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Abstract: This proof-of-principle study analyzed fecal samples from 30 infants who participated in
a randomized controlled trial on the effects of the macronutrient composition of infant formula on
growth and energy balance. In that study, infants randomized to be fed cow milk formula (CMF)
had faster weight-gain velocity during the first 4 months and higher weight-for-length Z scores
up to 11.5 months than those randomized to an isocaloric extensive protein hydrolysate formula
(EHF). Here we examined associations among infant formula composition, gut microbial composition
and maturation, and children’s weight status. Fecal samples collected before and monthly up to
4.5 months after randomization were analyzed by shotgun metagenomic sequencing and targeted
metabolomics. The EHF group had faster maturation of gut microbiota than the CMF group, and
increased alpha diversity driven by Clostridia taxa. Abundance of Ruminococcus gnavus distinguished
the two groups after exclusive feeding of the assigned formula for 3 months. Abundance of Clostridia
at 3–4 months negatively correlated with prior weight-gain velocity and body weight phenotypes
when they became toddlers. Macronutrient differences between the formulas likely led to the
observed divergence in gut microbiota composition that was associated with differences in transient
rapid weight gain, a well-established predictor of childhood obesity and other comorbidities.

Keywords: infant; microbiota; metabolome; diet; gene; infant formula; rapid weight gain; randomized
controlled trial

1. Introduction

There are sensitive periods during early life when diet interacts with the gut microbiota
in shaping the structure and function of the mucosal immune system and, in turn, modify-
ing metabolic and immune health [1–3]. While the initial colonization pattern of newborns’
gut microbiome is often considered chaotic, with low species diversity, a growing body of
evidence—the vast majority from observational and cross-sectional research—suggests that
maturation and diversification of the gut bacterial environment during infancy is shaped
by early diet [4–9].

Although the early diet is unique in typically consisting of a sole source of nutrition
in liquid form—breast milk or breast milk substitute—the type of diet is important in
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shaping the gut microbiome. During the first 4 months, gut microbial alpha diversity
of exclusively breastfed infants, as expressed by the standardized Shannon index, was
consistently lower than in breastfed infants whose diets were supplemented with infant
formula and/or solid foods [9,10]. Supplementation with relatively small amounts of infant
formula can shift the more “stable” and uniform microbiome of exclusively breastfed infants
to one with a broader and more diversified spectrum of bacteria [8,11,12]. Prominence of
Enterobacteriaceae, especially E. coli and K. pneumoniae, and abundance of Clostridiaceae
have been observed among formula-fed infants. In particular, the relative abundance of
Clostridia, a class of bacteria involved in amino acid fermentation [13–15], is greater in
formula-fed than in breastfed infants younger than 6 months [5,11,16].

Based on widespread evidence that diet plays a significant role in the composition of
the gut microbiota and long-term health, we hypothesized that there would be significant
differences in the gut microbiome over time in infants exclusively fed different infant
formulas that are isocaloric yet with different macronutrient composition. Specifically,
we posited differences between infants fed cow milk formula (CMF), the most commonly
ingested type of infant formula [17], and infants fed an extensive protein hydrolysate
formula (EHF), a type of formula for infants with intolerance to cow’s milk proteins.
Unlike the intact proteins found in CMF, the proteins in EHF have been hydrolyzed to
reduce the burden of digestion and allergenicity; consequently, EHF is abundant in free
amino acids and small peptides [18]. While the carbohydrate source in CMF is lactose,
EHF carbohydrate comprises non-lactose sources that, along with free amino acids, have
been shown to impact the composition and function of the adult gut microbiome [19,20].
Randomized controlled trials (RCTs) have consistently revealed that infants fed EHF exhibit
more normative weight gain during early infancy [21–23] and decreased risks of allergic
diseases during childhood when compared to those fed CMF. For example, in the German
Infant Nutritional Intervention RCT, breastfed infants with a family history of atopy who
were randomized at birth to be fed EHF, only if human milk was insufficient, remained at
decreased risk for atopy 20 years later compared to those randomized to CMF [24].

In the present proof-of-principle study, we randomly selected a subsample of 30 infants
from our RCT of exclusively formula-fed infants with no family history of atopy. The RCT
demonstrated that the accelerated weight gain pattern among CMF-fed infants compared
to EHF-fed infants was due to both energy intake and energy loss mechanisms. In this
subsample, we focused on group-dependent differences in the maturation of the microbiota
from 0.5 to 4.5 months, when formula feeding was exclusive and when the microbiota is
highly plastic and responsive to external factors, such as diet [25]. We posited that there
would be time-dependent differences in gut microbiome composition that were related
to differences in the macronutrient composition of the randomized formulas that would,
in turn, be associated with clinical outcomes. We used an integrated analysis of shotgun
metagenomic sequencing and metabolomics on fecal samples collected before (baseline:
0.5 and 0.75 months) and at fixed intervals after randomization (1.5, 2.5, 3.5, and 4.5 months)
to determine the effects of infant formula diet on the composition and metabolic function
of the infant gut microbiome and its relationship to clinical outcomes.

2. Materials and Methods
2.1. Participants and Trial Design

Study participants were enrolled in a longitudinal, double-blind RCT on healthy,
term infants designed to determine the effects of feeding isocaloric commercial infant
formulas (CMF, EHF) that differed in macronutrient composition (see Section 2.1.2) on
early weight gain and energy balance. From the intent-to-treat cohort of 113 infants, we
randomly selected 30 infants while balancing for sex and race/ethnicity. The study design,
inclusion and exclusion criteria, and CONSORT table for the 12-month-long RCT have
been published previously [26]. In brief, infants who were born at term and whose mothers
chose to exclusively formula feed when infants were 2 weeks of age were randomized to be
fed either CMF or EHF for the first year. The Office of Regulatory Affairs at the University
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of Pennsylvania approved the study, and the trial was registered online at clinicaltrials.gov
(NCT01700205) prior to its start.

2.1.1. Study Cohort

The cohort of 30 exclusively formula-fed infants (15 CMF, 15 EHF) was racially diverse
(57% black, 27% white, 17% more than one race). There were no significant differences
between the formula treatment groups in sex ratio of infants or any baseline infant or
maternal characteristics measured [26], including infant anthropometric measurements
taken at baseline (Table 1).

Table 1. Baseline characteristics of study cohort at study entry (0.5 months).

Infant Formula Treatment Group

Characteristics CMF (n = 15) EHF (n = 15) p Value

Age in months 0.39 ± 0.02 0.40 ± 0.02 0.90
Female, n (%) 6 (40%) 6 (40%) 1.00
Race/ethnicity, n (%)

Black 9 (60%) 8 (53%)
0.88White 4 (27%) 4 (27%)

More than one race/ethnicity 2 (13%) 3 (20%)

Anthropometry, Z score; 0.5 mos
Weight for age (WAZ) −0.54 ± 0.21 −0.37 ± 0.21 0.57
Length for age (LAZ) −0.73 ± 0.27 −0.65 ± 0.67 0.85
Weight for length (WLZ) −0.25 ± 0.24 −0.06 ± 0.24 0.59

Body composition 1, 0.75 mos
Fat mass (kg) 0.43 ± 0.08 0.49 ± 0.08 0.60
Percent body fat (%) 11.6 ± 2.0 12.8 ± 2.2 0.70

Mean ± standard error of the mean (SEM) or n (%). n = 30 unless otherwise indicated; p values for main effect of
infant formula treatment group (CMF, cow milk formula; EHF, extensive protein hydrolysate formula). 1 CMF,
mboxemphn = 15, EHF, n = 12.

2.1.2. Composition of Infant Formula Diets

The two infant formulas (Enfamil [CMF], Nutramigen [EHF]; Mead Johnson Nutrition)
were isocaloric (67 kcal/100 mL) and contained no added prebiotics or probiotics. While
the percent energy provided from fat (48% [5.3 g/100 kcal]) and type of fat blend (i.e., palm
olein, soy, coconut, high-oleic sunflower oils) were similar, the percent energy from carbo-
hydrate (EHF: 41% [10.3 g/100 kcal], CMF: 44% [11.3 g/100 kcal]) and the percent energy
from protein (EHF: 11% [2.8 g/100 kcal], CMF: 8% [2.1 g/100 kcal]) slightly differed [27].
The major differentiators were the form of the protein and the source of carbohydrate. CMF
contained intact cow milk proteins and its source of carbohydrate was lactose, whereas EHF
contained small peptides [28] and substantially higher concentrations of free amino acids
(80,375 µmol/L) because of its extensive hydrolyzation than CMF (864 µmol/L) [18], and
its source of carbohydrate was primarily corn syrup solids with some modified cornstarch.

2.1.3. Clinical Phenotypes

We tested measures of anthropometry and body composition from the RCT [26] for
associations with infants’ microbiota identified in this proof-of-concept study. At baseline
visits (0.5, 0.75 months) and each month thereafter until 12.5 months, infants were weighed
and measured in triplicate by research personnel certified in standard anthropometric
techniques and with a calibrated pediatric scale (Scale-Tronix, White Plains, NY, USA) and
an infantometer (Harpenden Infantometer 702; Crymych, Dyfed, UK) that were accurate
to 0.001 kg and 0.1 cm, respectively. Anthropometric data were converted to weight-for
length Z (WLZ) and length-for age Z scores using World Health Organization growth
standards [29]. Velocities of early weight (g/day) and length (cm/day) accretion were
calculated by dividing the change of weight in grams or length in centimeters by the
change of age in days from 0.5 to 4.5 months, when infant formula accounted for 93%
(±3) of daily energy intake. Of the 30 children in this cohort, 26 completed the final
RCT visit at 12.5 months. At this age, only 24% (±5) of their daily energy intake was
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from infant formula. We determined children’s weight status at 1 year based on age- and
sex-specific WLZ percentiles, which defines overweight as values greater than the 85th
percentile [30]. There was no difference between the groups in the age at which mothers
began complementing their diets with solids (p = 0.56).

Measures of body composition were obtained by the double-labeled water method
at the baseline visit and at 3.5 and 12.5 months [26,31]. After obtaining a baseline urine
sample, infants were dosed based on body weight with 0.3 g H2

18O and 0.15 g 2H2O per
kilogram estimated total body water (TBW). Mothers were given special study diapers
to collect morning urine samples each day thereafter for one week. The elimination rates
of 18O and 2H were used to determine isotope dilution spaces (kg) and TBW, from which
we determined fat-free mass (kg) for each infant at each age by dividing TBW derived
from 18O and 2H dilution by age-specific hydration constants [32,33]. From these data,
we determined the fat mass (kg) and percent body fat for each infant at each age. Of the
30 infants, body composition data were available for 27 infants at 0.75 months, 28 infants at
3.5 months, and 25 infants at 12.5 months.

2.2. Methodology

During the trial, convenient stool samples were collected in 76 × 20 mm feces con-
tainers (Sarstedt, Inc., Newton, NC) and frozen at −70 ◦C until transport to the Children’s
Hospital of Philadelphia Microbiome Center for analysis. For the present shotgun metage-
nomics and bacterial gene analyses, we analyzed 148 fecal samples. For each infant, we had
at least one baseline (0.5, 0.75) sample and at least three post-randomization stool samples
(1.5, 2.5, 3.5, 4.5 months); sample size at each time point ranged from 19 to 29. For the
metabolomics analysis, we analyzed 137 fecal samples from 29 infants; the sample size
at each time point ranged from 19 to 26. Only one baseline sample was available for the
remaining infant, which we thus eliminated from this analysis.

2.2.1. Shotgun Metagenomics

The gut microbiome was characterized by shotgun metagenomic sequencing using
established methods [34]. Genomic DNA was extracted using the MO BIO PowerSoil
kit and prepared for sequencing with the Nextera XT kit (Illumina, Inc., San Diego, CA,
USA). Libraries were sequenced on Illumina HiSeq 2500 using the paired-end 125 bp
sequencing protocol. Sequence reads were processed to remove adapter sequences and
low-quality reads with Trimmomatic v. 0.33 [35]. Taxonomic assignments were generated
with MetaPhlAn2 [36]. Gene orthologs were assigned by aligning reads to the KEGG
database [37] using DIAMOND v. 2.0.4 [38]. Negative (mock purification of DNA-free
water) and positive (standard fecal and pond-sediment samples) controls were included in
each assay. Samples of each formula (CMF, EHF) were assayed for DNA content, which
yielded no detectable bacterial DNA. Shotgun libraries were generated from 1 ng of DNA
using the NexteraXT kit (Illumina, Inc.). Libraries were sequenced on the Illumina HiSeq
using 2 × 125 bp chemistry in high-output mode.

2.2.2. Targeted Metabolomics

Targeted metabolomics of 17 fecal amino acids were characterized using established
methods [39] with a limit of detection of 5 nmol/g. Briefly, methanol-extracted fecal
samples (5 µL/mg stool) were prepared using the Waters AccQ-Tag Ultra Amino Acid
Derivatization and Chemistry Kit (Waters Corporation, Milford, MA, USA). Samples were
analyzed on Waters Acquity uPLC System with an AccQ-Tag Ultra C18 1.7 µm 2.1 × 10 m
column and a photodiode-array detector (Waters Corporation, Milford, MA, USA).

2.3. Statistical Analyses

The abundance of genes was normalized across samples using quantile normalization
(up to 95% percentile). Genes absent from more than 50% of samples were considered
low-occurrence genes and were removed from the analyses. Linear mixed-effects modeling
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was used to determine the effect of treatment group (CMF, EHF), time (0.5, 0.75, 1.5, 2.5, 3.5,
4.5 months), and group × time interaction on (a) Shannon diversity indices, (b) relative
abundance of each bacteria at the species levels, (c) the quantile normalized abundance
of the top 1000 most prevalent genes, and (d) concentration of each fecal amino acid
separately. The species for which more than 90% of the samples were undetected were
excluded from the linear mixed effects modeling. The relative abundance of species, and
the quantile normalized abundance of genes, were log10 transformed in the linear mixed
effects model. A permutational multivariate analysis of variance (PERMANOVA) test on
Bray–Curtis distances was used to examine differences in beta diversity between formula
groups at each time point separately. A Bayesian logistic regression model was applied
to determine whether specific species (using log10 transformed relative abundance in
the model) were associated with formula group at each time point separately. Receiver
operator characteristic (ROC) curves [40] were plotted and area under the curve values
were calculated to evaluate the model.

To probe the relationships between continuous outcomes related to gut microbiota
or metabolome and formula-induced differences in clinical phenotypes reported previ-
ously [26,41], simple and partial Pearson correlation analyses were conducted. Statistical
analyses of data on gut microbiota, fecal amino acids, and bacterial genes were imple-
mented in R (version 4.1.1) and higher [42] or Graphpad Prism (version 9.2.0; Graphpad
Software Inc., San Diego, CA, USA); associations with clinical outcomes were conducted
using Statistica version 14.0 (StatSoft Inc., Tulsa, OK, USA). The Benjamini and Hochberg
false discovery rate (FDR) [43]; p < 0.05 was considered significant.

3. Results
3.1. Outgrowth of Ruminococcus Gnavus and Other Clostridia Species Driven by
Formula-Induced Differences in Gut Microbiota

The most abundant classes of bacterial taxa found in the microbiota of the 30 infants
in this study, aged 0.5 to 4.5 months, were Verrucomicrobiae, Bacilli, Actinobacteria, Bac-
teroidia, Clostridia, Negativiutes, and Gammaproteobacteria. The EHF group had greater
Shannon diversity in the gut microbiota over time than the CMF group (group × time,
p = 0.004; linear mixed effects model). The most substantial group difference was the
increased prevalence of obligately anaerobic communities of Clostridia in the EHF group
(Figure 1A,B). Figure 1C,D depict the relative abundance of the top 15 Clostridia species in
CMF and EHF groups, respectively.

To determine whether the significant group × time interaction (p = 0.004) in the Shan-
non diversity index of the complete microbial community (Figure 2A) was due primarily
to differences in Clostridia, we compared Shannon indexes of the complete community
without Clostridia and to that of Clostridia only. As shown in Figure 2B, removal of
Clostridia species from the Shannon diversity index resulted in no significant group, time,
or group × time effect (p > 0.05). However, there was a significant group × time interaction
in the Shannon diversity index of Clostridia only (p = 0.027; Figure 2C), thus providing
further evidence that the greater Shannon diversity among the EHF group was driven
primarily by Clostridia.

While there were no group differences before randomization to the study formulas
before 1.5 months (PERMANOVA tests on Bray–Curtis distances, p > 0.05; Figure A1), there
were significant group differences in the beta diversity index at 2.5, 3.5, and 4.5 months
(p = 0.027, 0.024, and 0.031, respectively). By 4.5 months, the outgrowth of the most
abundant taxa of Clostridia—Ruminoccocus gnavus—accounted for approximately one-fifth
(mean relative abundance, 19.1%) of the community in the EHF group (Figure 1D), but only
6.6% in the CMF group (Figure 1C). To evaluate the predictive value of R. gnavus relative
abundance by group, we applied logistic regression models to each time point separately
(the relative abundances were log10 transformed) and constructed ROC curves (Figure 3).
The area under the curve was greater than 0.8 at both 3.5 and 4.5 months, demonstrating
that relative abundance of R. gnavus alone could distinguish the microbiome of infants
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fed EHF from those fed CMF after the infants had been fed the formula for approximately
3 months.
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Figure 2. Shannon diversity indexes of (A) complete microbial community, (B) microbial community
without Clostridia, and (C) Clostridia only. Red bars depict the CMF (cow milk formula) group and
black bars depict the EHF (extensive protein hydrolysate formula) group from 0.5 to 4.5 months
(linear mixed-effect modeling).

Although R. gnavus was the most prominent signature distinguishing the microbiome
of EHF- from CMF-fed infants, other microbial taxa differed between the groups. Using
a linear mixed-effect model (p’s < 0.05), we identified seven taxa that had significant
group × time interactions (Figure 4). The taxa Streptococcus thermophilus had significant
group × time interaction (p < 0.001), group (p < 0.001) and time (p = 0.005) effects with
relative abundance remaining high in CMF but decreasing in the EHF group over time.
Conversely, the remaining six taxa, each within the Clostridia class of Firmicutes, had
significant group × time interaction (all p’s < 0.04) and time (all p’s < 0.001) effects with
relative abundance being higher in EHF than CMF group.
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Figure 4. Heatmap of bacterial species from 0.5 to 4.5 months in CMF (red bar) and EHF (black
bar) groups. Red signifies higher abundance. Linear mixed effects models revealed significant
group × time, group and time effects (blue) for Steptococcus thermophiles and significant group × time
and time effects (orange) for Ruminococcus gnavus, Blautia producta, Ruminococcus torques, Clostridium
nexile, Flavonifractor plautii, and Anaerotruncus colihominis.

Table A1 lists the 47 bacterial taxa that were not affected by the randomization but
significantly changed from 0.5 to 4.5 months (time effect only, p < 0.05). In general, some
species in the Veillonella, Lactobacillus, Streptococcus genera are in higher relative abun-
dance during the first month and then decreased over time, whereas some Bifidobacteria
and Clostridium species increased over time [44,45].

3.2. Formula-Induced Differences in Expression of Genes Related to Carbohydrate Metabolism

Of the top 1000 most abundant genes, we found significant group × time interactions
for six genes (all FDR, p’s < 0.05): the type IV secretion system protein VirD4, carbonic
anhydrase, tRNA nucleotidyltransferase, and three genes associated with carbohydrate
metabolism: beta-fructofuranosidase, glucose-1-phosphate adenylyltransferase and lactase
permease (Figure 5A–F).
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Figure 5. Log10 gene abundance over time in CMF (red circles) and EHF (black triangles) groups
for gene K03205, type IV secretion system protein VirD4 (A); K01193, beta-fructofuranosidase (B);
K00975, glucose 1-phosphate adenylyltransferase (C); K01673, carbonic anhydrase (D); K00974, tRNA
nucleotidyltransferase (E); and K03303, lactase permease (F). Significant group × time effect for each
gene; linear mixed models.

3.3. The Two Groups Shared Similar Fecal Amino Acid Concentrations despite Different Free
Amino Acid Concentrations in CMF and EHF

The concentrations of fecal amino acids over time by formula group are shown in
Figure 6. Fecal concentrations of histidine and cysteine were below the limit of detection in
78% and 96% of the samples, respectively, so they were not included in the analyses. There
were no significant group or group × time effect identified for any of the remaining amino
acids (p’s > 0.05).
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Figure 6. Heatmap of fecal amino acid concentrations (standardized by mean and standard deviation
per amino acid) from 0.5 to 4.5 months in CMF (cow milk formula; red bar) and EHF (extensive
protein hydrolysate formula; black bar) groups. Red signifies higher abundance. No significant group
or group × time effect for any of the amino acids identified; linear mixed-effects model.

3.4. Increases in the Relative Abundance of Clostridia Related to Leaner Phenotypes

While no measured infant phenotypes differed at baseline (Table 1), the two ran-
domized groups significantly differed in subsequent velocities of weight gain from 0.5 to
4.5 months, in fat mass and percent body fat at 3.5 months, and in WLZ scores at 4.5 months,
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but did not differ in velocities of linear growth (Table 2). The two groups also significantly
differed in relative abundance of Clostridia at both 3.5 and 4.5 months (Figure 1B); we refer
to these data, when combined, as occurring at 3–4 months.

Table 2. Growth and body composition in study cohort at 3.5–4.5 months.

Infant Formula Treatment Group

Characteristics CMF
(n = 15)

EHF
(n = 15) p Value

Anthropometry, Z scores; 4.5 months
Weight for age (WAZ) 0.30 ± 0.23 −0.55 ± 0.23 0.02
Length for age (LAZ) −0.47 ± 0.27 −0.66 ± 0.27 0.61
Weight for length (WLZ) 0.88 ± 0.20 −0.07 ± 0.20 <0.001

Weight-gain velocity (g/day), 0.5–4.5 months 31.77 ± 1.49 25.49 ± 1.49 <0.001
Length-gain velocity (cm/day), 0.5–4.5 months 0.104 ± 0.003 0.094 ± 0.003 0.18
Body composition, 3.5 months 1

Fat mass (kg) 1.61 ± 0.08 1.15 ± 0.12 0.01
Percent body fat (%) 24.3 ± 1.5 19.0 ± 1.5 0.02

Mean ± standard error of mean (SEM). n = 30 unless otherwise indicated; p values for main effect of infant
formula treatment group (CMF, cow milk formula; EHF, extensive protein hydrolysate formula). 1 CMF, n = 14;
EHF, n = 14.

As shown in Figure 7, the three types of outcomes that differed between the random-
ized groups—gut Clostridia, velocities of growth and anthropometric phenotypes—were
related to each other. The relative abundance of Clostridia at 3–4 months was significantly
and inversely correlated with prior weight-gain velocities (Figure 7A; r = −0.51, p = 0.004)
and length gain velocities (Figure 7B; r = −0.53, p = 0.003), WLZ at 4.5 months (r = −0.41;
p = 0.02; Figure 7C), and fat mass at 3.5 months (r = −0.41; p = 0.03; Figure 7D).
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  Figure 7. Pearson correlations between relative abundance of Clostridia (3–4 months) and (A) early
weight gain velocity (g/day; p = 0.004), (B) early length gain velocity (cm/day; p = 0.003), (C) WLZ at
4.5 months (p = 0.02), and (D) fat mass (kg) at 3.5 months (p = 0.03). Red circles denote CMF (cow
milk formula) and black triangles denote EHF (extensive protein hydrolysate) groups.
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As expected [41,46], greater velocity of weight gain predicted weight status (r = 0.59;
p < 0.001) and fat mass (r = 0.45; p = 0.02) at 1 year. Children who were with overweight
at 1 year tended to have lower relative abundance of Clostridia at 3–4 months (15.7 ± 5.3)
compared to 1-year-olds who were a healthy weight (27.8 ± 4.2; p = 0.08).

4. Discussion

While the human gut gradually changes from a predominantly aerobic to anaerobic
environment after birth [47,48], in this proof-of-concept study the composition of the gut
microbiome underwent striking time-dependent separation based on the type of formula
infants were fed, at the age when formula was their sole source of nutrition. Exclusively
feeding of EHF, a formula rich in free amino acids, was associated with a more rapid
maturation of the infant gut microbiota, with increased alpha diversity dominated by classes
of bacteria that degrade carbohydrates (e.g., Lachnospiraceae, Negativicutes, Clostridia).
In general, some Veillonella, Lactobacillus, and Streptococcus species within these classes,
which are in high relative abundance in the first month [49] and are more commonly
associated with the proximal gastrointestinal tract [44], decreased over time, whereas some
Bifidobacteria and Clostridium species, which are normally found in a more mature distal
gastrointestinal tract community, increased over time [44,45]. However, there were two
notable exceptions.

While Streptococcus thermophilus steadily decreased over time in the EHF group, its
relative abundance remained high in the CMF group. Conversely, a number of Clostridia
species decreased over time in the CMF group, as expected, but significantly increased
over time in the EHF group. Indeed, of the seven taxa that exhibited group-dependent or
group × time dependent changes, Streptococcus accounted for one taxa while Clostridia
accounted for six, including taxa that are associated with the induction of immune tolerance
in murine model systems [50,51], that utilize proteins and free amino acids as primary
nutrient sources [52,53], or that produce a large array of metabolites by utilizing simple
and complex carbohydrates [54]. The carbohydrate-fermentative species R. gnavus [55]
exhibited the greatest increase in the EHF group over time and its outgrowth distinguished
the two infant formula groups approximately 3 months after infants began feeding their
assigned formulas.

These two key compositional differences between CMF and EHF formed the basis
of our hypothesis on how feeding CMF or EHF shaped the microbiota in different ways
(i.e., increased abundance of Streptococcus among CMF infants and increased abundance
of Clostridia among EHF infants). These differences may be acting alone or in concert
in causing the observed effects on the infants’ gut microbiota. First, the formulas differ
in the form of the protein. The free amino acid concentration is substantially higher in
EHF (>9200%) than CMF [18]. Because EHF transits the gastrointestinal tract at a faster
rate [56], there may be increased concentrations of amino acids in the colon, where they act
as substrates for colonic bacterial growth [57]. Certain Clostridia species may have bioener-
getic growth advantage when infants feed EHF because of Strickland fermentation—the
coupled oxidation and reduction of amino acids to organic acids—a well-known reaction
in Clostridia [58]. However, despite the drastic differences in free amino acids between
the infant formulas, the overall concentrations of amino acids in their feces were similar
between the two groups, suggesting that, in addition to Strickland fermentation by the gut
microbiota, they also likely are being absorbed in the small intestine of the EHF-fed infants.

Second, differences in carbohydrate source between the infant formulas and, in turn,
the availability of carbon sources for metabolism may contribute to group differences in
bacterial taxa. Unlike CMF, in EHF one of the carbohydrate sources is modified cornstarch,
composed of glucose monomers connected by alpha-1-4 glycosidic linkages and alpha
1–6 glycosidic branch linkages, the latter of which leads to slower enzymatic degradation
in the gastrointestinal tract [59]. Not only is the digestion of cornstarch slow in the small
intestine, but its fermentation in the colon continues several hours after its ingestion [20].
Indeed, we observed a very robust induction of two Ruminococcus species, R. gnavus and
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R. torques, known to be mucinophilic [60–62]. Ruminococcus, a genus of bacteria in the
Clostridia class, require fermentable carbohydrates for growth [20], and are stimulated
by diets high in resistant starches, including cornstarch which contains some resistant
starch [20,63]. In addition, Streptococcus thermophilus, which was the only taxa that was
higher in the microbiota of the CMF than EHF group, has been shown to have increased
growth in lactose-containing media compared to media containing the monomers of lactose,
namely glucose and galactose [64,65]. In this regard, it is interesting that three of the six
bacterial genes showing a significant group by time effect are involved with carbohydrate
metabolism [66].

Building on the findings from the entire intent-to-treat cohort of 113 infants [26,41], we
found in this subsample of 30 infants that the CMF group had faster weight-gain velocity
during the first 4 months, greater fat mass and higher WLZ scores than the EHF group. The
present study also revealed that the EHF group had greater abundance of Clostridia class
bacteria in the gut than the CMF group, a difference that emerged after feeding the assigned
formulas for 3 months. Both of the formula-induced outcomes—relative abundance of
Clostridia and clinical phenotypes related to weight —were associated with each other.
Greater relative abundance of Clostridia was associated with more normative trajectories
of weight and length gain during preceding months and with leaner phenotypes. However,
after adjustment for formula treatment group, only the partial correlation with gains in
length remained significant. Nevertheless, how fast infants gained weight during the
sensitive period of the first 4 months predicted their weight status at one year [67], and
overweight 1-year-olds tended to have lower abundance of Clostridia in their guts than
those at a healthy weight. Whether or not there is a cause-and-effect relationship between
the leaner phenotypes among EHF-fed infants and the greater abundance of will require
additional investigation.

Although the present proof-of-principle study focused on only 30 of the 113 infants
enrolled in the RCT and only on fecal samples collected during the first 4.5 months of
the year-long trial [26], associations between the abundance of gastrointestinal Clostridia
and phenotypes related to obesity have been previously reported in children [68] and
adults [69]. Taken together, the data suggest that the formula-induced differences in early
weight gain and later weight status [46,70] may be mediated by early priming of the
gut microbiota, particularly as it relates to the Clostridia class of bacteria. The impact of
Clostridia species on lipid absorption [71] and mucosal immune regulation [50,51] could
play a role in the more normative early rapid weight gain among EHF-fed infants [26],
which is, in turn, associated with normative weigh status at one year [46]. Additionally,
since Clostridia spp. have been shown to enhance immune tolerance in murine models [50],
our finding that the consumption of EHF led to increased abundance of certain Clostridia
species might be relevant to the observed association between the ingestion of EHF dur-
ing infancy and the decreased risk for developing atopic disease during childhood and
adolescence [72]. Further, a potential energy mechanism for the association between the
loss of Clostridia abundance and diversity and obesity and metabolic syndrome comes
from T-Myd88-knockout mice [71], increases in Clostridia colonization were associated
with a leaner phenotype and down-regulation of CD36, an enterocyte receptor involved
in lipid absorption, suggesting decreased energy absorption from the gut. In contrast,
lack of colonization with the protective Clostridia in germ-free mice resulted in elevated
CD36 expression, weight gain, fatty liver disease, adipose tissue inflammation, and insulin
resistance [71].

Advantages of this proof-of-principle study include the randomized design, which
minimizes selection bias and enables determination of effects of early infant formula diet
while keeping other variables constant, thus providing insights into mechanisms of long-
term effects of feeding infant formulas that differ in macronutrient composition. While the
small sample size and increased likelihood of type II error are limitations, the findings from
the proof-of-principle approach hold promise that similarly designed RCTs could serve as
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a model system for determining mechanisms underlying the divergent clinical outcomes of
infants fed different formulas.

In conclusion, diet has strong selective pressure on shaping the composition and
functioning of the microbiome [73,74]. What infants are fed is more important than the
mode of feeding, since formula-fed infants are not a homogeneous group. Although
isocaloric, infant formulas can have different macronutrient composition that have signifi-
cantly different impacts, in the short term, on infant satiety [75], early weight gain, energy
intake, and fecal energy loss [26] and, in the longer term, risks for obesity [21,76] and
atopic disease [24]. The present proof-of-principle study revealed distinct compositional
changes in the gut microbiota of infants fed formulas differing in the source of and form
of protein and carbohydrate for only 3–4 months. The long-lasting consequences of the
formula-induced changes to the early bacterial environment as the child transitions to a diet
devoid of infant formula remain unknown. Whether the compositional changes in early gut
bacterial environment have independent effects on clinical outcomes of growth trajectories,
body weight, and fat mass, and whether such changes are biomarkers for later obesity
and immune functioning, are important areas of research, for which data are needed from
larger, longitudinal RCT cohorts [77] that experimentally manipulate early diet.
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Figure A1. Multidimensional scaling plot of beta diversity based on Bray–Curtis distance metric for 
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Figure A1. Multidimensional scaling plot of beta diversity based on Bray–Curtis distance metric for
CMF and EHF groups showing (A) all ages combined and (B–G) at each time point. There were no
significant differences between CMF (cow milk formula, red symbols) and EHF (extensive protein
hydrolysate formula, black symbols) groups at 0.5, 0.75, and 1.5 months (p > 0.05, Permutational
Multivariate Analysis of Variance (PERMANOVA) tests on Bray–Curtis distances), but there were
significant group differences at 2.5 (p = 0.03), 3.5 (p = 0.02), and 4.5 months (p = 0.03); PERMANOVA
tests on Bray–Curtis distances).
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Table A1. Bacterial taxa (N = 47) with significant time effects 1.

Species Name Time, β Coefficient Time, p-Value

Actinomyces odontolyticus 0.12 3.4 × 10−5

Akkermansia muciniphila 0.28 3.1 × 10−5

Anaerostipes, unclassified 0.25 6.0 × 10−8

Bacteroides uniformis 0.07 0.02
Bifidobacterium bifidum 0.35 1.0 × 10−5

Bifidobacterium breve 0.26 1.5 × 10−4

Bifidobacterium longum 0.39 3.7 × 10−5

Bifidobacterium pseudocatenulatum 0.11 0.02
Bilophila, unclassified 0.06 0.01
Clostridiales bacterium 1 7 47FAA 0.23 9.0 × 10−6

Clostridium bartlettii 0.20 0.02
Clostridium bolteae 0.22 3.7 × 10−5

Clostridium difficile 0.28 8.3 × 10−8

Clostridium hathewayi 0.11 0.03
Clostridium perfringens −0.26 4.5 × 10−5

Clostridium ramosum 0.36 1.4 × 10−9

Clostridium symbiosum 0.13 3.7 × 10−5

Collinsella aerofaciens 0.22 4.4 × 10−4

Coprobacillus, unclassified 0.43 5.4 × 10−13

Eggerthella, unclassified 0.12 7.8 × 10−5

Enterococcus avium 0.11 1.6 × 10−5

Enterococcus faecalis −0.12 0.02
Erysipelotrichaceae bacterium 21 3 0.14 3.6 × 10−5

Erysipelotrichaceae bacterium 2 2 44A 0.12 3.0 × 10−3

Erysipelotrichaceae bacterium 6 1 45 0.09 0.02
Eubacterium limosum 0.06 0.01
Granulicatella, unclassified 0.08 1.2 × 10−3

Klebsiella pneumoniae 0.09 0.01
Lachnospiraceae bacterium 2 1 58FAA 0.23 6.0 × 10−8

Lachnospiraceae bacterium 7 1 58FAA 0.06 0.01
Lachnospiraceae bacterium 9 1 43BFAA 0.10 1.3 × 10−5

Lactobacillus fermentum −0.13 13.5 × 10−4

Lactobacillus gasseri −0.24 3.3 × 10−5

Lactococcus lactis 0.19 3.8 × 10−3

Megasphaera, unclassified 0.19 0.04
Parabacteroides distasonis 0.58 0.03
Solobacterium moorei 0.06 7.1 × 10−5

Staphylococcus hominis −0.11 1.2 × 10−4

Streptococcus mitis oralis pneumoniae 0.08 0.01
Streptococcus peroris 0.09 0.01
Streptococcus salivarius −0.33 8.3 × 10−8

Streptococcus vestibularis −0.41 8.3 × 10−8

Subdoligranulum, unclassified 0.16 9.9 × 10−6

Veillonella atypica −0.18 1.2 × 10−4

Veillonella parvula −0.13 0.02
Veillonella ratti 0.30 4.3 × 10−4

Veillonella, unclassified −0.15 0.01
1 Linear mixed models determined the effect of treatment group (CMF (cow milk formula), EHF (extensive protein
hydrolysate formula)), time (0.5, 0.75, 1.5, 2.5, 3.5, 4.5 months), and group × time interaction on fecal bacteria taxa.
Table lists the 47 taxa that had only significant time effects.
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