering coefficient of left superior

occipital gyrus [SOG.L] (p = 0.0002, r = 0.5523). No significant

correlation was found between NIHSSS and overall graph

characteristics.

Discussion

Small-world Organization
Both normal controls and patients with chronic stroke were

found to demonstrate small-world architectures. In particular,

patients with chronic stroke displayed small-worldness close to the

values of the structural networks in previous DTI-based studies

with similar age groups [25–27]. Although WM networks of

patients with chronic stroke showed prominent small-world

attributes, several small-world measurements were found to be

significantly altered. The patients showed increased small-world-

ness and decreased normalized characteristic path length,

suggesting a more regular organization of WM network in

patients with chronic stroke. Since there are no difference in

characteristic path length (global level) and regional efficiency

(nodal level), the decreased normalized characteristic path length is

not necessarily an advantage in a complex network. The effective

balance between local specialization and global integration arising

from the small-world nature of anatomical connectivity possibly

conserved in patients with chronic stroke. The increased small-

worldness has also been observed in schizophrenia [33], during

recovery from traumatic brain injury [64], and during recovery

from stroke [32]. Furthermore, as patients with chronic stroke

have not shown strong changes in local and global clustering

Figure 4. Hub distributions and node-specific hub score of WM networks in both NC and post-stroke groups. (A) Hubs in the NC group
are distributed in 9 orbitofrontal regions, 2 temporal regions, 2 parietal regions, 4 occipital regions, 3 limbic regions, 3 basal ganglia regions, and
bilateral insula. (B) Hubs in the post-stroke group are distributed in 9 orbitofrontal regions, 2 temporal regions, 2 parietal regions, 4 occipital regions,
4 limbic regions, 2 basal ganglia regions, and bilateral insula. (C) Descendingly sorted 90 AAL brain regions using hub scores for both NC and post-
stroke groups.
doi:10.1371/journal.pone.0081388.g004
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coefficient, characteristic path length, and regional efficiency, our

findings suggest the topological efficiency is not unaltered between

patients and NCs.

Alteration of Hub Distribution
Compared with the hub criteria based on the level of single

nodal metrics in previous DTI-based studies, such as the

betweenness centrality [65,66] and regional efficiency [26,28],

the rank-based analysis of multiple nodal characteristics are more

Table 4. Nodal characteristics comparison between post-stroke and NC.

Post-stroke group compared to NC Increased Decreased

Sw
i (Figure 5) SOG. L (p = 0.0002w) CAU. L (p = 0.0006w)

ITG. L (p = 0.0012w)

Cw
i No significant alteration No significant

alteration

Bw
i (Figure 6) SPG. L (p = 0.0016w) ORBsup. L

(p = 0.0038w)

SPG. R (p = 0.0022w) ORBmid. L
(p = 0.0028w)

SOG. L (p = 0.0004w) ORBinf. L
(p = 0.0050w)

MOG. L (p = 0.0010w) REC. L (p = 0.0048w)

REC. R (p = 0.0004w)

ROL. L (p = 0.0024w)

Ew
i No significant alteration No significant

alteration

Vw
i (Figure 7) SPG. L (p = 0.0004w) ROL. L (p = 0.0008w)

SPG. R (p = 0.0008w)

CUN. L (p = 0.0028w)

CUN. R (p = 0.0014w)

SOG. L (p = 0.0002w)

SOG. R (p = 0.0024w)

windicated the region survived critical FDR threshold.
doi:10.1371/journal.pone.0081388.t004

Figure 5. Group differences of node-specific connection strength (Sw
i ) between NC and post-stroke groups. Significant increase was

observed in left superior occipital gyrus [SOG.L]. Significant decrease was observed in left caudate [CAU.L] and left Inferior temporal gyrus [ITG.L].
doi:10.1371/journal.pone.0081388.g005
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balanced and comprehensive. Thus, the identified hubs are partly

consistent with those obtained from previous similar studies

[23,30,31,67]. Our results indicate no significant difference of the

hub distribution between groups of NC and patient with chronic

stroke (NC/post-stroke: 9/9 orbitofrontal regions, 2/2 temporal

regions, 2/2 parietal regions, 4/4 occipital regions, 3/4 limbic

regions, 3/2 basal ganglia regions, and bilateral insula, 12/11 left

hemispherical regions, 13/14 right hemispherical regions)

(Figure. 3). Increased central role of right parietal-occipital cortex

and decreased central role of left parietal-occipital cortex are

observed in patients with chronic stroke, supported by the fact that

total infarct number in left hemisphere is greater than that in right

hemisphere (Figure. 1), since no difference in lesion volume

Figure 6. Group differences of nodal betweenness centrality (Bw
i ) between NC and post-stroke groups. Significant increase was

observed in left superior parietal gyrus [SPG.L], right superior parietal gyrus [SPG.R], left superior occipital gyrus [SOG.L], and left middle occipital
gyrus [MOG.L]. Significant decrease was observed in left orbital part of superior frontal gyrus [ORBsup.L], orbital part of middle frontal gyrus
[ORBmid.L], orbital part of inferior frontal gyrus [ORBinf.L], left gyrus rectus [REC.L], right gyrus rectus [REC.R], and left rolandic operculum [ROL.L].
doi:10.1371/journal.pone.0081388.g006

Figure 7. Group differences of nodal vulnerability (V w
i ) between NC and post-stroke groups. Significant increase was observed in left

superior parietal gyrus [SPG.L], and right superior parietal gyrus [SPG.R], left cuneus [CUN.L], right cuneus [CUN.R], left superior occipital gyrus [SOG.L],
and right superior occipital gyrus [SOG.R]. Significant decrease was observed in left rolandic operculum [ROL.L].
doi:10.1371/journal.pone.0081388.g007
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(p = 0.301) or course of stroke (p = 0.864) was found between the

patients with left and right lateralized infarct lesions.

Altered Nodal Characteristics
Group differences in betweenness centrality reflect the effects of

the disease on the global roles of every node region. Reduced

betweenness centrality is mainly observed in orbitofrontal cortex.

The finding of decreased centrality in frontal lobe is in line with

the pattern of frontal lobe atrophy in ischemic stroke patients

[7,68]. The orbitofrontal cortex is a prefrontal cortex region in the

frontal lobes which is involved in the cognitive processing of

decision-making. Five regions with decreased centrality were

found in left orbitofrontal cortex of patients after ischemic stroke,

supported by the fact that patients with subcortical ischemic

vascular disease often have executive dysfunction [35]. Further-

more, cortical thinning in orbitofrontal gyrus has shown in

vascular cognitive impairment associated with small vessel

ischemic disease [69]. In this study, 20/47 patients exhibited

cognitive impairment which support the findings of the orbito-

frontal abnormalities. Decreased centrality is observed in four

orbitofrontal hub regions, suggesting a decreased hub role of

orbitofrontal regions in the brain network of patients. Interestingly,

increased betweenness centrality is observed in parietal-occipital

cortex. Increased centrality may indicate a shift to more parietal-

occipital brain regions as a possible compensatory mechanism for

decreased centrality of orbitofrontal regions. As the total infarct

number in the left hemisphere is greater than that in the right

hemisphere, the locations with altered centrality between the left

and right hemispheres have showed the most asymmetry.

Apart from betweenness centrality, vulnerability is also used to

characterize the influence of nodes in a network. As betweenness

and vulnerability quantify the node in different aspects, the nodes

with higher betweenness are not necessarily more vulnerable [19].

From the results in this study, the increased vulnerability is

consistent with the increased betweenness in parietal-occipital

cortex. Nevertheless, a decreased betweenness is found in the

prefrontal cortex but no reduced vulnerability is observed. The

occipital regions with increased vulnerability include cuneus

[CUN] and superior occipital gyrus [SOG] in bilateral occipital

lobe, which are important for visual processing. These changes

suggest that these regions have increased influence in the brain

communication compared with NCs. This could be a potential

evidence for understanding of the visual system recovery in

patients with chronic stroke. Particularly, we have observed

reduction in both centrality and vulnerability in left rolandic

operculum [ROL.L], which is a key component for speech

processing [70]. This finding is supported by the finding reported

in the reduced white matter integrity and damaged tracts related

to speech processing in post-stroke patients [71]. The structural

abnormality of this area was also reported to be associated with

stuttering [72].

The connection strength is the most fundamental network

measure, and provides information of the total degree of

connectivity. Decreased connection strength is found in the left

caudate [CAU.L] and left inferior temporal gyrus [ITG.L]. The

altered connection strength in CAU.L is consistent with the

pattern of altered communicability [16]. The region of ITG.L is

known to be included in the default mode network [73]. The rs-

fMRI has revealed the association between altered functional

connectivity of left middle temporal cortex in the DMN and post-

stroke depression severity [34]. The decreased structural connec-

tivity may give an anatomical comprehension of post-stroke

depression. Imaging evidence also reveals the connectivity

alteration of this region in post-stroke aphasia recovery [74,75].

Specifically, the left superior occipital gyrus [SOG.L] presents

significant increase in connection strength, centrality, and

vulnerability, which is supported by reported gray matter atrophy

in patients with ischemic stroke [6]. Recent research has associated

degraded oral reading performance with acute left hemispheric

stroke [76]. The betweenness of SOG.L is also larger than its

counterpart in the right hemisphere in normal subjects [19].

Correlation with the MMSE and NIHSS scores
Significant correlations were failed to be established between the

MMSE score and the global or nodal characteristics. On one

hand, the subjects studied are patients with no dementia, which

means only mild cognitive impairment could be identified. On the

other hand, MMSE provides only a general evaluation of cognitive

function and suggests a compromised sensitivity in detecting mild

cognitive dysfunction [77]. Furthermore, the severity of sensori-

motor dysfunction, which is the major deficit after ischemic stroke,

can not be reflected by MMSE. By contrast, NIHSS with more

emphasis put on the aspects of sensorimotor functions was found

to be correlated with the betweenness centrality of right pallidum

[PAL.R] and the local clustering coefficient of SOG.L. Pallidum is

mainly involved in the regulation of voluntary movement, and its

change is supported by previous structural studies which revealed

increased grey matter volume and cortical thickness in a series of

motor-related areas during recovery from stroke [78,79]. Besides,

the correlation between clustering coefficient of SOG.L and

NIHSS further confirmed the increased connection strength,

centrality, and vulnerability observed in this region, suggesting its

increasingly critical role in the reorganized network after stroke.

Methodological Issues
Some methodological issues should be taken into account when

interpreting our results. First, we used AAL atlas and FNIRT in

FSL to perform brain parcellation. Since there is no widely

accepted standard to construct cortical and subcortical regions in

the brain, network nodes defined using atlas mapping are more

valuable than random parcellation. Using different atlases, i.e.,

AAL atlas (90 cortical and subcortical regions), the Harvard–

Oxford atlas (110 cortical and subcortical regions), Destrieux

cortical atlas (66 cortical regions) [80], and LONI Probabilistic

Brain Atlas (54 cortical regions) [81], different node sets would be

generated and thus different properties of network would be

produced. Although a research has suggested that the properties of

WM network are highly conserved over multiple atlases and

spatial resolution [82], different parcellation strategies affect WM

connectivity and may result in different topological properties

[83]. Moreover, voxel level (small area level) partition of cerebral

cortex may be finer than atlas level partition if the parcellation

methods are precise.

Second, we used fiber connection density as the inter-regional

WM connectivity in the construction of the graphs. Previous

researches have suggested different connectivity matrices for the

WM network construction, i.e., fiber connection density [23], fiber

number (FN) [28], mean FA [25], normalized fiber number

[82,84], and multiplication between FN and mean FA [27]). FN-

based connectivity matrices are used to describe the interconnec-

tion of fiber tracts among regions of interest and should always be

normalized, as the number of fibers detected varies among

individuals. Mean FA is computed by averaging FA values along

the tract and is used to describe the organization of the underlying

white matter. Although the physiological meaning of these

measures is poorly understood, both FN and FA based connec-

tivity matrices are commonly used to characterize white matter

integrity, and similar results have been found from FN-weighted
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and FA-weighted network [27,31]. Compared with FN and FA,

fiber connection density involved geometric measures including

the volume of the cortical regions and the mean path length of

fibers connecting each pair of regions is more stable.

Third, we used rank-based analysis of multiple nodal charac-

teristics to identify the hub regions, and used hub score to describe

the central role of hubs. Since there is no gold standard to define

anatomical hubs, single or multiple nodal measures were usually

used in other DTI-based studies [28,30,31,49]. Compared with

the level of single nodal metric, the rank-based criterion based on

multiple nodal characteristics is more comprehensive to define a

hub, and the hub score gives a quantitative description of its

central role in the network.

Conclusions

We have applied DTI tractography, WM connection mapping,

and graph theoretic analysis to demonstrate altered organization

of WM network in patients with chronic stroke. In this study, we

comprehensively investigated different characteristics of WM

connection in patients with chronic stroke and our findings

suggest that patients have reduced betweenness centrality at

orbitofrontal cortex, and increased betweenness centrality and

vulnerability at parietal-occipital cortex, and exhibit efficient

small-world organization and unaltered topological efficiencies.

Compared to the NC, patients with chronic stroke exhibit

significant increase of small-worldness, and connection strength

Sw
i , betweenness centrality Bw

i , and vulnerability Vw
i at left

superior occipital gyrus [SOG.L], but significant decrease of

normalized characteristic path length Lw
G and global betweenness

centrality Bw
G . Our results also demonstrated the MMSE score of

patients with chronic stroke is not significantly correlated with

network properties.

The abnormities at orbitofrontal cortex and parietal-occipital

cortex may affect the information exchange, but need further

verification by fMRI studies to understand the functional

difference between groups. The results from this study provide

extra information for understanding of white matter connectivity

changes in patients with chronic stroke in addition to the diffusion

parameters obtained in the previous studies [85–87].
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