ORIGINAL RESEARCH

Effects of Volatile Anesthetics on Postoperative Ischemic Stroke Incidence

Dana Raub, cand. med.; Katharina Platzbecker, MD, MSc; Stephanie D. Grabitz, MD; Xinling Xu, PhD; Karuna Wongtangman, MD; Stephanie B. Pham, BS; Kadhiresan R. Murugappan ^(D), MD; Khalid A. Hanafy, MD, PhD; Ala Nozari, MD, PhD; Timothy T. Houle, PhD; Samir M. Kendale ^(D), MD; Matthias Eikermann, MD, PhD ^(D)

BACKGROUND: Preclinical studies suggest that volatile anesthetics decrease infarct volume and improve the outcome of ischemic stroke. This study aims to determine their effect during noncardiac surgery on postoperative ischemic stroke incidence.

METHODS AND RESULTS: This was a retrospective cohort study of surgical patients undergoing general anesthesia at 2 tertiary care centers in Boston, MA, between October 2005 and September 2017. Exclusion criteria comprised brain death, age <18 years, cardiac surgery, and missing covariate data. The exposure was defined as median age-adjusted minimum alveolar concentration of all intraoperative measurements of desflurane, sevoflurane, and isoflurane. The primary outcome was postoperative ischemic stroke within 30 days. Among 314 932 patients, 1957 (0.6%) experienced the primary outcome. Higher doses of volatile anesthetics had a protective effect on postoperative ischemic stroke incidence (adjusted odds ratio per 1 minimum alveolar concentration increase 0.49, 95% CI, 0.40–0.59, P<0.001). In Cox proportional hazards regression, the effect was observed for 17 postoperative days (postoperative day 1: hazard ratio (HR), 0.56; 95% CI, 0.48–0.65; versus day 17: HR, 0.85; 95% CI, 0.74–0.99). Volatile anesthetics were also associated with lower stroke severity: Every 1-unit increase in minimum alveolar concentration was associated with a 0.006-unit decrease in the National Institutes of Health Stroke Scale (95% CI, –0.01 to –0.002, P=0.002). The effects were robust throughout various sensitivity analyses including adjustment for anesthesia providers as random effect.

CONCLUSIONS: Among patients undergoing noncardiac surgery, volatile anesthetics showed a dose-dependent protective effect on the incidence and severity of early postoperative ischemic stroke.

Key Words: anesthetics
cerebral ischemia
retrospective studies
stroke
stroke
revention

n the United States, $\approx 60\,000$ patients undergo general anesthesia every day.¹ With an aging surgical population,² increasing surgical case volumes, and incidences of perioperative stroke ranging from 0.1% to 9.7%,³ perioperative stroke prevention has become a goal of increasing importance.⁴

Intraoperative anesthetic management strategies have substantial consequences on a patient's susceptibility to ischemic stroke after surgery.^{5–7}

Preclinical data suggest that volatile anesthetics have neuroprotective effects that may decrease the risk of stroke.⁸⁻¹⁰ However, recent studies lack conclusive evidence derived from large patient cohorts.^{9,11}

The primary aim of this study was to examine the effect of intraoperative volatile anesthetic dose on ischemic stroke within 30 days after noncardiac surgery in a large and diverse surgical cohort.

METHODS

Study Design and Setting

This was a hospital registry study of patients undergoing surgery with general anesthesia at Beth Israel

For Sources of Funding and Disclosures, see page 10.

JAHA is available at: www.ahajournals.org/journal/jaha

Correspondence to: Matthias Eikermann, MD, PhD, Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA 02115. E-mail: meikerma@bidmc.harvard.edu

Supplementary Material for this article is available at https://www.ahajournals.org/doi/suppl/10.1161/JAHA.120.018952

^{© 2021} The Authors. Published on behalf of the American Heart Association, Inc., by Wiley. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

CLINICAL PERSPECTIVE

What Is New?

- In this retrospective cohort study of 314 932 patients undergoing noncardiac surgery with general anesthesia, volatile anesthetics had a dose-dependent protective effect on postoperative ischemic stroke incidence and severity; the magnitude of the protective effect was dependent on the postoperative timing of stroke occurrence.
- Compared with patients undergoing propofolbased anesthesia, patients receiving volatile anesthetics had a significantly lower risk of postoperative ischemic stroke.
- Our findings were robust across several sensitivity analyses, including propensity score matching and adjustment, and in a mixedeffects model adjusting for provider variability.

What Are the Clinical Implications?

- This study supports the use of volatile anesthetics in patients who require general anesthesia and who are vulnerable to postoperative ischemic stroke.
- Since the effects were dose dependent, clinicians should know that using higher doses of volatile anesthetics, as compared with lower doses or propofol-based anesthesia, might be considered for stroke prevention.
- Optimally, our study results would be confirmed in a randomized controlled trial.

Deaconess Medical Center in Boston, Massachusetts, between October 2005 and September 2017, and at Massachusetts General Hospital in Boston, January Massachusetts, between 2007 and December 2015. The study was approved by the Beth Israel Deaconess Medical Center Institutional Review Board (protocol number 2019P000014) and the Partners Human Research Committee (reliance agreement [SMART IRB] number 1627). Requirement for informed consent was waived. Data were retrieved from data repositories at Beth Israel Deaconess Medical Center and Partners HealthCare, and subsequently combined into a deidentified data set (Data S1). The authors TTH and ME had full access to the data in this study and take responsibility for their integrity and analysis.

The data supporting our findings are available from the corresponding author upon reasonable request. This article adheres to the STROBE (Strengthening the Reporting of Observational Studies in Epidemiology) guidelines for reporting observational research (Data S2).

Patient Selection

Patients undergoing surgery with general anesthesia were included in the study cohort. Exclusion criteria comprised age <18 years, cardiac surgery,¹² or an American Society of Anesthesiologists physical status classification of VI (brain death) (Data S1). Patients with missing covariate data were excluded from analyses to apply the complete case method.

Exposure and Primary Outcome

The primary exposure variable was defined as median age-adjusted minimum alveolar concentration (MAC) of all minute-by-minute end-tidal measurements of volatile anesthetics (ie, desflurane, sevoflurane, and isoflurane) throughout the surgical case (Data S1).¹³

The primary outcome was postoperative ischemic stroke within 30 days, identified through *International Classification of Diseases, Ninth/Tenth Revision (ICD-9/ICD-10)* billing diagnoses (Table S1).

Covariate Model

Confounding factors were selected a priori utilizing a model for preoperative assessment of perioperative ischemic stroke risk developed by our group.¹⁴ Subsequently, we expanded the model for perioperative factors based on available literature^{15–17} as well as biological and clinical plausibility. The final model adjusted for patient demographics, comorbidities, and anesthesia- and procedure-related factors (Data S1).

Primary Analysis

In the primary analysis, we applied multivariable logistic regression to examine the effect of intraoperative volatile anesthetic dose on ischemic stroke within 30 days after surgery.

Secondary Analyses

In secondary analyses, we assessed the time dependency of the observed effect using a Cox proportional hazards model adjusting for the covariates included in the primary model. Therefore, the exposure was dichotomized by the median MAC among all patients (MAC >0.73 versus \leq 0.73). An interaction term (volatile anesthetic dosextime after surgery) was included in the model. In a post hoc logistic regression analysis based on findings from the Cox proportional hazards model, we compared the effect of volatile anesthetics on postoperative ischemic stroke occurring earlier (within days 1–17) versus later (within days 18–30 after surgery).

Further, we analyzed the effect of volatile anesthetic dose on postoperative transient ischemic attack (TIA) and all-cause mortality within 30 days after surgery (Data S1).

Sensitivity Analyses

Multiple sensitivity analyses were performed to test the robustness of findings, discussed below.

Anesthetic Requirement

We created a propensity score for receiving high doses of volatile anesthetics (highest tertile) utilizing the covariates of the full primary logistic regression model (Data S1).^{18–21} Subsequently, patients were categorized into equally sized tertiles of low, intermediate, and high propensity, respectively, and we repeated the primary analysis in each group.

Effects of Intraoperative Hypotension

To further address potential differences in patients' individual susceptibility to anesthetics, we assessed the maximum blood pressure decrease within 5 minutes of anesthesia induction with propofol (in percent from baseline before induction). Maximum mean arterial pressure (MAP) decrease was categorized (<10%, \geq 10 and <20%, \geq 20 and <30%, or \geq 30%) and an interaction term (volatile anesthetic dose×maximum MAP decrease) was introduced into the primary model.

The primary analysis was also repeated in patients with no, short, intermediate, and prolonged duration of intraoperative hypotension, defined as 0, >0 and \leq 2, >2 and \leq 5, and >5 measurements of MAP <55 mm Hg during surgery, respectively.

Propensity Score Matching and Adjustment

To address potential residual confounding, 1:1 propensity score matching was performed for the variable high-dose (higher than the cohort median) volatile anesthetics, utilizing the covariates of the primary model. A calculated caliper was used for matching,²² and variables were examined for residual imbalances. Further, we calculated the E-value for our primary finding to quantify the potential impact of unmeasured confounding. As introduced by VanderWeele and Ding,²³ the E-value is defined as the minimal magnitude of association that unmeasured confounding would need to have with both exposure and outcome in order to fully explain away the observed effect.²⁴

Analysis Stratified by Baseline Stroke Risk

The full primary covariate model was utilized to estimate patients' baseline risk of postoperative ischemic stroke. The study cohort was then divided into equally sized tertiles of patients with low, intermediate, and high baseline risk, respectively, and we reran the primary analysis in every risk tertile.

Subgroup Analysis in Patients With High Procedure-Related Stroke Risk

We further examined the primary association in a subgroup of patients with high procedural risk of postoperative ischemic stroke, defined as brain and vascular surgery (including carotid endarterectomy).^{3,25}

Impact of Provider Variability

Since the dosing of volatile anesthetics may depend on provider preference, we analyzed provider variability in our cohort and assessed its impact on the primary finding. Individual providers' preferences for using high doses were defined using a mixed-effects logistic regression model with volatile anesthetic doses higher than the cohort median as the outcome. All covariates of the primary model were added as fixed effects while individual providers with a total experience of ≥100 procedures were added as random effect, resulting in the predicted probability of receiving high doses for each patient. For each provider, the adjusted preference of using doses higher than the median was calculated across all cases performed by the respective provider.

To assess the impact of provider variability on our primary finding, a mixed-effects model was used on the primary logistic regression model, adding anesthesia providers as random effect.

Adjudicated Outcome Based on Chart Review

We reran the primary analysis using an adjudicated outcome variable based on medical record review performed by an interdisciplinary team as previously described by our group.^{15,16} All cases with a billing diagnosis of ischemic stroke within 30 days after surgery were manually reviewed using brain scan reports, discharge summaries, and neurology consultation notes (Data S1). Additionally, stroke location according to the Oxfordshire Community Stroke Project²⁶, and National Institutes of Health Stroke Scales (NIHSS)²⁷ were assessed.

Effects of Anesthesia Depth (Bispectral Index)

To discriminate between the effect of volatile anesthetic dose and the effect of the level of unconsciousness during anesthesia, the association of the median intraoperative bispectral index (BIS) and postoperative ischemic stroke was assessed in a subgroup of patients with available data.²⁸ Further, an interaction term (BIS×volatile anesthetic dose) was included in the model.

Supplemental Sensitivity Analyses

Additional sensitivity analyses, including those taking into account missing follow-up²⁹ and covariate data, are provided in Tables S2 and S3).

Exploratory Analyses

We compared volatile anesthesia (while allowing for an induction bolus of propofol) to total intravenous anesthesia (TIVA) using propofol regarding the primary outcome.

Model fit was assessed using c-statistics (ie, area under the receiver operating characteristics curve), as well as calibration plot and Brier score (squared difference between estimated and observed outcomes).

Additional post hoc analyses are described in Data S1. Briefly, to address a suggestion of a peer reviewer, we also included all patients undergoing cardiac surgery who had previously been excluded. Further, we explored compound-specific effects of volatile agents in the respective subgroups.

Statistical Analyses

If not further specified, multivariable logistic regression utilizing the full covariate model was used for binary outcome variables. Analyses were selected a priori. Statistical significance was assumed at a 2-sided P<0.05.

Analyses were performed using Stata (version 15; StataCorp LLC, College Station, TX) or Rstudio (version 1.1.442; Rstudio Inc., Boston, MA).

RESULTS

Study Cohort

A total of 400 257 patients underwent surgery under general anesthesia at Beth Israel Deaconess Medical Center and Massachusetts General Hospital within the studied time frame (Figure 1). There were 23 719 patients excluded for being underage, brain-dead, or undergoing cardiac surgery, and 61 606 patients were excluded from analysis because of missing covariate data. The final study cohort comprised 314 932 cases (Table 1).³⁰ 298 505 patients (94.5%) received volatile anesthetics for anesthesia. The overall median MAC of volatile anesthetics was 0.73 (interquartile range, 0.50, 0.94).

Primary Analysis

Of all patients in the study cohort, 1957 patients (0.6%) had an ischemic stroke within 30 days after surgery. The median time to ischemic stroke was 4 days (interquartile range, 1, 14) (Figure S1).

A higher MAC of volatile anesthetics had a significant protective effect on ischemic stroke within 30 days after

Figure 1. Study flow.

*Multiple criteria may apply. ASA indicates American Society of Anesthesiologists physical status classification (as classified by the anesthesiologist); BMI, body mass index; ED95, median effective dose required to achieve a 95% reduction in maximal twitch response from baseline; and NMBA, neuromuscular blocking agent.

Table 1. Characteristics of the Study Population by Postoperative Ischemic Stroke Status

Characteristics	No Ischemic Stroke Within 30 d (n=312 975)	Ischemic Stroke Within 30 d (n=1957)
Demographics		1
Age, y	53.7±16.5	64.1±15.2
Sex, male	137 662 (44.0%)	1094 (55.9%)
Body mass index, kg/m ²	28.4±6.9	27.6±6.0
Comorbidities*	1	1
Arterial hypertension	125 363 (40.1%)	1416 (72.4%)
Atrial fibrillation	21 311 (6.8%)	444 (22.7%)
Carotid stenosis	6976 (2.2%)	679 (34.7%)
Chronic kidney disease	20 187 (6.5%)	352 (18.0%)
Diabetes mellitus	45 628 (14.6%)	553 (28.3%)
Dyslipidemia	96 622 (30.1%)	1066 (54.5%)
Ischemic stroke	7639 (2.4%)	1357 (69.3%)
Malignancy	92 111 (29.4%)	579 (29.6%)
Migraine	11 373 (3.6%)	87 (4.4%)
Patent foramen ovale without closure	2767 (0.9%)	135 (6.9%)
Peripheral vascular disease	12 222 (3.9%)	303 (15.5%)
Smoking	51 969 (16.6%)	516 (26.4%)
Transient ischemic attack	4691 (1.5%)	399 (20.4%)
Valvular heart disease	26 679 (8.5%)	732 (37.4%)
Beta-blocker prescription within 28 d prior	44 342 (14.2%)	1096 (56.0%)
Charlson Comorbidity Index ³⁰	1 (0, 3)	4 (2, 6)
ASA physical status	2 (2, 3)	3 (2, 3)
Surgical factors	-	-
Emergency surgery	13 994 (4.5%)	182 (9.3%)
Inpatient surgery	199 951 (63.9%)	1868 (95.5%)
Duration of surgery, min	155±108	194±134
Work relative value units	14.7±9.8	19.0±12.9
Surgical service		1
Burn	1976 (0.6%)	22 (1.1%)
Emergent-urgent	10 721 (3.4%)	164 (8.4%)
General	57 773 (18.5%)	86 (4.4%)
Gynecology/obstetrics	31 200 (10.0%)	33 (1.7%)
Neurosurgery	21 899 (7.0%)	531 (27.1%)
Oral/maxillofacial	3297 (1.1%)	7 (0.4%)
Orthopedic	72 620 (23.2%)	160 (8.2%)
Other (dermatology, etc)	4463 (1.4%)	58 (3.0%)
Otolaryngology	8808 (2.8%)	9 (0.5%)
Plastic	18 716 (6.0%)	19 (1.0%)
Radiology	1728 (0.6%)	71 (3.6%)
Surgical oncology	15 003 (4.8%)	19 (1.0%)
Thoracic	19 986 (6.4%)	98 (5.0%)
Transplant	5704 (1.8%)	23 (1.2%)
Urology	22 176 (7.1%)	59 (3.0%)
Vascular	10 402 (3.3%)	410 (21.0%)
Anesthetic factors	1	
Use of volatile anesthetic	296 714 (94.8%)	1791 (91.5%)
MAC of volatile anesthetic	0.72±0.35	0.51±0.34

(Continued)

Table 1. Continued

Characteristics	No Ischemic Stroke Within 30 d (n=312 975)	Ischemic Stroke Within 30 d (n=1957)
MAC of nitrous oxide	0.07 (0, 0.41)	0.21 (0, 0.56)
Total opioid dose (oral morphine equivalents)	50.5 (31.3, 79.5)	62.5 (37.5, 103.3)
Total propofol dose, mg	200 (150, 260)	170 (110, 250)
Total neuromuscular blocking agent ED95 dose	1.86 (0, 3.06)	2.82 (1.69, 4.4)
Total vasopressor dose, mg (norepinephrine equivalents)	0.01 (0, 0.1)	0.17 (0.03, 0.53)
Total fluid volume administered, mL	2000 (1000, 3000)	1350 (750, 2500)
Administration of packed red blood cells	9118 (2.9%)	141 (7.2%)
Neuraxial anesthesia	10 271 (3.3%)	65 (3.3%)
Minutes with MAP <55 mm Hg	0 (0, 2)	1 (0, 3)

Values provided as frequency (prevalence in %), mean±SD, or median (interquartile range [25th–75th percentile], values separated by comma). ASA indicates American Society of Anesthesiologists; ED95, median effective dose required to achieve a 95% reduction in maximal twitch response from baseline; MAC, minimum alveolar concentration; and MAP, mean arterial pressure.

*For comorbidity definitions, refer to Table S1.

surgery in unadjusted (odds ratio per 1 MAC increase 0.16, 95% Cl, 0.14–0.19, *P*<0.001) as well as adjusted analyses (adjusted odds ratio [aOR] per 1 MAC increase 0.49, 95% Cl, 0.40–0.59, *P*<0.001) (Table 2; Table S4).

Secondary Analyses

In the Cox proportional hazards regression, we found a time-dependent effect of volatile anesthetic dose and postoperative ischemic stroke (P for interaction volatile anesthetics×days after surgery <0.001): Patients receiving high volatile anesthetic doses showed a significantly lower hazard rate of ischemic stroke for up to 17 days after surgery (postoperative day 1: hazard ratio [HR], 0.56; 95% CI, 0.48-0.65; versus postoperative day 17: HR, 0.85; 95% CI, 0.74-0.99). The protective effect was found to be no longer statistically significant (P>0.05) at postoperative day 18 (HR, 0.88; 95% Cl, 0.75-1.02). One thousand five hundred ninety-four of 1957 ischemic strokes (81.5%) occurred within 17 days after surgery. At postoperative day 23, volatile anesthetics were no longer found to have a protective effect (HR, 1.00; 95% CI, 0.83-1.21) (Figure 2). A significant protective effect of higher volatile anesthetic doses was confirmed for ischemic strokes within 17 days (aOR, 0.41; 95% CI, 0.33–0.51, P<0.001) but not for ischemic strokes within days 18 to 30 (aOR, 0.98; 95% CI, 0.67–1.45, P=0.94) in subsequent multivariable logistic regression analyses. For details of patients receiving low versus high doses, see Table S5.

Estimated risks of ischemic stroke were 0.5 for every 1000 patients receiving high doses of volatile anesthetics (highest tertile, mean [SD] MAC 1.1 [0.23]) and 0.8 for every 1000 patients receiving low doses (lowest tertile, mean [SD] MAC 0.35 [0.19]). In comparison to patients receiving low doses, patients receiving high doses were found to have a significantly lower risk of ischemic stroke after surgery (adjusted absolute risk difference, -0.03%; 95% CI, -0.04 to -0.02, P<0.001; relative risk reduction, 37.5%) (Table 2). For results of all other secondary analyses, please see Table 2 and Data S1.

Sensitivity Analyses

The primary effect was found to be robust across tertiles of volatile anesthetic dose (Table 3). The decreasing

	Low-Dose Volatile Anesthetics (Lowest Tertile)		High-Dose Volatile Anesthetics (Highest Tertile)		High v Dos	s Low ses	Odds Rati	o (95% Cl)*
Outcome	Outcome Rate (%)	Estimated Risk (%, 95% Cl)	Outcome Rate (%)	Estimated Risk (%, 95% Cl)	aARD (%)	RRR (%)	Unadjusted	Adjusted
lschemic stroke	1.1	0.08 (0.07–0.10)	0.28	0.05 (0.04–0.06)	-0.03	37.5	0.16 (0.14–0.19)	0.49 (0.40-0.59)
TIA	0.38	0.03 (0.02–0.04)	0.07	0.01 (0.009–0.018)	-0.02	66.7	0.12 (0.10-0.16)	0.35 (0.25–0.49)
Death	1.0	0.1 (0.08–0.11)	0.49	0.05 (0.04-0.06)	-0.05	50.0	0.36 (0.32-0.41)	0.48 (0.41-0.56)

Table 2. Primary and Secondary Outcomes in Patients Receiving Low Versus High Doses of Volatile Anesthetics

Table 2 depicts results from primary and secondary analyses in patients receiving the lowest and highest tertile of volatile anesthetic dose across the study cohort, respectively. All outcomes were assessed within 30 days after surgery. Analyses were adjusted for all covariates included in the primary model. Estimated risk and risk differences were calculated using Stata packages "predict" and "margins." Rates are rounded to 2 decimal places. aARD indicates adjusted absolute risk difference; RRR, relative risk reduction; and TIA, transient ischemic attack.

*P<0.001 for all results listed in Table 2.

odds ratio for tertiles of intermediate and high doses, respectively, highly suggest a dose dependency of the primary effect (*P* for trend <0.001).

Anesthetic Requirement

Repeating the primary analysis in each tertile of the propensity score for receiving high-dose volatiles confirmed the primary finding: Higher doses of volatile anesthetics had a significant protective effect on ischemic stroke in patients with the highest propensity of high doses as well as in patients with intermediate and low propensity of high doses (Table 3).

Effects of Intraoperative Hypotension

In 163 241 patients with available data, no effect modification by maximum MAP decrease from baseline after induction was found (\geq 10 and <20%: *P* for interaction=0.58; \geq 20 and <30%: *P* for interaction=0.62; \geq 30%: *P* for interaction=0.81).

The primary finding was substantiated in all categories of intraoperative hypotension: Patients without intraoperative MAP <55 mm Hg (n=172 089), as well as with short (n=72 565), intermediate (n=36 980), and prolonged duration of intraoperative hypotension (n=32 973) (Table 3).

Propensity Score Matching and Adjustment

With a calculated caliper of 0.359, a total of 159 692 (50.7%) patients higher and lower than the cohort median dose of volatile anesthetics were matched according to their propensity for receiving high-dose volatile anesthetics. In the matched cohort, the primary finding was confirmed.

Since propensity matching omitted unmatched individuals from analysis, we further performed propensity score adjustment. A model was fitted including the aforementioned exposure (doses higher versus lower than median) as well as a linear and squared term of the propensity score. Our primary finding was confirmed (Table 3).

In our primary analysis, we observed an aOR of 0.49 (95% Cl, 0.40–0.59). An unmeasured confounder would have to be associated with both the exposure and the outcome, respectively, with an aOR (adjusted for all measured confounders) of 3.5 (E-value) each in order to fully explain away the observed effect. To move the 95% Cl such that the observed effect would no longer be statistically significant, an unmeasured confounder of the same nature would have to have an aOR of 2.78 for the primary association. Weaker confounding could not explain away the observed association.

Figure 2. Hazard ratio for ischemic stroke per postoperative day.

Results of the Cox proportional hazards regression regarding the effect of volatile anesthetics higher than minimum alveolar concentration=0.73 (cohort median) on postoperative ischemic stroke, with a hazard ratio of 1.00 shown as bold line in the graph. Hazard ratios are presented per postoperative day. Patients receiving higher doses of volatile anesthetics showed significantly lower hazard of ischemic stroke for up to 17 days after surgery.

Type of Analysis	Subgroup of Patients	aOR, 95% CI	P Value
Tertiles of volatile anesthetic dose	Receiving low doses	1.0 (reference level)	
	Receiving intermediate doses	0.78, 0.68–0.89	<0.001
	Receiving high doses	0.61, 0.51–0.72	<0.001
Anesthetic requirement	Low propensity of receiving high doses	0.48, 0.35–0.65	<0.001
	Intermediate propensity of receiving high doses	0.50, 0.36–0.70	<0.001
	High propensity of receiving high doses	0.60, 0.40-0.91	0.02
Effects of intraoperative hypotension	No hypotension	0.54, 0.41–0.72	<0.001
	Short duration of hypotension	0.48, 0.32–0.72	<0.001
	Intermediate duration of hypotension	0.49, 0.28–0.87	0.02
	Prolonged duration of hypotension	0.38, 0.23–0.64	<0.001
Propensity score matching	Propensity of doses higher vs lower than median	0.66, 0.57–0.75	<0.001
Propensity score adjustment	Propensity of doses higher vs lower than median (vs without propensity score adjustment)	0.64, 0.57–0.72 (0.68, 0.60–0.78)	<0.001 (<0.001)
Analysis stratified by baseline stroke	Low baseline risk of stroke	0.99, 0.27–3.55	0.98
risk	Intermediate baseline risk of stroke	0.82, 0.32–2.07	0.67
	High baseline risk of stroke	0.46, 0.38–0.56	<0.001
Subgroup analysis in patients with high procedure-related stroke risk	Undergoing brain or vascular surgery	0.58, 0.43–0.79	<0.001
Impact of provider variability	Mixed-effects model adjusting for anesthesia provider	0.70, 0.60–0.83	<0.001
Adjudicated outcome based on chart review	Full study cohort	0.39, 0.30–0.50	<0.001

Table 3. Results of Sensitivity Analyses

Table 3 depicts results from the sensitivity analyses performed in order to test the robustness of the primary finding. All sensitivity analyses use the primary outcome (ischemic stroke within 30 days after surgery). Analyses were adjusted for all covariates included in the primary model. aOR indicates adjusted odds ratio.

Analysis Stratified by Baseline Stroke Risk

The primary finding was also confirmed in patients within the highest tertile of baseline risk of postoperative ischemic stroke but not in patients within the intermediate- and low-risk group (n=104 977 each; Table 3).

Subgroup Analysis in Patients With High Procedure-Related Stroke Risk

Further, the protective effect of volatile anesthetics on postoperative ischemic stroke incidence was robust in a subgroup of 24 195 patients (7.7%) with high procedural risk of stroke, such as brain and vascular surgery (Table 3).

Impact of Provider Variability

After excluding cases performed by anesthesiologists with a total experience of <100 cases, 70 277 patients remained for analysis. In this cohort, 862 individual providers were documented. The predicted preference for individual providers to use volatile anesthetic doses higher than the cohort median ranged from 3.1% to 93.9%, demonstrating high provider variability (Figure S2). The primary finding remained robust when

adjusting for provider variability in a mixed-effects model (Table 3).

Adjudicated Outcome Based on Chart Review

Medical record review verified 686 of 1957 (35.1%) ischemic strokes billed through *ICD-9/10* codes within 30 days after surgery, which translates to an ischemic stroke incidence of 0.2%. Of these verified strokes, 127 (18.5%) patients had a partial anterior circulation and 170 (24.5%) a total anterior circulation stroke. One hundred seventy-eight (26.0%) patients had a posterior circulation infarct, while 38 (5.5%) patients showed lacunar infarctions. One hundred seventy-three (25.2%) patients had an ischemic stroke of unclassifiable location. Repetition of the primary analysis utilizing the verified ischemic stroke outcome confirmed our primary findings (Table 3).

Fifty patients (7.3%) with verified ischemic stroke presented missing NIHSS data. Four hundred fiftynine (66.9%) patients presented with mild (NIHSS \leq 5) and 177 (25.8%) with moderate-severe neurological symptoms (NIHSS >5).³¹ The median NIHSS among all verified ischemic strokes with complete information was 3 points (interquartile range, 1, 6.5). In a post hoc exploratory analysis, every 1-unit increase in MAC of volatile anesthetics was associated with a 0.006-unit decrease in NIHSS (β –0.006; 95% Cl, –0.01 to –0.002, P=0.002). Further, in a multinomial logistic regression model, volatile anesthetics had a dose-dependent protective effect on both patients with mild neurological symptoms (β –0.82; 95%, Cl –1.18 to –0.46, P<0.001) and patients with moderate–severe neurological presentation (β –0.58; 95% Cl, –1.17 to –0.01, P=0.054). There was no significant interaction between volatile anesthetics and intraoperative hypotension in either of the 2 groups (P for interaction=0.53 in patients with mild symptoms, and 0.76 in patients with moderate–severe symptoms).

Effects of Anesthesia Depth (BIS)

BIS was not associated with postoperative ischemic stroke in a subgroup of 14 862 patients with available data (aOR, 0.995; 95% CI, 0.97–1.02, P=0.75). No significant interaction of volatile dose and BIS was found regarding the primary outcome (P for interaction=0.70).

Exploratory Analyses

In our cohort, 204 522 (64.9%) patients received volatile anesthesia with the option of propofol as induction bolus. Some patients (13 918; 4.4%) underwent TIVA using propofol without volatile anesthetics. 96 492 patients in our cohort (30.6%) received a combined or different type of anesthesia and, thus, were not considered in this exploratory analysis. In comparison to TIVA, patients undergoing volatile anesthesia had significantly lower odds of experiencing the primary outcome (aOR, 0.71; 95% CI, 0.55–0.90, P=0.005).

The covariate model for postoperative ischemic stroke showed excellent discriminative ability independent of the exposure with an area under the receiver operating characteristics curve of 0.95 (Figure S3).

A reliability plot demonstrated excellent calibration of the covariate model (Figure S4). The Brier score for the covariate model was 0.007 and reliability was 0.002, reflecting excellent accuracy and calibration.

DISCUSSION

In this cohort of 314 932 adult patients undergoing noncardiac surgery with general anesthesia, volatile anesthetics were found to have a dose-dependent protective effect on postoperative ischemic stroke incidence and severity.

In our study, the protective effect of volatile anesthetics on ischemic stroke was stronger in patients who developed an early postoperative stroke, which supports a pharmacologically plausible effect: Volatile anesthetic preconditioning may prevent early cascades of brain ischemia from evolving into a clinically relevant ischemic stroke. A plausible mechanism is the dosedependent frequency inhibition of cortical spreading depolarizations, which have been reported to occur for several days after ischemia.^{32–34} Preclinical literature describes protective effects of volatile preconditioning for up to 3 days.⁹ In this study, significant effects are seen until postoperative day 17. It is possible that antiinflammatory and anti-thrombogenic effects, as well as remote preconditioning, are at play as well.^{35–37}

This hypothesis is in line with the results of a retrospective cohort study by Sivasankar et al, who reported that the use of volatile anesthetics led to significantly lower degrees of poststroke disability in a cohort of patients undergoing revascularization procedures after stroke.³⁸ Our study adds to these findings that a protective effect may also be relevant for stroke prevention.

Our data further suggest that volatile anesthesia is associated with lower odds of postoperative ischemic stroke when compared with TIVA using propofol. This corresponds with a randomized controlled trial of patients undergoing carotid endarterectomy by Kuzkov et al showing that, compared with propofol, sevoflurane suppressed intraoperative asymmetry of cerebral oxygenation and improved postoperative cognition.³⁹ Similarly, in a randomized controlled trial of 128 patients undergoing cardiac surgery with cardiopulmonary bypass, Schoen et al found that sevoflurane-based anesthesia (compared with propofol) attenuated the effects of intraoperative desaturation on postoperative neurocognition.⁴⁰

Strengths and Limitations

A major strength of this study is the generalizability of results derived from a large, diverse, and multicentric surgical cohort. While residual confounding cannot be ruled out because of the study's observational nature, the covariate model was shown to have excellent discriminative ability with an area under the receiver operating characteristics curve of 0.95. Misclassification of the outcome based on billing codes and varying coding practices between hospitals was likely random and unrelated to the exposure. Potential bias was addressed by medical record review of the outcome variable, which did not change our conclusions.

One might speculate that younger and healthier patients are more likely to receive higher doses of volatile anesthetics while having an overall low baseline risk of stroke and, thus, low outcome rates. Therefore, we examined subgroups of patients with varying probability of receiving higher doses. We observed the dose-dependent effect of volatile anesthetics on ischemic stroke to be robust across patients with different propensity of receiving high doses. Another marker of anesthetic requirement may be the hemodynamic response to an induction dose of an intravenous anesthetic, typically propofol. Our data showed that the patient's hemodynamic susceptibility to anesthetics did not modify the observed primary effect.

This study focuses on the preconditioning effect of volatile anesthetics and is not designed to explore the effects of volatile anesthetics on patients with ongoing stroke. While we are enthusiastic about our results, we would caution extrapolation of these results to other settings, such as endovascular stroke treatment.

Clinical Implications

The early postoperative period corresponds with a particularly high risk of having an ischemic stroke.⁴¹ Additionally, recognition of stroke during inpatient stays may be delayed because of comorbidities and hospital practice, while treatment options early after surgery may be limited.^{25,42} Our data support the use of volatile anesthetics to prevent clinically relevant ischemic strokes during this highly vulnerable period.

This study found that the protective effect of volatile anesthetics might be of particular relevance in patients requiring general anesthesia while carrying a high baseline risk of postoperative ischemic stroke. In anticipation of potential ischemic events in such patients, prophylactic neuroprotection should be considered.⁴³ We believe that certain patient populations who have a high risk of surgery-related ischemic stroke (such as patients undergoing vascular or neurosurgical procedures) may have their risk mitigated with the use of volatile anesthetics. Simultaneously, our data encourage the preferential use of volatile anesthesia over TIVA using propofol in patients at particular risk of postoperative ischemic stroke. Since the observed effect was dose dependent, clinicians should be aware that, compared with lower doses or propofol-based anesthesia, using higher doses of volatile anesthetics might be helpful for stroke prevention.

Future randomized controlled trials, especially in patients undergoing high-risk procedures such as neurosurgery and vascular surgery, will be needed to confirm our findings.

In summary, volatile anesthetics had a dosedependent protective effect on the incidence and severity of ischemic stroke within 30 days after noncardiac surgery in this diverse cohort of 314 932 adult patients. The effect was found to be of specific importance during the early postoperative period.

ARTICLE INFORMATION

Received September 29, 2020; accepted January 15, 2021.

Affiliations

From the Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (D.R., K.P., S.D.G., X.X., K.W., S.B.P., K.R.M., A.N., S.M.K., M.E.); Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA (D.R., T.T.H.); Department of Anesthesiology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand (K.W.); Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (K.A.H.); Department of Anesthesia, Boston Medical Center, Boston University, Boston, MA (A.N.); and Klinik für Anästhesiologie, Universitätsklinikum Essen, Essen, Germany (M.E.).

Acknowledgments

We are grateful to Sabine Friedrich, MD, and Peter Santer, MD, DPhil, from the Department of Anesthesia, Critical Care and Pain Medicine at Beth Israel Deaconess Medical Center, Boston, MA, for making significant nonauthor contributions by providing statistical advice and helping with statistical analyses.

Sources of Funding

This work was supported by Philanthropic Donors Jeffrey and Judy Buzen in an unrestricted grant to Matthias Eikermann. The funders had no role in the design or conduct of the study; the handling of data; the preparation of the manuscript, or the decision to submit it for publication.

Disclosures

Dr Hanafy reports a grant by the NIH (grant no. R01NS109174). Dr Houle reports grants from the National Institute of Neurological Disorders and Stroke (NINDS; PI), grants from the National Institute of General Medical Sciences (NIGMS), personal fees from Headache, personal fees from Anesthesiology, and personal fees from Cephalalgia, outside the submitted work. Dr Eikermann received funding for investigator-initiated trials from Merck and honorarium for giving advice to Merck, and a grant by the NIH (grant no. UG3HL140177); he is an Associate Editor of the *British Journal of Anaesthesia*. The remaining authors have no disclosures to report.

Supplementary Material

Datas S1–S2 Tables S1–S5 Figures S1–S4 References 44–46

REFERENCES

- 1. Preventing, and managing the impact of, anesthesia awareness. Sentinel Event Alert. 2004;32:1–3.
- Graham A, Brown CH IV. Frailty, aging, and cardiovascular surgery. Anesth Analg. 2017;124:1053–1060.
- 3. Selim M. Perioperative stroke. N Engl J Med. 2007;356:706-713.
- Mashour GA, Moore LE, Lele AV, Robicsek SA, Gelb AW. Perioperative care of patients at high risk for stroke during or after non-cardiac, non-neurologic surgery: consensus statement from the Society for Neuroscience in Anesthesiology and Critical Care. J Neurosurg Anesthesiol. 2014;26:273–285.
- Zausinger S, Baethmann A, Schmid-Elsaesser R. Anesthetic methods in rats determine outcome after experimental focal cerebral ischemia: mechanical ventilation is required to obtain controlled experimental conditions. *Brain Res Brain Res Protoc.* 2002;9:112–121.
- Theodorsson A, Holm L, Theodorsson E. Modern anesthesia and peroperative monitoring methods reduce per- and postoperative mortality during transient occlusion of the middle cerebral artery in rats. *Brain Res Brain Res Protoc.* 2005;14:181–190.
- Bleilevens C, Roehl AB, Goetzenich A, Zoremba N, Kipp M, Dang J, Tolba R, Rossaint R, Hein M. Effect of anesthesia and cerebral blood flow on neuronal injury in a rat middle cerebral artery occlusion (MCAO) model. *Exp Brain Res.* 2013;224:155–164.
- Takagaki M, Feuerstein D, Kumagai T, Gramer M, Yoshimine T, Graf R. Isoflurane suppresses cortical spreading depolarizations compared to propofol—implications for sedation of neurocritical care patients. *Exp Neurol.* 2014;252:12–17.
- Wang H, Li P, Xu N, Zhu L, Cai M, Yu W, Gao Y. Paradigms and mechanisms of inhalational anesthetics mediated neuroprotection against cerebral ischemic stroke. *Med Gas Res.* 2016;6:194–205.
- Archer DP, Walker AM, McCann SK, Moser JJ, Appireddy RM. Anesthetic neuroprotection in experimental stroke in rodents: a

systematic review and meta-analysis. *Anesthesiology*. 2017;126: 653–665.

- Jiang M, Sun L, Feng DX, Yu ZQ, Gao R, Sun YZ, Chen G. Neuroprotection provided by isoflurane pre-conditioning and postconditioning. *Med Gas Res.* 2017;7:48–55.
- Cavallaro P, Itagaki S, Seigerman M, Chikwe J. Operative mortality and stroke after on-pump vs off-pump surgery in high-risk patients: an analysis of 83,914 coronary bypass operations. *Eur J Cardiothorac Surg.* 2014;45:159–164.
- Nickalls RW, Mapleson WW. Age-related iso-MAC charts for isoflurane, sevoflurane and desflurane in man. Br J Anaesth. 2003;91:170–174.
- Platzbecker K, Rudolph MI, Friedrich S, Weimar C, Kurth T, Houle TT, Eikermann M. Development and validation of a prediction score for postoperative ischemic stroke (PISP-Score). Presented at: ANESTHESIOLOGY Annual Meeting; October 15, 2018. San Francisco, CA; 2018.
- Ng PY, Ng AK, Subramaniam B, Burns SM, Herisson F, Timm FP, Med C, Rudolph MI, Med C, Scheffenbichler F, et al. Association of preoperatively diagnosed patent foramen ovale with perioperative ischemic stroke. JAMA. 2018;319:452–462.
- Friedrich S, Ng PY, Platzbecker K, Burns SM, Banner-Goodspeed V, Weimar C, Subramaniam B, Houle TT, Bhatt DL, Eikermann M. Patent foramen ovale and long-term risk of ischaemic stroke after surgery. *Eur Heart J.* 2019;40:914–924.
- Timm FP, Houle TT, Grabitz SD, Lihn AL, Stokholm JB, Eikermann-Haerter K, Nozari A, Kurth T, Eikermann M. Migraine and risk of perioperative ischemic stroke and hospital readmission: hospital based registry study. *BMJ*. 2017;356:i6635.
- Van Cleve WC, Nair BG, Rooke GA. Associations between age and dosing of volatile anesthetics in 2 academic hospitals. *Anesth Analg.* 2015;121:645–651.
- 19. Aranake A, Mashour GA, Avidan MS. Minimum alveolar concentration: ongoing relevance and clinical utility. *Anaesthesia*. 2013;68:512–522.
- Glass PS, Gan TJ, Howell S, Ginsberg B. Drug interactions: volatile anesthetics and opioids. *J Clin Anesth*. 1997;9:18S–22S.
- Lu CH, Borel CO, Wu CT, Yeh CC, Jao SW, Chao PC, Wong CS. Combined general-epidural anesthesia decreases the desflurane requirement for equivalent A-line ARX index in colorectal surgery. *Acta Anaesthesiol Scand*. 2005;49:1063–1067.
- Austin PC. Optimal caliper widths for propensity-score matching when estimating differences in means and differences in proportions in observational studies. *Pharm Stat.* 2011;10:150–161.
- VanderWeele TJ, Ding P. Sensitivity analysis in observational research: introducing the E-value. Ann Intern Med. 2017;167:268–274.
- 24. Mathur MB, Ding P, Riddell CA, VanderWeele TJ. Web site and R package for computing E-values. *Epidemiology*. 2018;29:e45–e47.
- 25. Blacker DJ. In-hospital stroke. Lancet Neurol. 2003;2:741-746.
- Bamford J, Sandercock P, Dennis M, Burn J, Warlow C. Classification and natural history of clinically identifiable subtypes of cerebral infarction. *Lancet.* 1991;337:1521–1526.
- Brott T, Adams HP Jr, Olinger CP, Marler JR, Barsan WG, Biller J, Spilker J, Holleran R, Eberle R, Hertzberg V, et al. Measurements of acute cerebral infarction: a clinical examination scale. *Stroke*. 1989;20:864–870.
- Avidan MS, Zhang L, Burnside BA, Finkel KJ, Searleman AC, Selvidge JA, Saager L, Turner MS, Rao S, Bottros M, et al. Anesthesia awareness and the bispectral index. *N Engl J Med.* 2008;358:1097–1108.
- Tsai TC, Orav EJ, Jha AK. Care fragmentation in the postdischarge period: surgical readmissions, distance of travel, and postoperative mortality. *JAMA Surg.* 2015;150:59–64.

- Charlson ME, Pompei P, Ales KL, MacKenzie CR. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. *J Chronic Dis.* 1987;40:373–383.
- Asdaghi N, Yavagal DR, Wang K, Mueller-Kronast N, Bhatt N, Gardener HE, Gutierrez CM, Marulanda-Londono E, Koch S, Dong C, et al. Patterns and outcomes of endovascular therapy in mild stroke. *Stroke*. 2019;50:2101–2107.
- Kitahara Y, Taga K, Abe H, Shimoji K. The effects of anesthetics on cortical spreading depression elicitation and c-fos expression in rats. J *Neurosurg Anesthesiol.* 2001;13:26–32.
- Kudo C, Nozari A, Moskowitz MA, Ayata C. The impact of anesthetics and hyperoxia on cortical spreading depression. *Exp Neurol.* 2008;212:201–206.
- Chung DY, Oka F, Ayata C. Spreading depolarizations: a therapeutic target against delayed cerebral ischemia after subarachnoid hemorrhage. *J Clin Neurophysiol.* 2016;33:196–202.
- Wang H, Lu S, Yu Q, Liang W, Gao H, Li P, Gan Y, Chen J, Gao Y. Sevoflurane preconditioning confers neuroprotection via antiinflammatory effects. *Front Biosci (Elite Ed)*. 2011;3:604–615.
- Honemann CW, Nietgen GW, Podranski T, Chan CK, Durieux ME. Influence of volatile anesthetics on thromboxane A2 signaling. *Anesthesiology*. 1998;88:440–451.
- Meng R, Ding Y, Asmaro K, Brogan D, Meng L, Sui M, Shi J, Duan Y, Sun Z, Yu Y, et al. Ischemic conditioning is safe and effective for octo- and nonagenarians in stroke prevention and treatment. *Neurotherapeutics*. 2015;12:667–677.
- Sivasankar C, Stiefel M, Miano TA, Kositratna G, Yandrawatthana S, Hurst R, Kofke WA. Anesthetic variation and potential impact of anesthetics used during endovascular management of acute ischemic stroke. *J Neurointerv Surg.* 2016;8:1101–1106.
- Kuzkov VV, Obraztsov MY, Ivashchenko OY, Ivashchenko NY, Gorenkov VM, Kirov MY. Total intravenous versus volatile induction and maintenance of anesthesia in elective carotid endarterectomy: effects on cerebral oxygenation and cognitive functions. *J Cardiothorac Vasc Anesth*. 2018;32:1701–1708.
- Schoen J, Husemann L, Tiemeyer C, Lueloh A, Sedemund-Adib B, Berger KU, Hueppe M, Heringlake M. Cognitive function after sevoflurane- vs propofol-based anaesthesia for on-pump cardiac surgery: a randomized controlled trial. *Br J Anaesth*. 2011;106:840–850.
- 41. Vlisides P, Mashour GA. Perioperative stroke. Can J Anaesth. 2016;63:193–204.
- 42. Demaerschalk BM, Kleindorfer DO, Adeoye OM, Demchuk AM, Fugate JE, Grotta JC, Khalessi AA, Levy EI, Palesch YY, Prabhakaran S, et al.; American Heart Association Stroke C, Council on E, Prevention. Scientific rationale for the inclusion and exclusion criteria for intravenous alteplase in acute ischemic stroke: a statement for healthcare professionals from the American Heart Association/American Stroke Association. *Stroke*. 2016;47:581–641.
- Savitz SI, Fisher M. Prophylactic neuroprotection. Curr Drug Targets. 2007;8:846–849.
- van Erp JHJ, Ostendorf M, Lansdaal JR. Shoulder surgery in beach chair position causing perioperative stroke: four cases and a review of the literature. *J Orthop.* 2019;16:493–495.
- Kitano H, Young JM, Cheng J, Wang L, Hurn PD, Murphy SJ. Genderspecific response to isoflurane preconditioning in focal cerebral ischemia. J Cereb Blood Flow Metab. 2007;27:1377–1386.
- Petrea RE, Beiser AS, Seshadri S, Kelly-Hayes M, Kase CS, Wolf PA. Gender differences in stroke incidence and poststroke disability in the Framingham Heart Study. *Stroke*. 2009;40:1032–1037.

SUPPLEMENTAL MATERIAL

Data S1.

SUPPLEMENTAL METHODS

Data sources

Data were collected from two major hospital systems in Massachusetts, USA – Beth Israel Deaconess Medical Center (BIDMC) and Partners HealthCare network.

At BIDMC, patient data were retrieved from the Perioperative Information Management System (PIMS), the Anesthesia Information Management System (AIMS), Casemix, the Admission Discharge Transfer (ADT) database, the Miscellaneous (MISC) database, the Online Medical Record (OMR) database, and the Center for Clinical Computing (CCC) database for anesthesia billing. While anesthesia-related data such as intraoperative medication doses and physiologic information were stored in AIMS, surgical data such as surgical times and surgical service were taken from PIMS. General encounter information as well as International Classification of Diseases (ICD) codes were obtained from Casemix and the ADT database. Death dates were gathered from the MISC database. The OMR database contains information regarding preoperative medications, and the CCC database stores for anesthesia billing Current Procedural Terminology (CPT) codes of procedures.

At Partners HealthCare, anesthetic data were retrieved from AIMS, while demographic information and billing codes from the hospital electronic medical records were obtained from Partners' Research Patient Data Registry (RPDR), a centralized clinical data registry built for research purposes. Enterprise Performance Systems Inc. (EPSi), a financial and performance improvement planning system, contains data on admissions to all hospitals within the Partners HealthCare network in Boston and outlying cities.

All patient data from the aforementioned sources were combined into strictly deidentified datasets within the respective hospital network and subsequently appended to arrive at a single combined dataset.

Exclusion criteria

Exclusion criteria comprised age <18 years, American Society of Anesthesiologists (ASA) physical status classification of VI (brain death), or cardiac surgery. Patients undergoing cardiac surgery were excluded due to the common application of extracorporeal circulation corresponding with a unique risk profile for postoperative ischemic stroke.¹² We thus decided not to combine cardiac surgery patients with patients undergoing other types of surgery.

Exposure definition

Measurements of the end-tidal concentrations of sevoflurane, isoflurane, and desflurane were recorded as mean per minute by the anesthetic apparatus and stored in AIMS. Subsequently, minute-by-minute measurements were summarized as median throughout time of exposure to volatile anesthetics. All median doses were then brought to an equivalent minimum alveolar concentration (MAC, minimum alveolar concentration at 1 atmosphere that prevents movement in 50% of patients exposed to surgical incision) at the patient age of 40 years. Finally, each patient's MAC was adjusted for the respective patient age, considering that the MAC differs for

patients at different ages.¹³ In the analyses, we examined the incremental effect of intraoperative volatile anesthetics on postoperative ischemic stroke per 1-unit increase in MAC.

Covariate model

Analyses were adjusted for the following covariates: Patient factors included age, sex, body mass index (BMI), as well as comorbidities – the latter including ASA physical status classification, Charlson Comorbidity Index (CCI),³⁰ betablocker prescription within 28 days prior to surgery, and a patient history of ischemic stroke, patent foramen ovale (PFO) without closure,^{15,16} migraine,¹⁷ carotid artery stenosis, transient ischemic attack, chronic kidney disease, peripheral vascular disease, arterial hypertension, atrial fibrillation, valvular heart disease, dyslipidemia, smoking, cancer, and diabetes mellitus. For details on comorbidity definitions, see Table I. Surgical covariates comprised duration of surgery, work relative value units (RVUs, as a proxy for surgical complexity), ASA emergency surgery status, inpatient surgery, and surgical service, while anesthetic factors incorporated intraoperative hypotension (defined as minutes with mean arterial pressure (MAP) below 55 mmHg), use of neuraxial anesthesia, total amount of fluids and packed red blood cell (PRBC) units administered throughout the case, and total doses of shortand long-acting opioids (defined as oral morphine equivalents), non-depolarizing neuromuscular blocking agents (NMBA, expressed as multiples of NMBA dose needed to reduce twitch height by 95% (ED95)), propofol, and intraoperative vasopressors (defined as norepinephrine equivalents).

History of ischemic stroke, transient ischemic attack and patent foramen ovale (without closure) were considered positive if billed within any time prior to surgery. If not further specified, all other comorbidity variables had to be billed within one year before surgery to ensure currentness of covariate data. Variables were categorized in accordance with the linearity assumption: BMI, CCI, and PRBC units were categorized utilizing clinically reasonable cutoff points. Duration of surgery, work RVUs, fluids, intraoperative drug doses, and intraoperative hypotension were categorized into equally sized quintiles, respectively.

Medical record review

Relying on ICD-9/10 billing codes for the definition of postoperative ischemic stroke may result in falsely high or low outcome rates due to coding errors or site-specific coding practices. Thus, a medical record review was conducted in all patients with a positive outcome based on ICD-9/10 billing codes. At both sites, patient charts were studied to confirm or discard the billing-based outcome. Brain scan reports (magnetic resonance imaging or computed tomography), discharge summaries, and neurology consultation notes were considered in this review. The review itself was performed by an interdisciplinary team of research fellows led by a neurologist and an anesthesiologist, using methods that have previously been established and published by our group.^{15,16}

While reviewing the patient charts, the neurologic deficit caused by the stroke was measured by assessing the National Institute of Health Stroke Scale (NIHSS),²⁷ and stroke subtypes were classified according to the Oxfordshire Community Stroke Project (OCSP) classification.²⁶ In our review, a stroke was determined to be unclassifiable in the OCSP classification whenever a classification as lacunar or total anterior/ partial anterior/ posterior circulation stroke was not possible. This might be the case if the clinical presentation of the respective patient did not meet

the criteria for one distinct location, i.e. if neurology notes did not offer complete data regarding the clinical presentation. Additionally, a stroke could be marked as unclassifiable if radiology notes were missing or remained unclear about the exact vascular categorization according to the OCSP.

Supplemental sensitivity analyses

In addition to those mentioned in the main manuscript, more sensitivity analyses were performed to investigate the observed primary effect:

1) To account for missing follow-up data, a subgroup analysis was performed in patients with medical records available at the respective healthcare network for a minimum of 30 days after surgery.

According to Tsai et al.,²⁹ patients living further away from the index hospital, are less likely to be admitted to the same hospital again. Thus, we performed a sensitivity analysis including only patients residing within 20km from Boston.

- 2) We performed multiple imputation by chained equations to account for potential bias due to missing covariate data, and the primary analysis was repeated in the imputed study cohort.
- 3) All patients who died within 30 days after surgery were excluded to avoid competing risks regarding the primary outcome.
- 4) In a separate analysis, all patients undergoing neurosurgery were excluded.
- 5) Anticoagulant prescription within one month prior to surgery was added to the primary covariate model as additional confounder.
- 6) To account for repeat surgeries of individual patients within the timeframe of the study cohort, only the first surgery of a patient was considered for analysis.
- 7) Further sensitivity analyses were performed in subgroups of patients with atrial fibrillation, carotid artery stenosis, and previous ischemic stroke, respectively.
- As surgical positioning may impact risk of perioperative ischemic stroke, we tested the primary association for an interaction with surgical positioning (beach chair/ sitting position).⁴⁴
- 9) Finally, we tested the primary association for an interaction with menopause status to give credit to preclinical studies challenging the protective effect of volatile preconditioning in premenopausal mice.⁴⁵ Premenopausal status was defined as age <55 years in female patients.⁴⁶

SECONDARY ANALYSES

Transient ischemic attack within 30 days

610 (0.19%) patients had a billing diagnosis of TIA within 30 days after surgery. Higher doses of volatile anesthetics had a significant protective effect on incidence of TIA after surgery (aOR 0.35, 95% CI 0.25 to 0.49, p<0.001).

30-Day mortality

Among all patients included, 2232 (0.71%) died within 30 days after surgery. Patients receiving higher doses of volatile anesthetics showed significantly lower rates of all-cause mortality (aOR 0.48, 95% CI 0.41 to 0.56, p<0.001).

SUPPLEMENTAL SENSITIVITY ANALYSES

1) Missing follow-up data

Including only 267,237 patients (84.9%) with follow-up data to their respective healthcare network for at least 30 days after surgery, the primary finding was confirmed (aOR 0.50, 95% CI 0.41 to 0.61, p<0.001). The results were also robust among 145,123 patients residing within 20km from Boston (aOR 0.49, 95% CI 0.36 to 0.65, p<0.001).

2) Validation after multiple imputation

Overall, the 61,606 patients excluded for missing data regarding any covariate of our primary model were similar, except for rates of atrial fibrillation (patients with missing data 11.0% vs. patients without missing data 6.9%) and emergency surgery (12.8% vs. 4.5%, respectively). In a separate sensitivity analysis, we excluded patients with diagnosed atrial fibrillation and undergoing emergency surgery (n= 280,488). Conclusions derived from our primary analysis did not change (aOR 0.50, 95% CI 0.40 to 0.63, p<0.001).

We examined the pattern of missingness to assure that data was missing at random (MAR, Table II). For more demographic information on patients with vs. patients without missing data, please see Table III.

BMI was the covariate with the highest proportion of missing values (38,152, 10.1%), followed by work RVUs (17,334, 4.6%) and NMBA dose (14,816, 3.9%). The imputed cohort included all 61,606 (16.4%) cases with initially missing data.

When repeating the primary logistic regression in the imputed cohort (n=376,538), the finding stayed robust (aOR 0.51, 95% CI 0.42 to 0.61, p<0.001).

3) Exclusion of patients who died within 30 days after surgery

2232 patients (0.71%) died within 30 days after surgery. In the remaining cohort of 312,700 patients, results regarding the primary outcome stayed robust (aOR 0.48, 95% CI 0.40 to 0.59, p<0.001).

4) Exclusion of patients undergoing neurosurgery

Excluding all patients undergoing neurosurgery (n= 22,430), the conclusions derived from our primary analysis did not change (aOR 0.52, 95% CI 0.41 to 0.65, p<0.001).

5) Anticoagulant prescription prior to surgery

Additionally confounding for prescription of anticoagulants within 30 days prior to surgery did not significantly influence our findings (aOR 0.49, 95% CI 0.40 to 0.59, p<0.001).

6) Accounting for repeat surgeries

Considering only the first surgery per patient for analysis confirmed the primary finding in a subgroup of 222,329 patients with an ischemic stroke rate of 0.6% (aOR 0.55, 95% CI 0.44 to 0.70, p<0.001).

7) Comorbidity status

The dose-dependent protective effect of volatile anesthetics on postoperative ischemic stroke was substantiated in patients with atrial fibrillation (n= 21,755; aOR 0.47, 95% CI 0.30 to 0.72, p= 0.001), patients with carotid artery stenosis (n= 7655; aOR 0.54, 95% CI 0.37 to 0.79, p= 0.002), as well as patients with previous ischemic stroke (n=8996; aOR 0.51, 95% CI 0.39 to 0.65, p<0.001), respectively.

8) Surgical positioning

Among 128,752 patients with available information regarding surgical positioning, 5909 patients underwent surgery in either beach chair or sitting position. There was no significant interaction between volatile anesthetic dose and surgical positioning regarding postoperative ischemic stroke (p for interaction= 0.45).

9) Menopause status

92,845 women (29.5% of patients) aged <55 years were identified. There was no significant interaction between volatile anesthetic dose and menopause status regarding our primary outcome (p for interaction= 0.39).

EXPLORATORY ANALYSES

Inclusion of patients undergoing cardiac surgery

Additionally adjusting for intraoperative use of cardiopulmonary bypass, the primary analysis was repeated in an extended cohort including all patients undergoing cardiac surgery that had previously been excluded due to exclusion criteria. Subsequently, we tested the primary effect of volatile anesthetics on ischemic stroke for an interaction with cardiac surgery. Including all patients undergoing cardiac surgery (final cohort: n=323,426), we observed an outcome rate of 0.62% (2000 patients). In this cohort, volatile anesthetics were associated with a lower incidence of ischemic stroke (aOR 0.50, 95% CI 0.41 to 0.60, p<0.001). There was no significant interaction between volatile anesthetics and cardiac surgery regarding the primary outcome (p for interaction= 0.78).

Individual volatile agents iso-, sevo-, and desflurane

Among 49,432 patients receiving isoflurane or no volatile anesthetics, higher doses of isoflurane had a significant protective effect on ischemic stroke within 30 days after surgery (aOR 0.56, 95% CI 0.37 to 0.85, p=0.007). A similar observation was made in the sevoflurane group (n= 223,817; aOR 0.51, 95% CI 0.40 to 0.66, p<0.001). Among 41,007 patients receiving desflurane or no volatile gas, there was no significant effect (aOR 0.80, 95% CI 0.40 to 1.59, p=0.53), which might have been due to the smaller sample size and less degrees of freedom. When combining the multivariate confounder model into a propensity score and adjusting the logistic regression for the propensity score as a covariate among the same sample of patients, higher doses of desflurane were found to have a significant protective effect on ischemic stroke within 30 days after surgery (aOR 0.29, 95% CI 0.19 to 0.46, p<0.001).

Postoperative anticoagulation

A logistic regression model was built to assess volatile anesthetics for a potential dose-dependent association with postoperative anticoagulation.

81,036 patients (25.7%) received anticoagulants within 30 days after surgery. Patients with higher doses of volatile anesthetics were found to be less likely to receive anticoagulants within 30 days after surgery (aOR 0.95, 95% CI 0.92 to 0.98, p=0.002).

Item No	Recommendation	Page No
1	(<i>a</i>) Indicate the study's design with a commonly used term in the title or the abstract	1
	(<i>b</i>) Provide in the abstract an informative and balanced summary of what was done and what was found	1
2	Explain the scientific background and rationale for the investigation being reported	4
3	State specific objectives, including any prespecified hypotheses	4
4	Present key elements of study design early in the paper	5
5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	5; Supplement 1, p. 2
6	 (a) Cohort study—Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up Case-control study—Give the eligibility criteria, and the sources and methods of case ascertainment and control selection. Give the rationale for the choice of cases and 	5, Figure 1
	Item No 1 2 3 4 5 6	Item NoRecommendation1(a) Indicate the study's design with a commonly used term in the title or the abstract(b) Provide in the abstract an informative and balanced summary of what was done and what was found2Explain the scientific background and rationale for the investigation being reported3State specific objectives, including any prespecified hypotheses4Present key elements of study design early in the paper5Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection6(a) Cohort study—Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up Case-control study—Give the eligibility criteria, and the sources and methods of case ascertainment and control selection. Give the rationale for the choice of cases and

Data S2. STROBE Statement—checklist of items that should be included in reports of observational

		controls	
		Cross-sectional study—Give the eligibility criteria, and the	
		sources and methods of selection of participants	
		(b) Cohort study—For matched studies, give matching criteria	Not applicable
		and number of exposed and unexposed	
		Case-control study—For matched studies, give matching	
		criteria and the number of controls per case	
Variables	7	Clearly define all outcomes, exposures, predictors, potential	6-7;
		confounders, and effect modifiers. Give diagnostic criteria, if	Supplement 1, p. 2-
		applicable	3; Table I
Data sources/	8*	For each variable of interest, give sources of data and details of	5-6;
measurement		methods of assessment (measurement). Describe comparability	Supplement 1, p. 2-
		of assessment methods if there is more than one group	3
Bias	9	Describe any efforts to address potential sources of bias	7-9;
			Supplement 1, p. 3-
			4
Study size	10	Explain how the study size was arrived at	5, 11, Figure 1
Quantitative variables	11	Explain how quantitative variables were handled in the	Supplement 1, p. 3
		analyses. If applicable, describe which groupings were chosen	
		and why	
Statistical methods	12	(a) Describe all statistical methods, including those used to	6-10;
		control for confounding	Supplement 1, p. 3-
			4

(b) Describe any methods used to examine subgroups and	6-10;
interactions	Supplement 1, p. 3-
	4
(c) Explain how missing data were addressed	Supplement 1, p. 4,
	6, Tables II&III
(d) Cohort study—If applicable, explain how loss to follow-up	Not applicable
was addressed	
Case-control study-If applicable, explain how matching of	
cases and controls was addressed	
Cross-sectional study—If applicable, describe analytical	
methods taking account of sampling strategy	
(<u>e</u>) Describe any sensitivity analyses	7-9;
	Supplement 1, p. 3-
	4

Continued on next page

Results			
Participants	13*	(a) Report numbers of individuals at each stage of study-eg numbers	11, Figure 1
		potentially eligible, examined for eligibility, confirmed eligible, included in	
		the study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	11, Figure 1
		(c) Consider use of a flow diagram	Figure 1
Descriptive	14*	(a) Give characteristics of study participants (eg demographic, clinical,	11, Table 1;
data		social) and information on exposures and potential confounders	Supplement 1,
			Table IV
		(b) Indicate number of participants with missing data for each variable of	Figure 1;
		interest	Supplement 1,
			p. 6, Table II
		(c) Cohort study—Summarise follow-up time (eg, average and total	Not applicable
		amount)	
Outcome data	15*	Cohort study-Report numbers of outcome events or summary measures	11; Supplement
		over time	1, Figure I
		Case-control study-Report numbers in each exposure category, or	Not applicable
		summary measures of exposure	
		Cross-sectional study-Report numbers of outcome events or summary	Not applicable
		measures	
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted	11, Table 2;
		estimates and their precision (eg, 95% confidence interval). Make clear	Supplement 1,
		which confounders were adjusted for and why they were included	p. 3
		(b) Report category boundaries when continuous variables were categorized	Supplement 1,
			p. 3
		(c) If relevant, consider translating estimates of relative risk into absolute	12, Table 2
		risk for a meaningful time period	
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and	12-16, Tables
		sensitivity analyses	2&3;
			Supplement 1,
			p. 5-8
Discussion			1
Key results	18	Summarise key results with reference to study objectives	17
Limitations	19	Discuss limitations of the study, taking into account sources of potential	18-19
		bias or imprecision. Discuss both direction and magnitude of any potential	
		bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives,	17-19
		limitations, multiplicity of analyses, results from similar studies, and other	

		relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	18-19
Other information	on		
Funding	22	Give the source of funding and the role of the funders for the present study	21
		and, if applicable, for the original study on which the present article is based	

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

Table S1. Comorbidity and outcome definitions based on International Classification

of Diseases, Ninth/Tenth Revision (ICD-9/10) codes

Comorbidity	Code type	Code	Description
Arterial	ICD-9/ICD-10	401.X/I10.X	Essential hypertension
hypertension			
Atrial fibrillation	ICD-9/ICD-10	427.3X/I48.X	Atrial fibrillation and flutter
Carotid artery	ICD-9/ICD-10	433.1X/I65.2X	Occlusion and stenosis of carotid artery
stenosis	ICD-10	163.239	Cerebral infarction due to unspecified occlusion or stenosis
			of unspecified carotid arteries
Charlson Comor	bidity Index ³⁰		
Cancer,	ICD-9/ICD-10	140.X/C00.X	Malignant neoplasm of lip
including	ICD-9/ICD-10	141.X/C01.X	Malignant neoplasm of base of tongue
leukemia and	ICD-9/ICD-10	141.X/C02.X	Malignant neoplasm of other and unspecified parts of
lymphoma, and			tongue
metastatic	ICD-9/ICD-10	143.X/C03.X	Malignant neoplasm of gum
tumor	ICD-9/ICD-10	144.X/C04.X	Malignant neoplasm of floor of mouth
	ICD-10	C05.X	Malignant neoplasm of palate
	ICD-9/ICD-10	145.X/C06.X	Malignant neoplasm of other and unspecified parts of
			mouth
	ICD-10	C07.X	Malignant neoplasm of parotid gland
	ICD-9/ICD-10	142.X/C08.X	Malignant neoplasm of other and unspecified major salivary
			alands
	ICD-10	C09.X	Malignant neoplasm of tonsil
	ICD-9/ICD-10	146.X/C10.X	Malignant neoplasm of oropharynx
	ICD-9/ICD-10	147 X/C11 X	Malignant neoplasm of pasopharynx
	ICD-10	C12 X	Malignant neoplasm of pyriform sinus
	ICD-9/ICD-10	148 X/C13 X	Malignant neoplasm of hypopharynx
	ICD-9/ICD-10	149 X/C14 X	Malignant neoplasm of other and ill-defined sites in the lin
			oral cavity and pharvnx
	ICD-9/ICD-10	150.X/C15.X	Malignant neoplasm of esophagus
	ICD-9/ICD-10	151.X/C16.X	Malignant neoplasm of stomach
	ICD-9/ICD-10	152.X/C17.X	Malignant neoplasm of small intestine
	ICD-9/ICD-10	153.X/C18.X	Malignant neoplasm of colon
	ICD-9/ICD-10	154.X/C19.X	Malignant neoplasm of rectosigmoid junction
	ICD-9/ICD-10	154.X/C20.X	Malignant neoplasm of rectum
	ICD-9/ICD-10	154.X/C21.X	Malignant neoplasm of anus and anal canal
	ICD-9/ICD-10	155.X/C22.X	Malignant neoplasm of liver and intrahepatic bile ducts
	ICD-9/ICD-10	156.X/C23.X	Malignant neoplasm of gallbladder
	ICD-10	C24.X	Malignant neoplasm of other and unspecified parts of biliary
			tract
	ICD-9/ICD-10	157.X/C25.X	Malignant neoplasm of pancreas
	ICD-9/ICD-10	159.X/C26.X	Malignant neoplasm of other and ill-defined digestive
			organs
	ICD-9/ICD-10	160.X/C30.X	Malignant neoplasm of nasal cavity and middle ear
	ICD-9/ICD-10	160.X/C31.X	Malignant neoplasm of accessory sinuses
	ICD-9/ICD-10	161.X/C32.X	Malignant neoplasm of larynx
	ICD-9/ICD-10	162.X/C33.X	Malignant neoplasm of trachea
	ICD-9/ICD-10	162.X/C34.X	Malignant neoplasm of bronchus and lung
	ICD-10	C37.X	Malignant neoplasm of thymus

Comorbidity	Code type	Code	Description
-	ICD-9/ICD-10	170.X/C41.X	Malignant neoplasm of bone and articular cartilage of other
			and unspecified sites
	ICD-9/ICD-10	172.X/C43.X	Malignant melanoma of skin
	ICD-10	C45.X	Mesothelioma
	ICD-9/ICD-10	176.X/C46.X	Kaposi's sarkoma
	ICD-10	C47.X	Malignant neoplasm of peripheral nerves and autonomic
			nervous system
	ICD-9/ICD-10	158.X/C48.X	Malignant neoplasm of retroperitoneum and peritoneum
	ICD-9/ICD-10	171.X/C49.X	Malignant neoplasm of other connective and soft tissue
	ICD-9/ICD-10	174.X,	Malignant neoplasm of breast
		175.X/C50.X	
	ICD-10	C51.X	Malignant neoplasm of vulva
	ICD-10	C52.X	Malignant neoplasm of vagina
	ICD-9/ICD-10	180.X/C53.X	Malignant neoplasm of cervix uteri
	ICD-9/ICD-10	182.X/C54.X	Malignant neoplasm of corpus uteri
	ICD-9/ICD-10	179.X/C55.X	Malignant neoplasm of uterus, part unspecified
	ICD-9/ICD-10	183.X/C56.X	Malignant neoplasm of ovary
	ICD-9/ICD-10	184.X/C57.X	Malignant neoplasm of other and unspecified female genita
			organs
	ICD-9/ICD-10	181.X/C58.X	Malignant neoplasm of placenta
	ICD-9/ICD-10	187.X/C60.X	Malignant neoplasm of penis
	ICD-9/ICD-10	185.X/C61.X	Malignant neoplasm of prostate
	ICD-9/ICD-10	186.X/C62.X	Malignant neoplasm of testis
	ICD-9/ICD-10	187.X/C63.X	Malignant neoplasm of other and unspecified male genital
			organs
	ICD-9/ICD-10	189.X/C64.X	Malignant neoplasm of kidney, except renal pelvis
	ICD-10	C65.X	Malignant neoplasm of renal pelvis
	ICD-10	C66.X	Malignant neoplasm of ureter
	ICD-9/ICD-10	188.X/C67.X	Malignant neoplasm of bladder
	ICD-10	C68.X	Malignant neoplasm of other and unspecified urinary
			organs
	ICD-9/ICD-10	190.X/C69.X	Malignant neoplasm of eve and adnexa
	ICD-10	C70.X	Malignant neoplasm of meninges
	ICD-9/ICD-10	191.X/C71.X	Malignant neoplasm of brain
	ICD-9/ICD-10	192.X/C72.X	Malignant neoplasm of spinal cord, cranial nerves and othe
			parts of central nervous system
	ICD-9/ICD-10	193 X/C73 X	Malignant neoplasm of thyroid gland
	ICD-10	C74 X	Malignant neoplasm of adrenal gland
	ICD-9/ICD-10	194 X/C75 X	Malignant neoplasm of other endocrine glands and related
			structures
	ICD-9/ICD-10	195.X/C76 X	Malignant neoplasm of other and ill-defined sites
	ICD-9/ICD-10	201.X/C81 X	Hodgkin lymphoma
	ICD-10	C82.X	Follicular lymphoma
	ICD-10	C83.X	Non-follicular lymphoma
	ICD-10	C84 X	Mature T/NK-cell lymphomas
	ICD-10	C85 X	Other specified and unspecified types of non-Hodakin
		00000	lymphoma
	ICD-10	C88 X	Malignant immunoproliferative diseases and certain other
		000.7	R-cell lymphomas
		203 X/C90 X	Multiple myeloma and malignant plasma cell peoplasme
		200.X/000.X	l vmnhoid leukemia
		207.7001.7 205 X/C02 X	Myeloid leukemia
		200.7/092.7 206 X/C02 V	Monocytic laukemia
		200.7/093.7 207 V/C01 V	Ather laukemias of specified cell type
		201.7/034.7 208 X/CQ5 Y	Leukemias of upspecified cell type
		200.7/033.7	Louvernias of anshedined cell type

Comorbidity	Code type	Code	Description
	ICD-10	C96.X	Other and unspecified malignant neoplasms of lymphoid,
		007.1/	hematopoletic and related tissue
	ICD-10	C97.X	Malignant neoplasms of independent (primary) multiple
		000 0	Sites
	ICD-9	238.6	Neoplasm of uncertain benavior of plasma cells
		200.X	Cymphosarcoma and reliculosarcoma
	100-9	202.8	
		164 X	Nalignant peoplasm of thymus, heart, and mediastinum
		104.X 163 X	Malignant neoplasm of plaura
		165 X	Malignant neoplasm of other and ill-defined sites within the
	100-0	100.7	respiratory system and intrathoracic organs
	ICD-9/ICD-10	196 X/C77 X	Secondary and unspecified malignant neoplasm of lymph
		100.7071.70	nodes of head, face and neck
	ICD-9/ICD-10	197.X/C78.X	Secondary malignant neoplasm of respiratory and digestive
			organs
	ICD-9/ICD-10	198.X/C79.X	Secondary malignant neoplasm of other and unspecified
			sites
	ICD-9/ICD-10	199.X/C80.X	Disseminated malignant neoplasm, unspecified
Cerebral	ICD-9/ICD-10	435.X/G45.X	TIA and related syndromes
vascular	ICD-10	G46.X	Vascular syndromes of brain in cerebrovascular diseases
disease	ICD-9/ICD-10	362.34/H34.0X	Transient retinal artery occlusion
	ICD-9/ICD-10	430/I60.X	Nontraumatic subarachnoid hemorrhage
	ICD-9/ICD-10	431/I61.X	Nontraumatic intracerebral hemorrhage
	ICD-9/ICD-10	432.X/I62.X	Other and unspecified nontraumatic intracranial
			hemorrhage
	ICD-10	l63.X	Cerebral infarction
	ICD-10	l64.X	Stroke, not specified as infarction or bleeding
	ICD-9/ICD-10	433.X/I65.X	Occlusion and stenosis of precerebral arteries, not resultin
			in cerebral infarction
	ICD-9/ICD-10	434.X/I66.X	Occlusion and stenosis of cerebral arteries, not resulting in
			cerebral infarction
	ICD-9/ICD-10	437.X/167.X	Other cerebrovascular diseases
			Cerebrovascular disorders in diseases classified elsewhere
		438.X/169.X	Sequelae of cerebrovascular disease
Chronic		430.X	Acute but ill-defined cerebrovascular disease
pulmonary	ICD-9/ICD-10	410.8/127.88	defect)
disease	ICD-9/ICD-10	416.9/I27.9X	Pulmonary heart disease, unspecified
	ICD-9/ICD-10	490/J40.X	Bronchitis, not specified as acute or chronic
	ICD-9/ICD-10	491.X/J41.X	Simple and mucopurulent chronic bronchitis
	ICD-9/ICD-10	491.X/J42.X	Unspecified chronic bronchitis
	ICD-9/ICD-10	492.X/J43.X	Emphysema
	ICD-9/ICD-10	496.X/J44.X	Other chronic obstructive pulmonary disease
	ICD-9/ICD-10	493.X/J45.X	Asthma
	ICD-10	J46.X	Status asthmaticus
	ICD-9/ICD-10	494.X/J47.X	Bronchiectasis
	ICD-9/ICD-10	500.X/J60.X	Coalworker's pneumoconiosis
	ICD-9/ICD-10	501.X/J61.X	Pneumoconiosis due to asbestos and other mineral fibers
	ICD-9/ICD-10	502.X/J62.X	Pneumoconiosis due to dust containing silica
	ICD-9/ICD-10	503.X/J63.X	Pneumoconiosis due to other inorganic dusts
	ICD-9/ICD-10	505.X/J64.X	Unspecified pneumoconiosis
	ICD-10	J65.X	Pneumoconiosis associated with tuberculosis
	ICD-10	J66.X	Airway disease due to specific organic dust (e.g.

Comorbidity	Code type	Code	Description
	ICD-9/ICD-10	495.X/J67.X	Allergic alveolitis/hypersensitivity pneumonitis due to
			organic dust (e.g. Farmer's lung, bagassosis)
	ICD-9/ICD-10	506.4/J68.4X	Chronic respiratory conditions due to chemicals, gases,
			fumes and vapors
	ICD-9/ICD-10	508.1/J70.1X	Chronic and other pulmonary manifestations due to
			radiation
	ICD-10	J70.3X	Chronic drug-induced interstitial lung disorders
	ICD-9	508.8	Respiratory conditions due to other specified external
			agents
	ICD-9	504.X	Pneumonopathy due to inhalation of other dust
Congestive	ICD-9/ICD-10	398.91/I09.9X	Rheumatic heart disease, unspecified
heart failure	ICD-9/ICD-10	402.01,402.11,4	Hypertensive heart disease with heart failure
		02.91/I11.0X	
	ICD-9/ICD-10	404.01,404.11,4	Hypertensive heart and chronic kidney disease with heart
		04.91/I13.0X	failure and stage 1 through stage 4 chronic kidney disease,
			or unspecified chronic kidney disease
	ICD-9/ICD-10	404.03,404.13,4	Hypertensive heart and chronic kidney disease with heart
		04.93/I13.2X	failure and with stage 5 chronic kidney disease, or end
			stage renal disease
	ICD-10	I25.5X	Ischemic cardiomyopathy
	ICD-10	I42.0X	Dilated cardiomyopathy
	ICD-10	I42.5X	Other restrictive cardiomyopathy
	ICD-9/ICD-10	425.5/I42.6X	Alcoholic cardiomyopathy
	ICD-10	I42.7X	Cardiomyopathy due to drug and external agent
	ICD-9/ICD-10	425.4/I42.8X	Other cardiomyopathies
	ICD-9	425.7	Nutritional and metabolic cardiomyopathy
	ICD-9/ICD-10	425.9/I42.9X	Cardiomyopathy, unspecified
	ICD-9/ICD-10	425.8/I43.X	Cardiomyopathy in diseases classified elsewhere
	ICD-9/ICD-10	428.X/I50.X	Heart failure (LV/systolic/diastolic/combined/etc)
	_ ICD-10	P29.0X	Neonatal cardiac failure
Dementia	ICD-10	F00.X	Dementia in Alzheimer's disease
		FU1.X	
		294.1/FU2.X	Dementia in diseases classified elsewhere
			Delirium in demontio
		FU3.1A	
		G30.A G31.3V	Alzheimer's ulsease Other degenerative diseases of the nervous system
	100-10	G31.3A	unspecified
	ICD-9	290.X	Senile and presenile organic psychotic conditions
	ICD-9/ICD-10	331.2/G31.1	Senile degeneration of brain, not elsewhere classified
Diabetes	ICD-10	E10.0X	Type 1 DM
mellitus with	ICD-10	E10.1X	Type 1 DM with ketoacidosis
and without	ICD-10	E10.6X	Type 1 DM with other specified complications
chronic	ICD-10	E10.8X	Type 1 DM with unspecified complications
complications	ICD-10	E10.9X	Type 1 DM without complications
	ICD-10	E11.0X	Type 2 DM with hyperosmolarity
	ICD-10	E11.1X	Type 2 DM with hyperosmolarity with coma
	ICD-10	E11.6X	Type 2 DM with other specified complications
	ICD-10	E11.8X	Type 2 DM with unspecified complications
	ICD-10	E11.9X	Type 2 DM without complications
	ICD-10	E12.0X	DM associated with malnutrition
	ICD-10	E12.1X	DM associated with malnutrition with coma
	ICD-10	E12.6X	DM associated with malnutrition with other specified
			complications
		Ε12.8λ	complications

Comorbidity	Code type	Code	Description
	ICD-10	E12.9X	DM associated with malnutrition without complications
	ICD-10	E13.0X	Other specified DM with hyperosmolarity
	ICD-10	E13.1X	Other specified DM with ketoacidosis
	ICD-10	E13.6X	Other specified DM with other specified complications
	ICD-10	E13.8X	Other specified DM with unspecified complications
	ICD-10	E13.9X	Other specified DM without complications
	ICD-10	E14.0X	DM, not elsewhere classified, with coma
	ICD-10	E14.1X	DM, not elsewhere classified, with ketoacidosis
	ICD-9/ICD-10	250.8/E14.6X	Unspecified DM with other specified complications
	ICD-9/ICD-10	250 9/E14 8X	Unspecified DM with other specified complications
	ICD-10	F14 9X	DM not elsewhere classified without complications
	ICD-9	250 1	DM with ketoacidosis
	ICD-9	250.0	DM without complications
	ICD-9	250.2	DM with hyperosmolarity
	ICD-9	250.3	DM with other coma
	ICD-10	E10.2X	Type 1 DM with kidney complications
	ICD-10	E10.2X	Type 1 DM with onbthalmic complications
	ICD-10	E10.0X	Type 1 DM with neurological complications
	ICD-10	E10.4X	Type 1 DM with circulatory complications
	ICD-10	E10.3X	Type 1 DM with multiple complications
		E10.7X	Type 2 DM with kidney complications
		E11.2X	Type 2 DM with ophthalmic complications
			Type 2 DM with neurological complications
		E11.47	Type 2 DM with circulatory complications
			Type 2 DM with multiple complications
			DM associated with malnutrition with renal complications
			DM associated with mainutilition with renal complications
	100-10	E12.3A	
			Complications
	100-10	L12.4A	
	ICD-10	E12.5X	DM associated with malnutrition with peripheral vascular
		E12.0/(complications
	ICD-10	E12.7X	DM associated with malnutrition with multiple complications
	ICD-10	F13 2X	Other specified DM with kidney complications
	ICD-10	E13.3X	Other specified DM with ophthalmic complications
	ICD-10	E13.4X	Other specified DM with neurological complications
	ICD-10	E13.5X	Other specified DM with circulatory complications
	ICD-10	E13.7X	Other specified DM with multiple complications
	ICD-10	E14 2X	DM not elsewhere specified with renal complications
	ICD-10	E11.2X	DM, not elsewhere specified, with onhthalmic complications
	ICD-10	F14 4X	DM, not elsewhere specified, with reurological
			complications
	ICD-10	E14.5X	DM, not elsewhere specified, with peripheral vascular
			complications
	ICD-10	E14.7X	DM, not elsewhere specified, with multiple complications
	ICD-9	250.4	Diabetes with renal complications
	ICD-9	250.5	Diabetes with ophthalmic complications
	ICD-9	250.6	Diabetes with neurological complications
	ICD-9	250.7	Diabetes with peripheral circulatory disorders
Hemi- and	ICD-10	G04.1X	Tropical spastic paraplegia
paraplegia	ICD-10	G11.4X	Hereditary spastic paraplegia
	ICD-10	G80.1X	Spastic diplegic cerebral palsy
	ICD-10	G80.2X	Spastic hemiplegic cerebral palsy
	ICD-10	G81.X	Flaccid hemiplegia
	ICD-9/ICD-10	344.0X/G82.X	Paraplegia (paraparesis) and quadriplegia (quadriparesis)
	ICD-9/ICD-10	344.2X/G83.0X	Diplegia of upper limbs

Comorbidity	Code type	Code	Description
	ICD-9/ICD-10	344.3X/G83.1X	Monoplegia of lower limb
	ICD-9/ICD-10	344.4X/G83.2X	Monoplegia of upper limb
	ICD-9/ICD-10	344.5X/G83.3X	Monoplegia, unspecified
	ICD-9/ICD-10	344.6X/G83.4X	Cauda equina syndrome
	ICD-9/ICD-10	344.9/G83.9X	Paralytic syndrome, unspecified
	ICD-9	344.1	Paraplegia, unspecified
	ICD-9	342.X	Hemiplegia, hemiparesis
	ICD-9	343.X	Infantile cerebral palsy
HIV	ICD-9/ICD-10	042.X/B20.X	HIV disease resulting in infectious and parasitic disease
	ICD-9/ICD-10	042.X/B21.X	HIV disease resulting in malignant neoplasms
	ICD-9/ICD-10	043.X/B22.X	HIV disease resulting in other specified diseases
	ICD-9/ICD-10	044.X/B24.X	Unspecified HIV disease
Liver disease	ICD-10	B18.X	Chronic viral hepatitis
	ICD-9/ICD-10	571.0/K70.0X	Alcoholic fatty liver
	ICD-10	K70.2X	Alcoholic fibrosis and sclerosis of liver
	ICD-9/ICD-10	571.2/K70.3X	Alcoholic cirrhosis of liver
	ICD-10	K70.9X	Alcoholic liver disease, unspecified
	ICD-10	K71.3X	Toxic liver disease with chronic persistent hepatitis
	ICD-10	K71.4X	Toxic liver disease with chronic lobular hepatitis
	ICD-10	K71.5X	Toxic liver disease with chronic active hepatitis
	ICD-10	K71.7X	Toxic liver disease with fibrosis and cirrhosis of liver
	ICD-9/ICD-10	571.4/K73.X	Chronic hepatitis, not elsewhere classified
	ICD-9/ICD-10	571.5/K74.X	Fibrosis and cirrhosis of liver
	ICD-10	K/6.0X	Fatty (change of) liver, not elsewhere classified
	ICD-9/ICD-10	5/0.X/K/6.2X	Central hemorrhagic necrosis of liver
	ICD-9/ICD-10	5/3.4/K/6.3X	Infarction of liver
	ICD-10	K/6.4X	Peliosis hepatis
		5/3.8/K/6.8X	Other specified diseases of liver
	ICD-9/ICD-10	573.9, 571.9/K76.9X	Liver disease, unspecified
	ICD-9/ICD-10	V42.7/Z94.4X	Liver transplant status
	ICD-9	070.22	Chronic viral hepatitis B with hepatic coma without hepatitis delta
	ICD-9	070.23	Chronic viral hepatitis B with hepatic coma with hepatitis
		070 32	Chronic viral benatitis B without delta-agent
	ICD-9	070.32	Chronic viral hepatitis B with delta-agent
		070.44	Chronic viral hepatitis C with hepatic coma
		070.54	Chronic viral hepatitis C without hepatic coma
	ICD-9	070.6	Unspecified viral hepatitis with hepatic coma
	ICD-9	070.9	Unspecified viral hepatitis without mention of hepatic coma
	ICD-9	573.3	Hepatitis, unspecified
	ICD-9	571.6	Primary biliary cirrhosis
	ICD-9	572.x	Liver abscess and sequelae of chronic liver disease
	ICD-9/ICD-10	456.0/185.0	Esophageal varices with bleeding
	ICD-9/ICD-10	456.1/185.9	Esophageal varices without mention of bleeding
	ICD-9/ICD-10	456.2/198.2	Esophageal varices in diseases classified elsewhere
	ICD-10	186.4	Gastric varices
	ICD-10	K70.4	Alcoholic hepatic failure
	ICD-10	K71.1	Toxic liver disease with hepatic necrosis
	ICD-10	K72.1	Chronic hepatic failure
	ICD-10	K72.9	Hepatic failure, unspecified
	ICD-10	K76.5	Hepatic veno-occlusive disease
	ICD-10	K76.6	Portal hypertension
	ICD-10	K76.7	Hepatorenal syndrome
	ICD-9/ICD-10	410.X/I21.X	Acute myocardial infarction

Comorbidity	Code type	Code	Description
Myocardial	ICD-10	I22.X	Recurring myocardial infarction
infarction			
	ICD-9/ICD-10	412.X/I25.2X	Old/healed myocardial infarction
Peptic ulcer	ICD-9/ICD-10	531.X/K25.X	Acute gastric ulcer with hemorrhage
disease	ICD-9/ICD-10	532.X/K26.X	Acute duodenal ulcer with hemorrhage
	ICD-9/ICD-10	533.X/K27.X	Acute peptic ulcer, site unspecified, with hemorrhage
	ICD-9/ICD-10	534.X/K28.X	Acute gastrojejunal ulcer with hemorrhage
Peripheral	- ICD-9/ICD-10	440.X/I70.X	Atherosclerosis
vascular	ICD-9/ICD-10	441.X/I71.X	Aortic aneurysm and dissection
disease	ICD-9/ICD-10	443.1/173.1	Thromboangiitis obliterans (Buerger's disease)
	ICD-9/ICD-10	443 8X/I73 8X	Other specified peripheral vascular diseases
	ICD-9/ICD-10	443 9/173 9	Perinheral vascular disease unspecified
	ICD-9/ICD-10	447 1/177 1	Stricture of artery
	ICD-10	179 0X	Aneurysm of aorta in diseases classified elsewhere
	ICD-10	179 2X	Peripheral angionathy
	ICD-9/ICD-10	557 1/K55 1X	Chronic vascular disorders of intestine
	ICD-10	K55 8X	Other vascular disorders of intestine
	ICD-9/ICD-10	557.9/K55.9X	Vascular disorders of intestine, unspecified
	ICD-9/ICD-10	V43 4/795 8X	Presence of other cardiac and vascular implants and grafts
	ICD-10	Z95.9X	Presence of cardiac and vascular implant and graft.
			unspecified
	ICD-9	442.X	Other aneurysm
	ICD-9	443.2X	Other arterial dissection
Renal disease	ICD-9/ICD-10	403.01.403.11.4	Hypertensive chronic kidney disease with stage 5 chronic
		03.91/l12.0X	kidnev disease or end stage renal disease
	ICD-9/ICD-10	404.02.404.12.4	Hypertensive heart and chronic kidney disease without
		04.92/I13.1X	heart failure
	ICD-10	N03.2X	Chronic nephritic syndrome with diffuse membranous
			glomerulonephritis
	ICD-10	N03.3X	Chronic nephritic syndrome with diffuse mesangial
			proliferative glomerulonephritis
	ICD-10	N03.4X	Chronic nephritic syndrome with diffuse endocapillary
			proliferative glomerulonephritis
	ICD-10	N03.5X	Chronic nephritic syndrome with diffuse mesangiocapillary
			glomerulonephritis
	ICD-10	N03.6X	Chronic nephritic syndrome with dense deposit disease
	ICD-10	N03.7X	Chronic nephritic syndrome with diffuse crescentic
			glomerulonephritis
	ICD-10	N05.2X	Unspecified nephritic syndrome with diffuse membranous
			glomerulonephritis
	ICD-10	N05.3X	Unspecified nephritic syndrome with diffuse mesangial
			proliferative glomerulonephritis
	ICD-10	N05.4X	Unspecified nephritic syndrome with diffuse endocapillary
			proliterative glomerulonephritis
	ICD-10	N05.6X	Unspecified nephritic syndrome with dense deposit disease
	ICD-10	NU5./X	Unspecified nephritic syndrome with diffuse crescentic
			Unronic klaney alsease
		500.X/N19.X	Unspecified kidney failure
			Disorders resulting from impaired renal tubular function
		V30.X/Z49.UX	Encounter for care involving renal dialysis
		249.1X 740.2V	Extracorporal nemodialysis
		249.2A	Other hemoularysis Kidnov transplant status
		V42.U/294.UA 700 2V	Nulley italispidit status Dependence on renal dialusis
		299.2A	Dependence on renal dialysis
	1CD-9	V43. I	Postsurgical renal dialysis status

Comorbidity	Code type	Code	Description
	ICD-9	404.03,404.13,4	Hypertensive heart and chronic kidney disease with heart
		04.93	failure
	ICD-9	582.X	Chronic glomerulonephritis
	ICD-9	583.0-583.7	Nephritis and nephropathy
	ICD-9	585.X	Chronic kidney failure
Rheumatic	ICD-9/ICD-10	714.0,	Rheumatoid arthritis with rheumatoid factor
disease		/14.1/M05.X	
	ICD-10	MU6.X	Other meumatoid arthritis
		M31.5X	Giant cell arteritis with polymyaigia rheumatica
		710.0/M32.X	Systemic lupus erythematodes
		7 10.3/1VI33.A	Svetemie seleresie
		/ 10. 1/1034.A M25 1	Other overlap syndromes
		725 X/M25 2X	Polymyalgia rhoumatica
	ICD-10	M36 0X	Polymyalgia medinalica Dermato(poly)myositis in peoplastic disease
		446 5	Giant cell arteritis (temporal arteritis)
		714.8	Other specified inflammatory polyarthronathies
	ICD-9	710.2	Sicca syndrome
Chronic kidney	ICD-9/ICD-10	585 X/N18 X	Chronic kidney disease
disease	ICD-9/ICD-10	586 X/N19 X	Renal failure unspecified
Dyslipidemia	ICD-9	272 X	Dyslinidemia
Dyshpidernia	ICD-10	E72.X	Disorders of lipoprotein metabolism and other lipidemias
Ischemic	ICD-9/ICD-10	433 X1/I63 X	Occlusion and stenosis of precerebral arteries with cerebral
stroke		100.7(1/100.7(infarction
	ICD-9	434.X1	Occlusion of cerebral arteries with cerebral infarction
	ICD-9/ICD-10	437.1/167.81.	Other generalized ischemic cerebrovascular disease
		167.89	j
	ICD-9/ICD-10	437.9/167.9	Unspecified cerebrovascular disease
Migraine	ICD-9/ICD-10	346.X/G43.X	Migraine
Patent foramen			
ovale	ICD-9/ICD-10	745.5/Q21.1	Atrial septal defect
Atrial septal	ICD-9	35.51	Repair of atrial septal defect with prosthesis, open
defect closure			technique
	ICD-9	35.52	Repair of atrial septal defect with prosthesis, closed
			technique
	ICD-9	35.61	Repair of atrial septal defect with tissue graft
	ICD-9	35.71	Other and unspecified repair of atrial septal defect
	CPT	33641	Repair atrial septal defect, secundum, with cardiopulmonary
	ODT	00047	bypass, with or without patch
	CPT	33647	Repair of atrial septal defect and ventricular septal defect,
	CDT	22660	With direct of patch closure Repair of incomplete or partial atriaventriaular canal (actium
	CFT	33000	primum atrial contal defect), with ar without atriaventricular
			valve repair
	CPT	93580	Percutaneous transcatheter closure of concenital interatrial
		00000	communication (i.e. Fontan fenestration atrial sental
			defect) with implant
Perinheral	ICD-9/ICD-10	440 2 170 2	Perinheral arterial disease
vascular	ICD-9/ICD-10	440.3 170.3	Atherosclerosis of bypass graft of the extremities
disease		170 5 170 6	Autorobolologie of bypass gran of the extremited
		170 7	
	ICD-9/ICD-10	440.4 170 92	Chronic total occlusion of artery of the extremities
	ICD-9	443.9	Peripheral vascular disease, unspecified
Smokina	ICD-9/ICD-10	305.1/ F17.X	Nicotine dependence
e	ICD-9/ICD-10	V15.82/ Z87.891	Personal history of nicotine dependence
	ICD-9	435.X	Transient ischemic attack
	-		

Comorbidity	Code type	Code	Description
Transient	ICD-10	G45.0	Vertebro-basilar artery syndrome
ischemic attack	ICD-10	G45.1	Carotid artery syndrome (hemispheric)
	ICD-10	G45.8	Other transient cerebral ischemic attacks and related
			syndromes
Valvular heart	ICD-9/ICD-10	394.X/I05.X	Rheumatic mitral valve disease
disease	ICD-9/ICD-10	395.X/I06.X	Rheumatic aortic valve disease
	ICD-9/ICD-10	397.X/I07.X	Rheumatic tricuspid valve disease
	ICD-9/ICD-10	396.X/I08.X	Multiple valve disease
	ICD-9/ICD-10	424.0/I34.X	Nonrheumatic mitral valve disorders
	ICD-9/ICD-10	424.1/I35.X	Nonrheumatic aortic valve disorders
	ICD-9/ICD-10	424.2/I36.X	Nonrheumatic tricuspid valve disorders
	ICD-9/ICD-10	424.3/I37.X	Nonrheumatic pulmonary valve disorders

ICD-9/10, International Classification of Diseases, Ninth/Tenth Revision; CPT, Current Procedural Terminology.

					Pat	ttern*					
Cases	1	2	3	4	5	6	7	8	9	10	#
											missing
84%	1	1	1	1	1	1	1	1	1	1	318,769
6%	1	1	1	1	1	1	1	1	1	0	21,814
4%	1	1	1	1	1	1	1	1	0	1	15,147
3%	1	1	1	1	1	1	1	0	1	0	10,945
1%	1	1	1	1	1	1	0	1	1	1	3837
<1%	1	1	1	1	1	0	1	0	1	0	2274
<1%	1	1	1	0	1	1	1	1	1	1	1781
<1%	1	1	1	1	0	1	1	1	1	1	1443
<1%	1	1	1	1	1	1	1	1	0	0	902
<1%	1	1	1	1	1	1	1	0	0	0	777
<1%	1	1	1	1	0	1	1	1	1	0	614
<1%	1	1	0	1	1	1	1	1	1	1	478
<1%	1	1	1	1	0	1	1	0	1	0	300
<1%	1	1	1	1	1	0	1	0	1	1	211
<1%	1	1	1	1	1	1	0	1	0	1	204
<1%	1	1	1	1	1	1	0	1	1	0	130
<1%	1	1	1	0	1	0	1	0	1	0	128
<1%	1	1	1	1	0	1	1	1	0	1	126
<1%	1	1	1	0	1	1	1	1	1	0	121
<1%	1	0	1	0	1	1	1	1	0	1	101

Table S2. Distribution and patterns of missing data before multiple imputation

Table S2 displays the 20 most common distributions of missing data. Data was extracted using *misstable pattern* command on Stata. 1 displays complete information regarding the respective variable, while 0 represents missing information.

* Missing variable with corresponding numbers:

- 1 Intraoperative hypotension
- 2 ASA emergency surgery status
- 3 Surgical service
- 4 ASA physical status classification
- 5 Duration of surgery
- 6 Intraoperative vasopressor dose
- 7 Inpatient surgery
- 8 NMBA dose
- 9 Work RVUs
- 10 BMI

ASA, American Society of Anesthesiologists; NMBA, neuromuscular blocking agent; RVUs, relative value units; BMI, body mass index.

Characteristics	No missing data (n= 314,932)	Missing data (n= 61,606)
Ischemic stroke within 30 postoperative days	1957 (0.6%)	561 (0.9%)
Demographics		
Age, years	53.8 ± 16.5	55.1 ± 17.5
Sex, male	138,756 (44.1%)	30,252 (49.1%)
Body Mass Index, kg/m ²	28.4 ± 6.9	27.9 ± 6.7
Comorbidities*		
Arterial Hypertension	126,779 (40.3%)	26,429 (42.9%)
Atrial Fibrillation	21,755 (6.9%)	6777 (11.0%)
Carotid Stenosis	7655 (2.4%)	1520 (2.5%)
Chronic Kidney Disease	20,539 (6.5%)	6124 (9.9%)
Diabetes	46,181 (14.7%)	12,038 (19.5%)
Dyslipidemia	97,688 (31.0%)	18,800 (30.5%)
Ischemic Stroke	8996 (2.9%)	2555 (4.1%)
Malignancy	92,690 (29.4%)	15,229 (24.7%)
Migraine	11,460 (3.6%)	1515 (2.5%)
Patent Foramen Ovale without Closure	2902 (0.9%)	610 (1.0%)
Peripheral Vascular Disease	12,525 (4.0%)	4284 (7.0%)
Smoking	52,485 (16.7%)	9217 (15.0%)
Transient Ischemic Attack	5090 (1.6%)	1257 (2.0%)
Valvular Heart Disease	27,411 (8.7%)	6803 (11.0%)
Betablocker Prescription within 28 Days Prior	45,438 (14.4%)	7327 (11.9%)
Charlson Comorbidity Index ³⁰	1 (0, 3)	1 (0, 3)
ASA† Physical Status	2 (2, 3)	2 (2, 3)
Surgical Factors		
Emergency Surgery	14,176 (4.5%)	7852 (12.8%)
Inpatient Surgery	201,819 (64.1%)	39,579 (64.2%)
Duration of Surgery, minutes	155 ± 108	144 ± 111
Work Relative Value Units	14.7 ± 9.9	13.6 ± 9.8
Surgical Service		
Burn	1998 (0.6%)	297 /0.5%)
Emergent-Urgent	10,885 (3.5%)	2960 (4.9%)
General	57,859 (18.4%)	8542 (14.0%)
Gynecology/ Obstetrics	31,233 (9.9%)	4041 (6.6%)
Neurosurgery	22,430 (7.1%)	3838 (6.3%)
Oral/ Maxillofacial	3304 (1.1%)	562 (0.9%)
Orthopedic	72,780 (23.1%)	12,366 (20.3%)

Table S3. Characteristics of patients by missing data status

Characteristics	No missing data (n= 314.932)	Missing data (n= 61.606)
Other (Dermatology, etc.)	4521 (1.4%)	1095 (1.8%)
Otolaryngology	8817 (2.8%)	1099 (1.8%)
Plastic	18,735 (6.0%)	4870 (8.0%)
Radiology	1799 (0.6%)	374 (0.6%)
Surgical Oncology	15,022 (4.8%)	686 (1.1%)
Thoracic	20,084 (6.4%)	4934 (8.1%)
Transplant	5727 (1.8%)	1928 (3.2%)
Urology	22,235 (7.1%)	7913 (13.0%)
Vascular	10,812 (3.4%)	4210 (6.9%)
Anesthetic Factors		
Use of Volatile Anesthetic	298,505 (94.8%)	58,067 (94.3%)
MAC [†] of Volatile Anesthetic	0.72 ± 0.35	0.69 ± 0.35
MAC [†] of Nitrous Oxide	0.06 (0, 0.40)	0.03 (0, 0.40)
Total Opioid Dose (Oral Morphine		
Equivalents)	51.0 (31.3, 79.5)	50.0 (25.0, 77.5)
Total Propofol Dose, mg	200 (150, 260)	200 (140, 250)
Total Neuromuscular Blocking Agent ED95†		
Dose	1.87 (0, 3.08)	1.28 (0, 2.82)
Total Vasopressor Dose, mg (Norepinephrine		
Equivalents)	0.01 (0, 0.11)	0 (0, 0.09)
Total Fluid Volume Administered, ml	2000 (1000, 3000)	2000 (1250, 3400)
Administration of Packed Red Blood Cells	9259 (2.9%)	4163 (6.8%)
Neuraxial Anesthesia	10,336 (3.3%)	977 (1.6%)
Minutes with MAP [†] <55 mmHg	0 (0, 2)	0 (0, 3)

* For comorbidity definitions, refer to Table S1.

† ASA, American Society of Anesthesiologists; MAC, minimum alveolar concentration; ED95, median effective dose required to achieve a 95% reduction in maximal twitch response from baseline; MAP, mean arterial pressure.

Values provided as frequency (prevalence in %), mean \pm SD, or median [IQR (25th-75th percentile), values separated by comma].

	р
Demographics	
Age, years	0.69
Sex, female	0.066
Body Mass Index, kg/m ²	
18.5-24.9	0.052
25-29.9	0.098
30-34.9	0.024
>35	0.67
Comorbidities*	
Arterial Hypertension	0.64
Atrial Fibrillation	0.41
Carotid Stenosis	< 0.001
Chronic Kidney Disease	< 0.001
Diabetes	0.003
Dyslipidemia	0.029
Ischemic Stroke	< 0.001
Malignancy	< 0.001
Migraine	0.49
Patent Foramen Ovale without Closure	0.012
Peripheral Vascular Disease	< 0.001
Smoking	0.002
Transient Ischemic Attack	0.13
Valvular Heart Disease	< 0.001
Betablocker Prescription within 28 Days Prior	< 0.001
Charlson Comorbidity Index ³⁰	
1-2	< 0.001
3	< 0.001
4-7	< 0.001
8-19	< 0.001
20-26	0.29
ASA† Physical Status	0.008
Surgical Factors	
Emergency Surgery	< 0.001
Inpatient Surgery	< 0.001
Duration of Surgery, minutes	
Quintile 2	0.97
Quintile 3	0.34
Quintile 4	0.054
Quintile 5	0.74

Table S4. P-values for all covariates in the primary analysis

Characteristics	р
Quintile 4	< 0.001
Quintile 5	< 0.001
Total Vasopressor Dose, mg (Norepinephrine Equivalents)	
Quintile 2	0.82
Quintile 3	0.008
Quintile 4	0.002
Quintile 5	< 0.001
Total Fluid Volume Administered, ml	
Quintile 2	0.034
Quintile 3	< 0.001
Quintile 4	< 0.001
Quintile 5	< 0.001
Administration of Packed Red Blood Cells	
>0	0.007
>1	0.48
>2	0.034
Neuraxial Anesthesia	0.46
Minutes with MAP ⁺ <55 mmHg	
Quintile 2‡	-
Quintile 3	0.62
Quintile 4	0.024
Quintile 5	0.23

* For comorbidity definitions, refer to Table S1.

† ASA, American Society of Anesthesiologists; MAC, minimum alveolar concentration; ED95, median effective dose required to achieve a 95% reduction in maximal twitch response from baseline; MAP, mean arterial pressure.
‡ No observations were made within this quintile.

Lowest categories were used as reference level, respectively.

Change stariation	Low dose $(n-157.4(0))$	High dose
	(n=157,400)	(n=157,400)
Ischemic stroke within 30 postoperative days	1457 (0.9%)	500 (0.3%)
Demographics		
Age, years	53.6 ± 17.2	54.0 ± 15.8
Sex, male	71,225 (45.2%)	67,531 (42.9%)
Body Mass Index, kg/m ²	28.0 ± 6.8	28.7 ± 7.0
Comorbidities*		
Arterial Hypertension	63,491 (40.3%)	63,288 (40.2%)
Atrial Fibrillation	11,374 (7.2%)	10,381 (6.6%)
Carotid Stenosis	4806 (3.1%)	2849 (1.8%)
Chronic Kidney Disease	11,425 (7.3%)	9114 (5.8%)
Diabetes	22,769 (14.5%)	23,412 (14.9%)
Dyslipidemia	48,109 (30.6%)	49,579 (31.5%)
Ischemic Stroke	5644 (3.6%)	3352 (2.1%)
Malignancy	47,085 (29.9%)	45,605 (29.0%)
Migraine	5622 (3.6%)	5838 (3.7%)
Patent Foramen Ovale without Closure	1697 (1.1%)	1205 (0.8%)
Peripheral Vascular Disease	7702 (4.9%)	4823 (3.1%)
Smoking	26,471 (16.8%)	26,014 (16.5%)
Transient Ischemic Attack	3048 (1.9%)	2042 (1.3%)
Valvular Heart Disease	15,364 (9.8%)	12,047 (7.7%)
Betablocker Prescription within 28 Days Prior	28,669 (18.2%)	16,769 (10.6%)
Charlson Comorbidity Index ³⁰	1 (0, 3)	1 (0, 3)
ASA† Physical Status	2 (2, 3)	2 (2, 3)
Surgical Factors		
Emergency Surgery	7532 (4.8%)	6644 (4.2%)
Inpatient Surgery	99,539 (63.2%)	102,280 (65.0%)
Duration of Surgery, minutes	141.3 ± 101.7	168.3 ± 113.2
Work Relative Value Units	13.7 ± 9.7	15.6 ± 9.9
Surgical Service		
Burn	1681 (1.1%)	317 (0.2%)
Emergent-Urgent	5043 (3.2%)	5842 (3.7%)
General	23,133 (14.7%)	34,726 (22.1%)
Gynecology/ Obstetrics	12,110 (7.7%)	19,123 (12.1%)
Neurosurgery	14,941 (9.5%)	7489 (4.8%)
Oral/ Maxillofacial	2177 (1.4%)	1127 (0.7%)
Orthopedic	39,918 (25.4%)	32,862 (20.9%)
Other (Dermatology, etc.)	2646 (1.7%)	1875 (1.2%)

Table S5. Characteristics of the study population by volatile anesthetic dose

	Low dose	High dose
Characteristics	(n= 157,466)	(n=157,466)
Otolaryngology	3543 (2.3%)	5274 (3.4%)
Plastic	8527 (5.4%)	10,208 (6.5%)
Radiology	1028 (0.7%)	771 (0.5%)
Surgical Oncology	6888 (4.4%)	8134 (5.2%)
Thoracic	12,733 (8.1%)	7351 (4.7%)
Transplant	2114 (1.3%)	3613 (2.3%)
Urology	12,192 (7.7%)	10,043 (6.4%)
Vascular	6330 (4.0%)	4482 (2.9%)
Anesthetic Factors		
MAC [†] of Volatile Anesthetic	0.45 ± 0.21	0.99 ± 0.23
MAC [†] of Nitrous Oxide	0.34 (0.01, 0.51)	0 (0, 0.08)
Total Opioid Dose (Oral Morphine		
Equivalents)	51.1 (31.3, 79.5)	50.0 (31.3, 76.1)
Total Propofol Dose, mg	200 (150, 300)	200 (150, 250)
Total Neuromuscular Blocking Agent ED95†		
Dose	1.69 (0, 2.93)	2.02 (0, 3.22)
Total Vasopressor Dose, mg (Norepinephrine		
Equivalents)	0.01 (0, 0.10)	0.01 (0, 0.11)
Total Fluid Volume Administered, ml	1500 (1000, 2500)	2500 (1500, 3750)
Administration of Packed Red Blood Cells	4924 (3.1%)	4335 (2.8%)
Neuraxial Anesthesia	5861 (3.7%)	4475 (2.8%)
Minutes with MAP ⁺ <55 mmHg	0 (0, 2)	0 (0, 2)

Table S5 displays the characteristics of patients receiving low dose (lower than median MAC 0.73) versus patients receiving high dose (higher than median) volatile anesthetics. * For comorbidity definitions, refer to Table S1.

[†] ASA, American Society of Anesthesiologists; MAC, minimum alveolar concentration; ED95, median effective dose required to achieve a 95% reduction in maximal twitch response from baseline; MAP, mean arterial pressure.

Values provided as frequency (prevalence in %), mean ± SD, or median [IQR ($25^{th}-75^{th}$ percentile), values separated by comma].

Figure S1. Distribution of ischemic stroke occurrence over 30 days after surgery

A total of 1957 patients (0.6%) suffered an ischemic stroke within 30 days after surgery. The median time to ischemic stroke was 4 days (IQR 1, 14). 1594 of 1957 ischemic strokes (81.5%) happened within 17 days after surgery.

Figure S1 displays the proportional distribution of outcome occurrence over the period of interest, with each bar representing one postoperative day.

Figure S2. Provider variability in using high-dose volatile anesthetics

Figure S2 displays the individual anesthesia providers' preference of using volatile anesthetic doses higher than the cohort median (MAC >0.73). Only providers with a total experience of >100 cases were considered (862 individual providers). Provider variability ranged from 3.1% to 93.9%.

Figure S3. Covariate model performance (C-statistics) independent of exposure

ROC, receiver operating characteristics.

Figure S3 shows C-statistic results of the primary logistic regression model independent of the exposure (volatile anesthetic dose). Area under the ROC curve = 0.95.

Figure S4. Reliability plot for the covariate model independent of exposure

Calibration of the primary logistic regression model independent of the exposure (volatile anesthetic dose) was excellent aside from one extreme outlier.

Each data marker represents a 1000-quantile of the estimated probability of ischemic stroke within 30 days after surgery.