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Macrophage cholesterol efflux is a central step in reverse cholesterol transport, which helps to maintain cholesterol homeostasis and 
to reduce atherosclerosis. Lipophagy has recently been identified as a new step in cholesterol ester hydrolysis that regulates choles-
terol efflux, since it mobilizes cholesterol from lipid droplets of macrophages via autophagy and lysosomes. In this review, we brief-
ly discuss recent advances regarding the mechanisms of the cholesterol efflux pathway in macrophage foam cells, and present lipo-
phagy as a therapeutic target in the treatment of atherosclerosis. 
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INTRODUCTION

Atherosclerosis is a chronic inflammatory disease characterized 
by the development of lipid-rich plaques that inhibit arterial 
blood flow [1,2]. Animal experiments and human specimen in-
vestigations have established that hypercholesterolemia pro-
motes the inflammatory processes leading to atherosclerosis. 
Hypercholesterolemia induces the accumulation of apolipopro-
tein B (apoB)-rich lipoprotein, the main protein in atherogenic 
lipoprotein particles such as low density lipoprotein (LDL), 
very low density lipoprotein (VLDL), and lipoprotein(a), in the 
intima under the endothelial cell layer, leading to the recruit-
ment of monocytes and initiation of the immune response. 
These monocyte-derived macrophages play an important role 
throughout the entire process of atherogenesis. Interestingly, re-
cent studies have revealed that macrophage lipophagy has a 
novel function in contributing to the development of vascular 

disease. In this review, we discuss the role of macrophages in 
cholesterol metabolism in reverse cholesterol transport (RCT) 
and the contribution of macrophage lipophagy to atherosclerosis 
(Fig. 1). 

MACROPHAGES IN REVERSE 
CHOLESTEROL TRANSPORT 

RCT is a process through which excess cholesterol from periph-
eral cells and tissues returns to the liver for excretion, and plays 
an important role in reducing atherosclerosis. Macrophage cho-
lesterol efflux is the first step of RCT that occurs in atheroscle-
rotic vessel wall by macrophage-specific. In the early stages of 
atherogenesis, apoB-lipoproteins that have entered the intima 
are modified by processes such as oxidation and hydrolysis. 
These modifications lead to lipoprotein aggregation and further 
promote lipoprotein retention in the vessel wall [3]. The inflam-
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matory signals originating from modified lipoproteins trigger 
endothelial activation and monocyte recruitment into the intima, 
and cause monocytes to differentiate into macrophages. Macro-
phages uptake modified lipoproteins within the cytoplasm 
through scavenger receptors (SRs), resulting in foam cell for-
mation. Foam cell formation is the initial and key event of ath-
erosclerosis.

Macrophage scavenger receptors
Although macrophages can clear modified LDL within intima 
through the low density lipoprotein receptor (LDLR), because 
the expression of LDLR is reduced in the early stage of foam 
cell formation by a decrease in sterol regulatory element-bind-
ing protein (SREBP)-1c due to increased cellular cholesterol 

levels [4], macrophages use another type of membrane receptor 
for apoB-lipoprotein removal. SRs are a diverse range of trans-
membrane proteins that internalize modified LDL and lipopro-
tein-base ligands. SRs have been divided into eight subclasses 
that share the defining feature of being able to bind various 
forms of modified LDL [5]; additionally, they can perform a 
wide variety of other functions, such as phagocytosis, antigen 
presentation, and elimination of apoptotic cells, depending on 
what they bind to. Nevertheless, the first and most important re-
ceptors that are responsible for modified LDL uptake in intimal 
macrophages are scavenger receptors type 1 (SR-A1) and clus-
ter of differentiation 36 (CD36) [6]. 

SR-A and CD36 are responsible for 75% to 90% of modified 
LDL degradation, and macrophages harvested from SR-A/

Fig. 1. Overview of the pathways of macrophage lipoprotein uptake and efflux. Macrophages uptake very low density lipoprotein (VLDL) 
and modified low density lipoprotein (LDL), such as oxidized (Ox) LDL via scavenger receptors (SRs, including by SR-A1 and cluster of 
differentiation 36 [CD36]). The internalized LDL is esterified by acetyl-coenzyme A acetyltransferases (ACAT1) and stored in lipid droplets 
(LDs). Neutral and acid lipolysis contribute to the release of cholesteryl ester (CE) for efflux in LDs via neutral CE hydrolase or lipophagy 
through lysosomal acid lipase (LAL). The cellular free cholesterol activates the liver X receptor (LXR)-retinoid X receptor (RXR) heterodi-
meric transcription factor that upregulates expression of ATP-binding cassette subfamily A member 1 (ABCA1). This transporter mediates 
the free cholesterol efflux from macrophages, with lipid-poor apolipoprotein A1 (apoA1) used as an acceptor. By reducing the accumulation 
of cholesterol in the wall of arteries via macrophage cholesterol efflux, reverse cholesterol transport may the prevent development of athero-
sclerosis. ER, endoplasmic reticulum; HDL, high density lipoprotein.
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CD36 double-null mice show an abnormal accumulation of 
cholesteryl esters (CEs) derived from modified LDL [7]. It has 
been evidently revealed in vitro that SR-A1 and CD36 play a 
crucial role in foam cell formation and LDL uptake in macro-
phages. However, the results of in vivo studies using gene-
knockout models are somewhat different. The effect of SR-A1 
on atherogenesis is controversial, whereas the proatherogenic 
role of CD36 has been clearly demonstrated in vivo. In 2005, 
Moore et al. [8] reported that defects in macrophage lipid up-
take were found in apolipoprotein E (apoE) deficient mice in 
which either the CD36 or SR-A gene was deleted, leading to an 
increase in the size of atherosclerotic lesions. However, the oth-
er expanded studies showed that less atherosclerotic lesion for-
mation in CD36 deficiency in apoE or LDLR null atherogenic 
mice model. Moreover, CD36 deficiency is sufficient to de-
crease of atherosclerosis in CD36/SR-A/apoE triple-null mice 
without the additional effect of SR-A1 deficiency [9,10]. Fur-
thermore, a bone marrow transplantation assay also provided 
support for the proatherogenic role of macrophage CD36 [11]. 
These studies have demonstrated that macrophage CD36 pro-
motes atherosclerosis via the uptake of modified LDL.

Cholesterol esterification
Within the macrophage, modified LDL is hydrolyzed to free 
cholesterol and fatty acid. Excess free cholesterol undergoes re-
esterification by the endoplasmic reticulum (ER)-resident pro-
tein acetyl-coenzyme A cholesterol acyltransferase 1 (ACAT1) 
or by sterol O-acyltransferase 1 (SOAT1), and is stored as CE in 
cytoplasmic lipid droplets (LDs). Although decreasing the ex-
pression or activity of ACAT1 was expected to have therapeutic 
effects through inhibition of foam cell formation, both ACAT1/
apoE and ACAT1/LDLR double-null mice have been found to 
show similarly sized or only slightly smaller atherosclerotic le-
sions than controls [12,13]. Furthermore, the efficacy of ACAT 
inhibitors in clinically preventing atherosclerosis in humans has 
not been successfully demonstrated [14]. Thus, these studies 
have clarified that cholesterol esterification is a passive protec-
tive response to excess free cholesterol when cholesterol efflux 
pathways are saturated.

MACROPHAGE CHOLESTEROL EFFLUX

Neutral cholesterol lipolysis
The hydrolysis of intracellular CE is the initial step of cholester-
ol efflux in macrophages. Because CE hydrolysis, which pre-
cedes cholesterol efflux, occurs in the cytoplasm at neutral pH 

levels, the catalyze enzymes have been collectively called neu-
tral CE hydrolase. Three enzymes have been proposed to be 
components of neutral CE hydrolase in macrophages: hormone-
sensitive lipase (HSL) [15]; carboxylesterase 1 (CEH or CES1), 
the human homolog of the murine triacylglycerol hydrolase 
[16]; and neutral cholesterol ester hydrolase 1 (NCEH1), which 
is also known as KIAA1363 or arylacetamide deacetylase like 1 
(AADACL1) [17]. However, their importance has yet to be ful-
ly elucidated. Nevertheless, a common feature of all of the stud-
ies that have been conducted on this topic is that enhancing LD-
related CE hydrolysis reduces CE accumulation and improves 
cholesterol efflux; thereby, reducing arteriosclerosis [18,19]. 
Thus, these studies demonstrate that CE hydrolysis in macro-
phage cholesterol efflux is rate-limiting, and show that it is im-
portant to clarify the mechanisms mediating CE hydrolysis in 
foam cells for the treatment of atherogenesis.

Acidic cholesterol lipolysis and lipophagy
In 1999, Avart et al. [20] firstly discovered in vitro that a lyso-
somal component is involved in CE hydrolysis in foam cells. In 
this process, CE is hydrolyzed by lysosomal acid lipase (LAL), 
a lysosomal cholesterol esterase that exhibits optimal activity at 
the acidic pH of the lysosomal lumen. Recently, Ouimet et al. 
[21] reported that under lipid-loading conditions, autophagy 
mediated the delivery of cytoplasmic LDs to lysosomes in mac-
rophages and that LAL in the lysosomal lumen hydrolyzed LD 
CE to generate free cholesterol for efflux. Ouimet et al. [21] 
also found autophagy to be specifically induced in response to 
atherogenic lipoprotein accumulation within macrophages, and 
thus, concluded that the autophagy-LAL pathway is a critical 
contributor to the mobilization of LD-associated CE for RCT.

Autophagy is a conserved cellular process for the natural 
breakdown of unnecessary or non-functional cellular organelles 
and proteins by fusion with lysosomal compartments [22]. Au-
tophagy is highly inducible under environmental stresses such 
as starvation and oxidative stress, and it plays an important role 
in maintaining essential cellular functions and protecting against 
infections with pathogens [23,24]. In starvation conditions, au-
tophagy promotes the degradation of cytoplasmic components 
non-selectively, whereas during nutrient-rich conditions, au-
tophagy selectively eliminates specific cytoplasmic cargo. De-
pending upon the loaded and digested cytoplasmic cargo, au-
tophagy has been divided into aggrephagy, mitophagy, pexoph-
agy, ER-phagy, xenophagy, and so on [25]. Recently, an alterna-
tive pathway of LD degradation through the lysosomal pathway 
of autophagy has been described and termed lipophagy [26].
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Lipophagy was originally described in hepatocytes, where it 
is critical for maintaining cellular energy homeostasis in obesity 
and metabolic syndrome. In vitro and in vivo studies have dem-
onstrated the selective uptake of LDs by autophagosomes, and 
the genetic or chemical inhibition of autophagy has been shown 
to reduce the β-oxidation of free fatty acids due to the increased 
accumulation of lipids and LDs [23]. Importantly, Singh and 
Cuervo [23] found that impaired autophagy in cultured hepato-
cytes and mouse liver led to abnormally high levels of hepatic 
cholesterol along with aberrant triacylglycerol deposition be-
cause of the defective clearance of LDs. Furthermore, that study 
identified a previously unknown function for autophagy in lipid 
metabolism, with possible implications for various human dis-
eases involving lipid over-accumulation, such as atherosclerosis 
and cardiovascular disease. Indeed, another report demonstrated 
that lipophagy became dysfunctional in atherogenesis, and that 
its deficiency promoted atherosclerosis in part through inflam-
masome hyperactivation caused by cholesterol crystal accumu-
lation in macrophages [27]. Additionally, macrophage-specific 
autophagy deficiency led to increased apoptosis and oxidative 
stress in advanced lesional macrophages, promoted plaque ne-
crosis, and worsened lesional efferocytosis [28]. Thus, the au-
tophagy pathway may contribute to regulate access to lipid 
stimulation in macrophages in atherosclerotic plaques. 

Consistent with these findings, LAL has been the focus of 
new studies. LAL is the central enzyme for hydrolysis in lyso-
somes, and its deficiency leads to human cholesterol storage 
disorders such as CE storage disease (CESD) and Wolman dis-
ease. Bowden et al. [29] provided an explanation of the hypoli-
poproteinemia seen in CESD patients by showing that LAL ac-
tivity contributed to the regulation of ATP-binding cassette sub-
family A member 1 (ABCA1) expression and activity. Addi-
tional studies will be required to clarify the mechanism of LAL, 
but it is clear that LAL plays an essential role in atherosclerosis 
via acid lipolysis. 

MACROPHAGE CHOLESTEROL EFFLUX

This macrophage cholesterol efflux function is predominantly 
mediated by high density lipoprotein (HDL). Apolipoprotein A1 
(apoA1), the most abundant protein in HDL, and mature HDL 
particles serve as acceptors of macrophage cholesterol efflux. 
Lipid-poor apoA1 promotes the efflux of cholesterol from mac-
rophages via ABCA1, and mature HDL promotes macrophage 
cholesterol efflux through the ATP-binding cassette subfamily 
G member 1 (ABCG1) transporter. Additionally mature HDL 

can directly deliver cholesterol to the liver via scavenger recep-
tor class B member 1 (SR-BI), or indirectly through transfer of 
cholesterol to apoB-containing lipoproteins, with sequential up-
take by LDL receptors in the liver [30]. Both in vitro and in vivo 
analyses have shown that ATP-binding cassette (ABC) trans-
porter deficiency promotes atherosclerotic lesion development 
through impaired cholesterol efflux in macrophages [31-34]. 
Consistent with these findings, lipophagy-mediated macrophage 
efflux is primarily ABCA1-dependent, since cholesterol deliv-
ery to ABCA1 in the lipophagy-defective macrophages is limit-
ed by liver X receptor (LXR) [21]. 

LXRs are members of the nuclear receptor family of ligand-
dependent transcription factors that mediate the regulation of 
cholesterol homeostasis [35]. LXRs form heterodimers with ret-
inoid X receptors (RXRs) and activate transcription of specific 
target genes such as those coding for ABC transporters and 
apoE, which can function as an acceptor; thus, promoting cho-
lesterol transport by the ABCA-1 dependent pathway [36,37]. 
Additionally, LXRs induce the synthesis of fatty acids, which 
act as substrates of ACAT1 in cholesterol esterification reac-
tions [38]. Despite these results, the relationship of autophagy 
with LXR and miR-33 [39], which regulates the expression of 
ABCA1, has yet to be clarified. Therefore, it will be necessary 
to elucidate the association of LXR and autophagy in macro-
phage cholesterol homeostasis. 

CONCLUSIONS

Macrophages are essential cells that regulate lipid metabolism, 
especially through RCT, affecting both the progression and re-
gression of atherosclerosis. Therefore, many studies have been 
conducted to establish a therapeutic strategy for atherosclerosis 
by studying the cholesterol pathway of macrophages. Recent 
studies have identified the role of lipophagy, which regulates 
the acidic hydrolysis of cholesterol from macrophage LDs via 
the lysosomes, in macrophage RCT and atherosclerosis. Under-
standing the effective removal of cholesterol from macrophage 
foam cells, in combination with future studies elucidating the 
role of lipophagy in macrophages, will lead to the development 
of novel therapeutic avenues for atherogenesis and metabolic 
syndrome. 
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