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Abstract

RNA sequencing has been widely used as an essential tool to probe gene expression.

While standard practices have been established to analyze RNA-seq data, it is still challeng-

ing to interpret and remove artifactual signals. Several biological and technical factors such

as sex, age, batches, and sequencing technology have been found to bias these estimates.

Probabilistic estimation of expression residuals (PEER), which infers broad variance com-

ponents in gene expression measurements, has been used to account for some systematic

effects, but it has remained challenging to interpret these PEER factors. Here we show that

transcriptome diversity–a simple metric based on Shannon entropy–explains a large portion

of variability in gene expression and is the strongest known factor encoded in PEER factors.

We then show that transcriptome diversity has significant associations with multiple techni-

cal and biological variables across diverse organisms and datasets. In sum, transcriptome

diversity provides a simple explanation for a major source of variation in both gene expres-

sion estimates and PEER covariates.

Author summary

Although the cells in every individual organism have nearly identical DNA sequences,

they differ substantially in their function—for instance, neurons are very different from

muscle cells. This is in large part because different genes are transcribed from DNA

into RNA, a key step in the process known as gene expression. The measurement of

RNA levels is an important tool in studying biology, but is complicated by many poten-

tially confounding factors. To account for this, computational methods can correct for

unknown confounders, but these do not provide any information about what these con-

founders are. Here we show that transcriptome diversity–a simple metric based on

Shannon entropy–explains a large portion of variability in both gene expression mea-

surements as well as the confounding factors detected by a leading method. This preva-

lent factor provides a simple explanation for a primary source of variation in gene

expression estimates.
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Introduction

Gene expression is a fundamental process required by all life forms and its high-throughput

quantification has been an active area of research for over 25 years [1]. A key step in this pro-

cess is the transcription of DNA into RNA.

A myriad of methods have been developed over the past decades to assess RNA levels,

including low-throughput techniques like RNA hybridization (e.g. northern blots, FISH) and

Sanger sequencing, as well as high-throughput methods like DNA microarrays and next-gen-

eration RNA-sequencing (RNA-seq). Each of these methods presents a unique set of advan-

tages and technical difficulties. The main advantage of RNA-seq is its ability to measure

expression levels of all non-repetitive genes in the genome, resulting in its widespread adop-

tion for biological research [2]. Due to its simplicity and commercialization, researchers can

readily prepare RNA and send it to sequencing centers, obtaining data in a matter of hours to

a few days.

Even though there are multiple experimental methods to generate bulk RNA-seq data, it is

now considered to be a standard practice, with most of them generating raw data in the form

of short sequencing reads [2]. Similarly, while there are multiple computational tools to trans-

form these sequencing reads into gene expression values, they generally follow these standard

steps [3]: (1) performing quality control on the experiment and individual reads, (2) mapping

reads to a reference genome to identify their gene-of-origin, (3) creating gene counts, and (4)

transforming those counts into gene expression values to be compared across genes and/or

experiments. This last step has proven to be non-trivial because gene counts in RNA-seq are of

relative nature by design [4], i.e. the number of reads that are sequenced is many orders of

magnitude smaller than the number of RNA transcripts in a cell population [5]. Thus, the read

count of a gene depends on the counts of all other genes.

Computational methods have been developed to normalize and/or transform raw read

counts to account for undesired effects caused by the relative nature of RNA-seq [4]. While the

Transcripts Per Million (TPM) normalization has been used extensively, it has been shown to

be problematic when there are major disparities in gene expression levels or sequencing depth

across experiments [3]. The two most widely adopted methods that attempt to overcome issues

of TPM are the “Trimmed Median of Means” (TMM) [6] and the “Median of Ratios” [7].

Despite some differences between the two, they both rely on creating a shared pseudo-refer-

ence expression vector (1 x # genes) from an expression matrix (# samples x # genes), and this

vector is then used as a normalization factor across all samples. Since their conception, TMM

and Median of Ratios have been extensively used for differential gene expression analysis and

eQTL discovery, and they have been incorporated into the best practices of large consortia like

the use of TMM in the Genotype-Tissue expression project (GTEx) [8].

Many factors can globally affect gene expression estimates. These include extremely highly

expressed genes, sequencing depth differences among samples, ancestry, sex, age, sequencing

technology, and RNA integrity [3,9–11]. In a heterogenous sample collection, not controlling

for these effects can cause spurious results in downstream analysis.

In addition, there are other unmeasured and unknown systematic effects influencing gene

expression estimates that need to be corrected prior to expression analyses [12]. This has been

supported by the inference of broad variance components of gene expression matrices by

probabilistic estimation of expression residuals (PEER) [13]. PEER can find one-dimensional

arbitrarily scaled “hidden” factors that as a whole explain much of the global variation in gene

expression across multiple samples. It has become a common practice for gene expression

quantitative trait locus (eQTL) studies of heterogenous samples (e.g. GTEx) to use PEER hid-

den factors as covariates in models for eQTL discovery. This pipeline increases the sensitivity
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of eQTL mapping [8], but has remained challenging to interpret because PEER factors a priori
are not strongly associated with any known biological or technical source.

In this manuscript we show that Shannon entropy–a simple metric that assesses the tran-

scriptome diversity of an RNA-seq sample [14]–explains much of the global variability in gene

expression; is a major factor that PEER identifies; and is linked to a myriad of technical and

biological variables. Shannon entropy was first developed as part of information theory to

measure the level of “surprise” in a random variable [15], and has since been adopted in many

different fields. In the biological sciences, Shannon entropy has been used in ecological studies

to measure species diversity of a population, and it has been applied to gene expression to

assess transcriptomic diversity [14]. Entropy is highly correlated with within-sample gene

expression variance (Fig A in S1 File). For instance, the least diverse (and highest variance)

transcriptome would have all transcripts from only one gene and the most diverse (lowest vari-

ance) transcriptome would express an equal number of transcripts across all genes (Fig 1). In

other words, diversity reflects our ability to predict what gene a randomly chosen RNA-seq

read comes from—less diverse transcriptomes are dominated by highly expressed genes, and

are therefore more predictable.

Results

Transcriptome diversity explains a large portion of the variability in global

gene expression estimates of RNA-seq samples

While analyzing published D. melanogaster RNA-seq data [16], we observed that transcrip-

tome diversity as measured by Shannon entropy [14] (Fig 1; see Materials and methods: Tran-

scriptome diversity calculation (Shannon entropy)) strongly correlates with the expression of

many genes (measured by TMM). An example of one gene is shown in Fig 2A (Spearman’s ρ =

0.56, n = 851 flies, p-value = 3.3x10-70).

To determine the extent to which transcriptome diversity predicts genome-wide gene

expression levels, we further analyzed this D. melanogaster dataset [16]. TPM values have been

shown to not properly account for sequencing depth differences across samples and for the

influence of highly expressed genes on the rest of genes (usually referred to as RNA composi-

tion) [4]. TMM (and the similar Median of Means) is a more effective normalization method

that in theory accounts for those effects and has been widely adopted for comparing gene

expression across samples. Therefore, we used TMM as our major estimates to investigate the

variation that transcriptome diversity is involved, and we performed analysis on TPM esti-

mates in parallel (results shown in Figs H, I and J in S1 File). We observed that most TMM-

Fig 1. Illustration of transcriptome diversity. Transcriptome diversity (Hs) was computed per sample based on Shannon entropy. G is the total

number of expressed genes and pi is the probability of observing a transcript for gene i. An example of two samples with three genes is shown, where

one sample has a higher transcriptome diversity value (H1) with more evenly distributed sequencing reads aligned to genes than the other sample (H2)

with one gene responsible for the majority of the sequencing reads.

https://doi.org/10.1371/journal.pcbi.1009939.g001
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based expression values were correlated with transcriptome diversity (68.9% of genes at Benja-

mini-Hochberg False Discovery Rate (BH-FDR) <0.05; Fig 2B; see Materials and methods:

Expression associations with transcriptome diversity). Interestingly, most (64%) of the signifi-

cant correlations are positive (Fig 2C; i.e. higher expression in samples with higher transcrip-

tome diversity).

In agreement with the single gene correlations, a principal component analysis (PCA)

shows that a substantial fraction of gene expression variation across samples can be explained

Fig 2. Transcriptome diversity is associated with global TMM gene expression in D. melanogaster. A Example of a strong association between the

TMM expression of a gene encoding for a calcium-binding protein (Nca) and transcriptome diversity across samples from a large RNA-seq study [16].

B Percentage of genes whose expression was significantly associated with transcriptome diversity (as in A; BH-FDR< 0.05 in yellow) vs those that were

not (BH-FDR> = 0.05 in blue). The actual number of genes is shown with white text. C Most of the significant associations between TMM estimates

and transcriptome diversity are positive as shown here by the distribution of Spearman’s correlation coefficients. Thresholds of Spearman’s correlation

coefficient corresponding to FDR< 0.05 are shown as dashed vertical lines. D Loadings from the first two principal components (PCs) from a principal

component analysis done on the full TMM expression matrix; samples are colored by transcriptome diversity and the point shape corresponds to sex. E

Absolute Spearman’s correlation coefficients between transcriptome diversity and loadings of the first 8 PCs (top), and variance explained by each of

those PCs of the full expression matrix.

https://doi.org/10.1371/journal.pcbi.1009939.g002
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by their transcriptome diversity (Fig 2D and 2E; see Materials and methods: PCA analysis).

PC1 mainly separates flies based on sex (which is known to affect expression levels in D. mela-
nogaster [17]), but to a certain extent it is also correlated with transcriptome diversity (Fig 2D

and 2E; Spearman’s ρ = -0.16, p-value = 3.7x10-6), and PC2 is even more highly correlated

with diversity (Fig 2D and 2E; Spearman’s ρ = -0.47, p-value< 2.2x10-16). Overall, transcrip-

tome diversity explains 4% of the TMM variance (S1 Table).

In sum, these results show that gene expression variation across RNA-seq samples can be

partially explained by variation in transcriptome diversity across those samples.

PEER “hidden” covariates encode for transcriptome diversity

Probabilistic estimation of expression residuals (PEER) is a method that was developed to

extract a set of variables that explain maximal variability in a gene expression matrix with het-

erogenous samples [13]. These PEER factors may represent unmeasured global technical or

biological information which can be used as covariates to reduce their confounding effects.

While controlling for PEER covariates has proven to be useful in studies performing eQTL

scans or differential expression analyses, the sources of these factors are unknown.

Based on the results of the previous section, we reasoned that PEER factors could partially

encode for transcriptome diversity. To test this hypothesis, we computed 60 PEER factors (as

recommended for this sample size [8]; see Materials and methods: Uniform processing) across

the 851 flies in this dataset and performed correlation analysis with the corresponding tran-

scriptome variability values of each sample. Out of the 60 PEER factors, 28 showed a significant

correlation with transcriptome diversity (BH-FDR<0.05, Fig 3A left panel). Those 28 PEER

covariates explain a substantially higher variance of the gene expression matrix (Fig 3A right

panel; see Materials and methods: Variance explained of gene expression matrices), compared

to the rest of the covariates which only explained a small fraction of the variance (Fig 3A right

panel; see Materials and methods: Variance explained of gene expression matrices).

We devised a strategy to assess how much of the gene expression variance explained by

PEER is accounted for by transcriptome diversity (see Materials and methods: Gene expres-

sion variance explained by PEER accounted by transcriptome diversity and other covariates).

Results show that transcriptome diversity accounts for 9.2% of the variance explained by PEER

in TMM expression (Fig 3B; difference of median r2 values).

In sum these results suggest that a component of PEER “hidden” factors originates from

differences in transcriptome diversity across samples.

Transcriptome diversity explains a large portion of the variability of gene

expression in GTEx

Given the extent to which transcriptome diversity explains gene expression variability in D.

melanogaster, we wondered whether this might hold for other RNA-seq datasets as well. We

thus decided to analyze GTEx data as this is one of the largest RNA-seq projects to date [8].

These data provide an excellent platform to perform comparisons across multiple individuals

and tissues as it provides RNA-seq data for more than 17,000 samples across 948 human

donors and 54 tissues.

We calculated transcriptome diversity values across samples in GTEx (excluding tissues

with low number of samples, see Materials and methods: Uniform processing) and then

assessed how much of the within-tissue variation in the expression matrices could be explained

by transcriptome diversity. We first took the PCA approach described above for D. melanoga-
ster data. PCs based on TMM expression estimates showed strong associations with transcrip-

tome diversity (Fig 4A; 28 out of 49 tissues have the strongest correlation with PC1, median
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Spearman’s |ρ| = 0.56; 10 out of 49 tissues have the strongest correlation with PC2, median

Spearman’s |ρ| = 0.48).

In line with our PCA results, most genes across all tissues in GTEx showed a significant cor-

relation (BH-FDR<0.05) between TMM expression estimates and transcriptome diversity

(median 63.7% of genes per tissue; Fig 4B), and as seen in D. melanogaster more of the signifi-

cant correlations were positive (median 55.1% positive correlations; Fig 4B). To determine

what attributes of a gene are predictive of the association between its expression level and

transcriptome diversity, we performed multiple regression with gene length, GC content, and

average gene expression level as independent variables (see Materials and methods: Factors

contributing to dependencies of gene expression on transcriptome diversity). We found that

Fig 3. Transcriptome diversity is a major factor encoded in PEER covariates. A Left: Spearman correlation coefficients between transcriptome

diversity values and the values of all PEER covariates obtained from the full expression matrix (see Materials and methods: Uniform processing)

and colored by significance of correlation using BH-FDR. Right: Variance explained by each PEER covariate of the full expression matrix

(calculated using a PCA-based method; see Materials and methods: Variance explained of gene expression matrices). B Boxplots showing the

distribution of variance explained values (r2) from linear regressions done on the expression of each gene using intact PEER covariates, or the

residuals of regressions performed on the same PEER covariates using transcriptome diversity (transcriptome diversity controlled, see Materials

and methods: Gene expression variance explained by PEER accounted by transcriptome diversity and other covariates). The p-values from a Mann-

Whitney test are shown.

https://doi.org/10.1371/journal.pcbi.1009939.g003
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Fig 4. Transcriptome diversity is associated with the expression of most genes across human tissues. A For each GTEx tissue, the dot plot shows

the absolute Spearman correlation coefficient between transcriptome diversity values and the loadings of a PC from a PCA performed on the full

TMM expression matrix. To the right, the directionality of the correlation is shown (+/-) along with the PC used and its total variance explained.

The PC with the highest correlation with transcriptome diversity is shown. Tissues are ordered by absolute Spearman correlation coefficient, and

there is no pattern observed when ordered by sample size (Fig B in S1 File). B For each tissue, the percentage of genes whose expression TMM was

significantly associated with transcriptome diversity (as in A; BH-FDR< 0.05 in yellow) vs those that were not (BH-FDR > = 0.05 in blue), the

numbers on the right represent the directionality of the significant correlations (green are positive significant associations, and purple are negative

significant associations). Significance was assessed using a linear regression approach (see Materials and methods: Expression associations with

transcriptome diversity).

https://doi.org/10.1371/journal.pcbi.1009939.g004
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these three factors all contribute to the association of gene expression with transcriptome

diversity. Longer and less highly expressed genes tend to have stronger associations between

gene expression and transcriptome diversity in most tissues. GC content was the most consis-

tent predictor of a gene’s association between gene expression and transcriptome diversity (Fig

C in S1 File), though the direction of this relationship varied across tissues.

Overall, transcriptome diversity explains a significant proportion of the global gene expres-

sion variance across GTEx tissues (median 6% TMM variance; S1 Table; see Materials and

methods: Variance explained of gene expression matrices), with some exceptional cases like

the brain putamen basal ganglia (15% TMM variance) and heart left ventricle (11% TMM

variance).

Similar to the D. melanogaster data, the PEER covariates that explained the most GTEx

gene expression variance were significantly correlated with transcriptome diversity (Fig D in

S1 File). As an example, Fig 5A (top) shows that 20 out of 60 PEER covariates from blood were

significantly correlated with transcriptome diversity and those covariates explained high levels

of the gene expression variability (Fig 5A bottom; for all tissues see Fig D in S1 File).

To assess how much of the gene expression variance explained by PEER is accounted for by

transcriptome diversity, we performed gene-based associations between expression and intact

PEER factors, as well as PEER factors where transcriptome diversity was regressed out (identi-

cally to our D. melanogaster analysis, see Materials and methods: Gene expression variance

explained by PEER accounted by transcriptome diversity and other covariates). Since GTEx

data is heterogeneous we repeated this analysis regressing other metadata including biological

and technical factors out of PEER factors (sex, sequencing depth, sequencing platform, PCR

amplification method, and the first 5 PCs from the genotype matrix).

We found that among all variables we tested, transcriptome diversity accounted for the

most variance explained by PEER factors from TMM expression values (see Materials and

methods: Gene expression variance explained by PEER accounted by transcriptome diversity

and other covariates). For example, in blood, transcriptome diversity accounted for 6.8% of

the variance explained by PEER, in muscle 6.3%, and in sun-exposed skin 4.8% (Fig 5B, see S2

Table for all tissues). Although sequencing depth seemed as a strong factor and accounted for

6.1% of the variance explained by PEER in whole blood, this is only found in blood and not

in other tissues, and transcriptome diversity is the strongest factor among all tissues that

accounted for the largest variance explained by PEER (S2 Table). To our knowledge this is the

first example of a known source of variability explaining PEER covariates to such an extent.

Overall, these results suggest that transcriptome diversity explains a significant amount of

gene expression variance in RNA-seq data from diverse species and is also a major component

of PEER covariates.

Transcriptome diversity is associated with a variety of technical and

biological factors

As an attempt to understand better the interconnection between transcriptome diversity and

other features from RNA-seq we made use of published datasets (see Materials and methods:

Data sources and data retrieval) that were designed to probe the relationship between technical

and biological influences on gene expression estimates.

Among all variables tested for associations with transcriptome diversity we observed that

sequencing depth was consistently and positively correlated with transcriptome diversity

(Fig 6A and 6B). This association was not a simple consequence of read depth affecting tran-

scriptome diversity, as random sampling of reads to equalize sequencing depth across sam-

ples did not change the relative transcriptome diversity values of samples. Interestingly, we
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Fig 5. In GTEx, PEER covariates correlate with transcriptome diversity. A Top: Spearman correlation coefficients between transcriptome

diversity values and the values of all PEER covariates obtained from the full GTEx blood expression matrix (see Materials and methods:

Uniform processing) and colored by significance of correlation using BH-FDR. Bottom: Variance explained by each PEER covariate of the

GTEx Blood full expression matrix (calculated using a PCA-based method; see Materials and methods: Variance explained of gene expression

matrices). For all other GTEx tissues, see Fig D in S1 File. B Boxplots for three selected tissues whole blood, muscle, and sun-exposed skin,

showing the distribution of variance explained values (r2) from linear regressions done on the expression of each gene using either intact

PEER covariates, or the residuals of regressions performed on the same PEER covariates using the variables shown (controlled PEER rows,

see Materials and methods: Gene expression variance explained by PEER accounted by transcriptome diversity and other covariates). Mann-

Whitney tests against the intact PEER covariates were performed for each of the controlled PEER distributions and the corresponding p-

values are shown.

https://doi.org/10.1371/journal.pcbi.1009939.g005
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also found that RNA integrity was strongly associated with transcriptome diversity, with

more fragmented RNA having an overall lower transcriptome diversity (Fig 6C). This sug-

gests that factors making some samples more “sequenceable” (such as RNA integrity–as a

consequence of sample condition and preparation) may affect both read depth and transcrip-

tome diversity.

We then asked whether biological replicates lead to differences in transcriptome diversity.

Lin et al. (2016) [16] performed 3 biological replicates of 17 D. melanogaster strains; within

each biological replicate, they also included technical replicates and a mixture of both males

and females were included for each strain. Variation in transcriptome diversity values were

observed among technical replicates (Fig E in S1 File). Comparing transcriptome diversity dis-

tributions across biological replicates revealed significant differences (Fig 6D). While there

was a significant difference in transcriptome diversity values when comparing male vs female

Fig 6. Other technical and biological factors are associated with transcriptome diversity. A,B transcriptome diversity was consistently associated

with RNA-seq sequencing depth, shown for D. melanogaster [16] and GTEx blood. C RNA integrity also exhibited significant correlations with

transcriptome diversity as shown here for GTEx blood. D RNA-seq data from D. melanogaster [16] show that transcriptome diversity can differ across

biological replicates (left) as well as sex (right). E Different sequencing library preparations and perturbations result in varying transcriptome diversity

distributions as shown by these violin plots. UNT is untreated mouse liver samples and ILB is Interleukin 1 beta treatment.

https://doi.org/10.1371/journal.pcbi.1009939.g006
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flies, the magnitude of this difference was smaller compared to differences among biological

replicates (Fig 6D).

We then compared different RNA-seq library preparation methods by analyzing data from

a study of mouse liver that compared three methods: Illumina TruSeq stranded mRNA Sample

Preparation kit (Illumina), Takara Bio SMART-Seq v4 Ultra Low Input RNA kit (Clontech-

V4), and Takara Bio SMARTer Stranded Total RNA-Seq Kit v2 –Pico Input Mammalian

(Clontech-Pico) [18]. We observed clear differences between these three methods, as Illumina

produced the highest transcriptome diversity values, followed by Clontech-V4, and then Clon-

tech-Pico (Fig 6E). The original study examined differential expression after Interleukin 1 beta

(ILB) treatment, and interestingly we observed that all ILB-treated samples had overall lower

transcriptome diversity values (Fig 6E).

We also examined the variation of transcriptome diversity values among tissues in GTEx

data. We found that some tissues had a much wider distribution of transcriptome diversity val-

ues than others (Fig F in S1 File). For example, samples from blood and all 13 sampled brain

regions had substantial variation of transcriptome diversity values, suggesting that the effects

of controlling for transcriptome diversity may be most pronounced in these tissues.

Finally, we asked whether different processing pipelines could affect transcriptome diver-

sity. Arora et al. (2020) [19] compiled data from different sources that re-processed GTEx data

from raw sequencing reads to gene counts (GTEx v6 [20], Xena from UCSC [21], Recount2

from John Hopkins [22], mskcc from cBio and mskccBatch from cBio [23]). These pipelines

differ in quality-control filters, mapping procedures and counting techniques. We observed

consistent and clear differences of transcriptome diversity values among these pipelines (Fig G

in S1 File).

Altogether these results show that transcriptome diversity has complex associations with

biological and technical aspects of RNA-seq, both from the experimental and computational

sides.

Discussion

Despite much research over the last decade, it has proven difficult to provide appropriate nor-

malization methods to estimate gene expression from RNA-seq read counts. At the core of the

problem lays a major limitation of RNA-seq: the number of sequenced reads is typically less

than 0.01% of the total number of transcripts in a sample [5]. As a result, RNA-seq expression

levels are relative quantities (referred to as compositional data [4]) where an increase in one

gene’s expression leads to a decrease in the relative expression of all other genes. As a conse-

quence, comparing the expression of any given gene across different samples becomes a non-

trivial issue, and multiple normalization methods have been developed to account for the rela-

tive nature of sequencing data. Ultimately, any differences (even minor) between any two

samples in the distribution of reads across genes may cause global systematic changes in gene

expression estimates.

Transcripts per million (TPM) was one of the first widely adopted normalizations, but it

has been shown to be heavily affected by unusually highly expressed genes and sequencing

depth differences [3]. While TMM [6] and the Median of Ratios [7] addressed some of these

issues, they were not designed to account for overall sample differences in the distribution of

reads across genes. In this manuscript we provide evidence that these differences result in per-

vasive effects on gene expression estimates that confound gene expression analysis.

To investigate the source of these confounding effects, we have used a metric that captures

the distribution of reads across genes in an RNA-seq sample–transcriptome diversity based on

Shannon entropy. Shannon entropy was first formulated to measure the level of surprise of a
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random variable, and when applied to read counts it represents the diversity of the transcrip-

tome. The transcriptome diversity value we used ranges from 0 (a sample with all reads map-

ping to one gene) to 1 (a sample with reads equally distributed across all genes; see Materials

and methods: Transcriptome diversity calculation (Shannon entropy)). Throughout this study

we showed that in a collection of samples, the expression of a gene across samples strongly cor-

relates with transcriptome diversity and while correlations were prevalent in TMM estimates

(Figs 2 and 4), and even more pervasive with TPM estimates (Figs H, I and J in S1 File). More-

over, these associations held for the vast majority of genes and across datasets that spanned dif-

ferent organisms (Figs 2, 4 and 6), and tissues (Fig 4). Overall, our results show that current

normalization methods fail to account for the systematic effects captured by transcriptome

diversity differences among samples.

Systematic effects on gene expression had been previously shown to exist. The PEER

method was designed to produce a set of vectors that captures these effects from a multi-sam-

ple expression matrix [13]. We reasoned that since transcriptome diversity was capturing large

portions of systematic effects on global gene expression, then PEER covariates could be captur-

ing this information. Indeed, a substantial portion of PEER covariates significantly correlates

with transcriptome diversity, and those covariates with the strongest correlations also explain

the highest levels of gene expression variance (Figs 3 and 5; Fig D in S1 File). As a result, a sig-

nificant fraction of the gene expression variance explained by PEER can be accounted for by

transcriptome diversity (Figs 3B and 5B; S2 Table). Thus, a major factor that PEER is capturing

can be encoded by this simple metric–transcriptome diversity.

However, transcriptome diversity can encode true biological signal itself, and not necessar-

ily purely data bias. For example. We saw higher variation of transcriptome diversity for sam-

ples from all brain regions (Fig F in S1 File) and correspondingly, brain regions showed the

strongest correlation between gene expression and transcriptome diversity (Fig 4A). The

higher variation in transcriptome diversity from brain regions could reflect variation in cell

type abundances across samples.

It is worth noting that all RNA data analyzed in this study originates from bulk sequencing

where reads do not include a unique molecular identifier (UMI). The nature of this data

makes it prone to be influenced by experimental artifacts during library preparation, for exam-

ple PCR amplification leading to inaccurate transcript estimates. It is possible that transcrip-

tome diversity is influenced by such artifacts. Applying the analyses presented in this study to

single-cell RNA-seq data with UMIs would shed light on the influence of library prep artifacts

on transcriptome diversity.

Here, we are not aiming to claim that transcriptome diversity should be used in place of

PEER covariates or be the ultimate solution to normalize gene expression. Instead our goal is

to bring researchers’ attention to transcriptome diversity, a prevalent factor that could be a

simple explanation for a major source of variation in gene expression studies. While PEER

remains a powerful approach for correcting unknown confounding factors, a deeper knowl-

edge of the sources of PEER factors—including transcriptome diversity—could lead to more

precise and interpretable normalization approaches that avoid overcorrection [24], as well as

improved experimental practices that minimize confounding.

Materials and methods

Ethics statement

Human data in this study was obtained from public GTEx repositories (https://gtexportal.

org). Its privacy and ethical documentation can be found at: https://gtexportal.org/home/

documentation. No personal identifiable information was used in this study.
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Data sources and data retrieval

For reproducibility a snakemake pipeline is provided at this study’s github repo (https://

github.com/pablo-gar/transcriptome_diversity_paper). This pipeline was used to download

data from the original sources (see below).

The original data were processed uniformly to produce standardized matrices of read

counts, TPM and TMM estimates. PEER covariates were calculated for some of them as men-

tioned in the main manuscript. Uniformly processed expressing matrices can be found in the

S1 Text, the original data can be found in the following links:

• Mouse data (Lin et al. (2016) [16]). Raw count matrices and metadata were downloaded

from GEO (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE60314)

• GTEx data. Raw counts, TPM estimates, eQTL-ready expression matrices, and metadata

were downloaded from GTEx v8 web portal (https://gtexportal.org)

• GTEx data from different processing pipelines (Arora et al. (2020) [19]). These data were

compiled by Arora et al. (2020) [19] and made available at https://s3-us-west-2.amazonaws.

com/fh-pi-holland-e/OriginalTCGAGTExData/index.html

• Mouse data (Sarantopoulou et al. (2019) [18]) Raw count matrices and metadata

were downloaded from GEO (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=

GSE124167)

Transcriptome diversity calculation (Shannon entropy)

Shannon entropy was introduced to RNA-seq elsewhere [14]. Shannon entropy is defined as:

H ¼ �
X

i

pilog2ðpiÞ

Where i is an element (e.g. gene), and pi is the probability of observing element i. Thus, we

define Shannon entropy as follows for an RNA-seq sample:

H ¼ �
XG

i

pilog2ðpiÞ

pi ¼
ci
li
�

1
PG

j
cj
lj

Where G is the total number of expressed genes in a sample, ci and li are the number of

reads and effective length in base pairs of gene i, respectively. In words, pi is the probability

of observing a transcript for gene i in the RNA-seq library, which is equal to the number

of reads mapping to that gene normalized by its effective length, and further divided by

the sum of those values across all genes in the library. Using TPM instead counts, pi is

defined as:

pi ¼
TPMi

PG
j TPMj

PLOS COMPUTATIONAL BIOLOGY Transcriptome diversity is a systematic source of variation in RNA-sequencing data

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009939 March 24, 2022 13 / 20

https://github.com/pablo-gar/transcriptome_diversity_paper
https://github.com/pablo-gar/transcriptome_diversity_paper
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE60314
https://gtexportal.org
https://s3-us-west-2.amazonaws.com/fh-pi-holland-e/OriginalTCGAGTExData/index.html
https://s3-us-west-2.amazonaws.com/fh-pi-holland-e/OriginalTCGAGTExData/index.html
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE124167
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE124167
https://doi.org/10.1371/journal.pcbi.1009939


We provide proof for the following in S1 Note.

H ¼ �
XG

i

pilog2 pið Þ ¼ �
XG

i

TPMi
PG

j TPMj

log2

TPMi
PG

j TPMj

 !

H ranges from 0 to log2(G), where H = 0 when all transcripts are from only one gene and

H = log2(G) when an equal number of transcripts are measured across all genes. Therefore, we

define the following to be able to compare transcriptome diversity across samples:

Hs ¼

�
PG

i
TPMiPG

j
TPMj

log2

TPMiPG

j
TPMj

 !

log2 Gð Þ

Hs ranges from 0 to 1 and this is the value that we refer as transcriptome diversity throughout

the paper.

Uniform processing

Raw read count matrices were downloaded from public sources (see above), except for Arora

et al. (2020) [19] data. These count matrices were reformatted for uniform processing and the

following calculations were done on them:

• TPM: Transcripts per million were calculated by adapting functions from the R package

“scuttle” [25]. Effective gene lengths were defined as the cumulative length of exons from the

mapping transcript.

• TMM: Trimmed median of means was calculated per each dataset using edgeR’s functions

calcNormFactors and cpm [26].

• Transcriptome diversity: Transcriptome diversity values were calculated per sample as

described in section ‘Transcriptome diversity calculation (Shannon entropy)’. See S3 Table

for all values.

• PEER covariates: As recommended [8], for each dataset we first filtered out lowly expressed

genes (only keeping those genes with at least TMM = 1 in 20% of samples). We then calcu-

lated N PEER covariates from the TMM matrix using the “peer” R package (https://github.

com/PMBio/peer). Following GTEx guidelines [8] N was dependent on the number of sam-

ples of the dataset, N = 15 for up to 150 samples, N = 30 for 151–250 samples, N = 45 for

251–350 samples, and N = 60 for more than 350 samples. PEER covariates for GTEx samples

were directly downloaded from the GTEx portal (https://gtexportal.org). See S4 Table for all

values.

The code used for all of these calculations is available at this study’s github repo (https://

github.com/pablo-gar/transcriptome_diversity_paper).

Expression associations with transcriptome diversity

To test for the association between transcriptome diversity and the expression of individual

genes, we used linear regressions with the following model:

y ¼ b0 þ gxþ �

Where y is the expression of a gene across samples and x is the transcriptome diversity of the
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corresponding samples. Significance is measured based on the p-value of a t-test performed on

γ. P-values are adjusted using Benjamini-Hochberg False Discovery Rate.

To follow GTEx standards of association analyses, in all cases both y and x were normalized

by converting the values into quantiles and mapping them to the corresponding values of the

standard normal distribution quantiles.

Factors contributing to dependencies of gene expression on transcriptome

diversity

Gene length and GC content were retrieved via the R package “EDASeq” [27] using ENSEMBL

gene IDs from Biomart database.

To test whether gene length, GC content or mean expression level can predict the associa-

tion between gene expression vs. transcriptome diversity, we used multiple regression with the

following model:

y ¼ b0 þ g1x1 þ g2x2 þ g3x3 þ �

Where y is the association level of the expression of a gene and transcriptome diversity, and x1,

x2 and x3 are the gene length, GC content and mean expression level (TPM or TMM) of the

corresponding genes respectively. Significance is measured based on the p-value of a t-test

performed on γ1, γ2 and γ3. P-values are adjusted using Benjamini-Hochberg False Discovery

Rate.

PCA analysis

PCA was performed for each dataset matrix, both using TPM and TMM expression estimates.

The R function prcomp was used with default parameters.

Variance explained of gene expression matrices

Throughout the study for certain datasets, we aimed to calculate how much variance of gene

expression can be explained by transcriptome diversity and PEER covariates.

To accomplish this, for a given dataset, we first performed PCA as described above. This

allowed us to reduce the dimensionality of the expression matrix as well as know how much

variance each of the PCs explains. For example, we computed vi as the variance explained by

PCi of the expression matrix. For each of the query factors we calculated Pearson correlations

between all PCs and one vector (e.g. transcriptome diversity). ri2 (the square of the Pearson

correlation coefficient) is computed as the coefficient of determination between the query fac-

tor (e.g. transcriptome diversity) and PCi.

Multiplying the ri2 from one of these correlations (e.g. transcriptome diversity vs PC1) by

the variance explained by that PC provides a partial variance explained by the query vector,

and adding these values across all correlations from that query vector (e.g. transcriptome

diversity) provides the total variance explained by the query vector of the gene expression

matrix.

vtotal ¼
Xn

i¼1

r2

i � vi

Where vtotal is the total variance and n is the total number of PCs. The query factor can be

PEER factors to compute the total variance explained by PEER factors of the gene expression

matrix.
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To account for the normality assumption of Pearson correlation, they were calculated on

rankit-normalized vectors, i.e. mapping values to a standard normal distribution based on

quantiles.

Gene expression variance explained by PEER accounted by transcriptome

diversity and other covariates

We first performed associations between PEER covariates and gene expression. r12 (the square

of the Pearson correlation coefficient) is computed as the coefficient of determination between

intact PEER and gene expression.

We then regressed out transcriptome diversity from PEER factors using a linear regression

and used the residuals to repeat the gene expression associations. r22 is computed as the coeffi-

cient of determination between “regressed out” PEER and gene expression.

The difference in r2 values between the intact PEER and gene expression association test

(r12) vs the “regressed out” PEER factor residuals and gene expression association test (r22)
divided by the variance explained by PEER (see section ‘Variance explained of gene expression

matrices’) represents the amount of variance explained by PEER that can be accounted for by

transcriptome diversity.

When computing for gene expression variance explained by PEER accounted by other

covariates such as sex, platform, PC1 etc, the same method was applied as for transcriptome

diversity, and only replacing transcriptome diversity with other covariate (e.g. sex) when

regressing out from PEER factors.

Supporting information

S1 File. Supplementary figures (Figs A–J). Fig A in S1 File. Transcriptome diversity is highly

correlated with within-sample gene expression variance in both TMM and TPM estimates.

Transcriptome diversity across samples from a large RNA-seq study in D. melanogaster [16]

shows significant associations with gene expression variance both in TMM estimates (left) and

TPM (right). Variance was computed using TMM and TPM values respectively. Spearman

correlation coefficients and p-values were computed and shown in each panel. Fig B in S1

File. Transcriptome diversity is associated with the PCs across human tissues related to Fig

4A. For each GTEx tissue, the dot plot shows the absolute Spearman correlation coefficient

between transcriptome diversity values and the loadings of a PC from a PCA performed on the

full TMM expression matrix. To the right, the directionality of the correlation is shown (+/-)

along with the PC used and its total variance explained. The PC with the highest correlation

with transcriptome diversity is shown. Tissues are ordered by sample size. Fig C in S1 File.

Gene length, GC content and gene expression level are associated with the correlation of

gene expression with transcriptome diversity. For each GTEx tissue, -10�log10(p-value) was

computed from a multiple regression of association level of gene expression to transcriptome

diversity on gene length, GC content and gene expression level. For visualization purpose, 1e-

50 was added to all p-values. The black dashed line shows the cut-off p-value equal to 0.05. a In

TMM estimates, lower average gene expression tended to have stronger association between

gene expression and transcriptome diversity across all tissues. GC content showed negative

correlation in most tissues, i.e. lower GC content has stronger association, except positive cor-

relation observed in 7 tissues (adipose subcutaneous, artery aorta, brain cortex, breast mam-

mary tissue, pancreas, thyroid and uterus). Gene length showed significant association in

42 out of 49 tissues (except adipose visceral omentum, adrenal gland, brain amygdala, liver,

skin not sun exposed suprapubic, skin sun exposed lower leg and thyroid), and longer genes

showed stronger association in most tissues (except artery tibial, brain amygdala, skin not sun
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exposed suprapubic and testis). b In TPM estimates, longer genes and lower average gene

expression tended to have stronger association between gene expression and transcriptome

diversity across all tissues except that gene length showed negative correlation in testis. GC

content showed significant association in 44 out of 49 tissues (except adipose subcutaneous,

brain cortex, breast mammary tissue, pancreas and uterus), and most correlations between GC

content and diversity association are negative except artery aorta, brain cortex, breast mam-

mary tissue and thyroid. Fig D in S1 File. PEER covariates associated with transcriptome

diversity explain a large fraction of variance in global gene expression. For each tissue, the

Spearman correlation coefficient between transcriptome diversity values and the values of all

PEER covariates were computed and colored by significance of correlation using BH-FDR

(BH-FDR > = 0.05 in blue, BH-FDR < 0.05 in yellow). The variance of the full expression

matrix explained by each PEER covariate was computed and projected on the y axis. Fig E in

S1 File. Variation observed in transcriptome diversity among technical replicates. 117 flies

with 2 technical replicates were tested by Lin et al. (2016) [16]. For each pair of technical repli-

cates, samples with higher transcriptome diversity values were assigned into technical replicate

1 and samples with lower transcriptome diversity were assigned into technical replicate 2.

Spearman correlation coefficient and p-value were computed and shown. Fig F in S1 File.

Large variation observed in transcriptome diversity across tissues in GTEx. Transcriptome

diversity values’ distribution are shown in violin plots for all tissues in GTEx, indicating a wide

range of variation for transcriptome diversity among tissues. Fig G in S1 File. Differences on

RNA-seq computational pipelines have a strong impact on transcriptome diversity. Five

computation pipelines for RNA-seq data (mskcc, mskccBatch, recount2, v6 and xena) are

shown to have impacts on transcriptome diversity across tissues (data from Arora et al. (2020)

[19]). Kruskal-Wallis rank sum tests were performed, and p-values are shown in each panel. 14

out of 15 tissues (all except salivary) showed significant differences in the distributions of tran-

scriptome diversity values among the five pipelines. Fig H in S1 File. Transcriptome diversity

is associated with global gene expression in D. melanogaster, similar analysis on TPM esti-

mates related to Fig 2. a Example of a strong association between the TPM expression of a

gene (Nca) and transcriptome diversity across samples from a large RNAseq study [16]. b Per-

centage of genes whose expression was significantly associated with transcriptome diversity (as

in a; BH-FDR< 0.05 in yellow) vs those that were not (BH-FDR > = 0.05 in blue). The actual

number of genes is shown with white text. c Most significant associations using TPM estimates

are positive, as shown here by the distribution of Spearman’s correlation coefficients (rho)

between transcriptome diversity and gene expression. d Loadings from the first two principal

components (PCs) from a principal component analysis done on the full TPM expression

matrix; samples are colored by transcriptome diversity and the point shape corresponds to sex.

e Absolute Spearman’s correlation coefficients between transcriptome diversity and loadings

of the first 8 PCs (top), and variance explained by each of those PCs of the full expression

matrix. Fig I in S1 File. Transcriptome diversity is associated with the expression of most

genes across human tissues, similar analysis on TPM estimates related to Fig 4. a For each

GTEx tissue, the dot plot shows the absolute Spearman correlation coefficient between tran-

scriptome diversity values and the loadings of a PC from a PCA performed on the full TPM

expression matrix. To the right, the directionality of the correlation is shown (+/-) along with

the PC used and its total variance explained. The PC with the highest correlation with tran-

scriptome diversity is shown. b For each tissue, the percentage of genes whose expression TPM

was significantly associated with transcriptome diversity (as in a; BH-FDR < 0.05 in yellow) vs

those that were not (BH-FDR > = 0.05 in blue), the numbers on the right represent the direc-

tionality of the significant correlations (green are positive significant associations, and purple

are negative significant associations). Significance was assessed using a linear regression
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approach (see Materials and methods). Fig J in S1 File. In GTEx PEER covariates correlate

with transcriptome diversity on TPM estimates related to Fig 5B. Identical to Fig 5B but for

whole blood, muscle and sun-exposed skin GTEx samples in TPM estimates. Boxplots showing

the distribution of variance explained values (r2) from linear regressions done on the expres-

sion of each gene using either intact PEER covariates, or the residuals of regressions performed

on the same PEER covariates using the variables shown (controlled PEER rows). Mann-Whit-

ney tests against the intact PEER covariates were performed for each of the controlled PEER

distributions and the corresponding p-values are shown.

(PDF)

S1 Table. Gene expression variance explained by transcriptome diversity for all datasets

analyzed in this study.

(TSV)

S2 Table. Median variance explained values (r2) from linear regressions done on the GTEx

expression of each gene using either intact PEER covariates, or the residuals of regressions

performed on the same PEER covariates using the indicated variables.

(TSV)

S3 Table. Transcriptome diversity of all samples analyzed in this study.

(TSV)

S4 Table. PEER covariates.

(TSV)

S1 Note. Mathematical proof for transcriptome diversity equation from TPM values.

(PDF)

S1 Text. Link to google drive file with all expression matrices used in this study.

(TXT)

Acknowledgments

We would like to thank members of the Fraser Lab for helpful feedback.

Author Contributions

Conceptualization: Pablo E. Garcı́a-Nieto, Hunter B. Fraser.

Data curation: Pablo E. Garcı́a-Nieto, Ban Wang.

Formal analysis: Pablo E. Garcı́a-Nieto, Ban Wang.

Funding acquisition: Hunter B. Fraser.

Investigation: Pablo E. Garcı́a-Nieto, Ban Wang.

Methodology: Pablo E. Garcı́a-Nieto, Ban Wang.

Software: Pablo E. Garcı́a-Nieto, Ban Wang.

Supervision: Hunter B. Fraser.

Visualization: Pablo E. Garcı́a-Nieto, Ban Wang.

Writing – original draft: Pablo E. Garcı́a-Nieto, Ban Wang, Hunter B. Fraser.

Writing – review & editing: Pablo E. Garcı́a-Nieto, Ban Wang, Hunter B. Fraser.

PLOS COMPUTATIONAL BIOLOGY Transcriptome diversity is a systematic source of variation in RNA-sequencing data

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009939 March 24, 2022 18 / 20

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009939.s002
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009939.s003
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009939.s004
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009939.s005
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009939.s006
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009939.s007
https://doi.org/10.1371/journal.pcbi.1009939


References
1. Schena M, Shalon D, Davis RW, Brown PO. Quantitative monitoring of gene expression patterns with a

complementary DNA microarray. Science (80-). 1995; 270:467–70. https://doi.org/10.1126/science.

270.5235.467 PMID: 7569999

2. Stark R, Grzelak M, Hadfield J. RNA sequencing: the teenage years. Nat Rev Genet. 2019; 20:631–56.

https://doi.org/10.1038/s41576-019-0150-2 PMID: 31341269

3. Conesa A, Madrigal P, Tarazona S, Gomez-Cabrero D, Cervera A, McPherson A, et al. A survey of

best practices for RNA-seq data analysis. Genome Biol. 2016; 17:1–19.

4. Quinn TP, Erb I, Richardson MF, Crowley TM. Understanding sequencing data as compositions: An

outlook and review. Bioinformatics. 2018; 34:2870–8. https://doi.org/10.1093/bioinformatics/bty175

PMID: 29608657

5. McIntyre LM, Lopiano KK, Morse AM, Amin V, Oberg AL, Young LJ, et al. RNA-seq: Technical variabil-

ity and sampling. BMC Genomics. 2011; 12:293. https://doi.org/10.1186/1471-2164-12-293 PMID:

21645359

6. Robinson MD, Oshlack A. A scaling normalization method for differential expression analysis of RNA-

seq data. Genome Biol. 2010; 11:R25. https://doi.org/10.1186/gb-2010-11-3-r25 PMID: 20196867

7. Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol. 2010; 11:

R106. https://doi.org/10.1186/gb-2010-11-10-r106 PMID: 20979621

8. The GTEx Consortium. The GTEx Consortium atlas of genetic regulatory effects across human tissues.

Science. 2020; 369:1318–30. https://doi.org/10.1126/science.aaz1776 PMID: 32913098

9. Gershoni M, Pietrokovski S. The landscape of sex-differential transcriptome and its consequent selec-

tion in human adults. BMC Biol. 2017; 15:1–15.

10. Shavlakadze T, Morris M, Fang J, Wang SX, Zhu J, Zhou W, et al. Age-Related Gene Expression Sig-

nature in Rats Demonstrate Early, Late, and Linear Transcriptional Changes from Multiple Tissues. Cell

Rep. 2019; 28:3263–3273.e3. https://doi.org/10.1016/j.celrep.2019.08.043 PMID: 31533046

11. Cole SW, Shanahan MJ, Gaydosh L, Harris KM. Population-based RNA profiling in Add Health finds

social disparities in inflammatory and antiviral gene regulation to emerge by young adulthood. Proc Natl

Acad Sci U S A. 2020; 117:4601–8. PMID: 32041883

12. Searle BC, Gittelman RM, Manor O, Akey JM. Detecting sources of transcriptional heterogeneity in

large-scale RNA-seq data sets. Genetics. 2016; 204:1391–6. https://doi.org/10.1534/genetics.116.

193714 PMID: 27729424

13. Stegle O, Parts L, Piipari M, Winn J, Durbin R. Using probabilistic estimation of expression residuals

(PEER) to obtain increased power and interpretability of gene expression analyses. Nat Protoc. 2012;

7:500–7. https://doi.org/10.1038/nprot.2011.457 PMID: 22343431

14. Martı́nez O, Reyes-Valdés MH. Defining diversity, specialization, and gene specificity in transcriptomes

through information theory. Proc Natl Acad Sci U S A. 2008; 105:9709–14. https://doi.org/10.1073/

pnas.0803479105 PMID: 18606989

15. Shannon CE. A Mathematical Theory of Communication. Bell Syst Tech J. 1948; 27:379–423.

16. Lin Y, Chen ZX, Oliver B, Harbison ST. Microenvironmental gene expression plasticity among individual

drosophila melanogaster. G3 Genes, Genomes, Genet. 2016; 6:4197–210. https://doi.org/10.1534/g3.

116.035444 PMID: 27770026

17. Catalán A, Hutter S, Parsch J. Population and sex differences in Drosophila melanogaster brain gene

expression. BMC Genomics. 2012; 13. https://doi.org/10.1186/1471-2164-13-654 PMID: 23170910

18. Sarantopoulou D, Tang SY, Ricciotti E, Lahens NF, Lekkas D, Schug J, et al. Comparative evaluation of

RNA-Seq library preparation methods for strand-specificity and low input. Sci Rep. 2019; 9:1–10.

19. Arora S, Pattwell SS, Holland EC, Bolouri H. Variability in estimated gene expression among commonly

used RNA-seq pipelines. Sci Rep. 2020; 10:1–9.

20. Lonsdale J, Thomas J, Salvatore M, Phillips R, Lo E, Shad S, et al. The Genotype-Tissue Expression

(GTEx) project [Internet]. Nat. Genet. 2013. p. 580–5. https://doi.org/10.1038/ng.2653 PMID: 23715323

21. Vivian J, Rao AA, Nothaft FA, Ketchum C, Armstrong J, Novak A, et al. Toil enables reproducible, open

source, big biomedical data analyses [Internet]. Nat. Biotechnol. 2017. p. 314–6. https://doi.org/10.

1038/nbt.3772 PMID: 28398314

22. Collado-Torres L, Nellore A, Kammers K, Ellis SE, Taub MA, Hansen KD, et al. Reproducible RNA-seq

analysis using recount2 [Internet]. Nat. Biotechnol. 2017. p. 319–21. https://doi.org/10.1038/nbt.3838

PMID: 28398307

23. Wang Q, Armenia J, Zhang C, Penson A V., Reznik E, Zhang L, et al. Data Descriptor: Unifying cancer

and normal RNA sequencing data from different sources. Sci Data. 2018; 5.

PLOS COMPUTATIONAL BIOLOGY Transcriptome diversity is a systematic source of variation in RNA-sequencing data

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009939 March 24, 2022 19 / 20

https://doi.org/10.1126/science.270.5235.467
https://doi.org/10.1126/science.270.5235.467
http://www.ncbi.nlm.nih.gov/pubmed/7569999
https://doi.org/10.1038/s41576-019-0150-2
http://www.ncbi.nlm.nih.gov/pubmed/31341269
https://doi.org/10.1093/bioinformatics/bty175
http://www.ncbi.nlm.nih.gov/pubmed/29608657
https://doi.org/10.1186/1471-2164-12-293
http://www.ncbi.nlm.nih.gov/pubmed/21645359
https://doi.org/10.1186/gb-2010-11-3-r25
http://www.ncbi.nlm.nih.gov/pubmed/20196867
https://doi.org/10.1186/gb-2010-11-10-r106
http://www.ncbi.nlm.nih.gov/pubmed/20979621
https://doi.org/10.1126/science.aaz1776
http://www.ncbi.nlm.nih.gov/pubmed/32913098
https://doi.org/10.1016/j.celrep.2019.08.043
http://www.ncbi.nlm.nih.gov/pubmed/31533046
http://www.ncbi.nlm.nih.gov/pubmed/32041883
https://doi.org/10.1534/genetics.116.193714
https://doi.org/10.1534/genetics.116.193714
http://www.ncbi.nlm.nih.gov/pubmed/27729424
https://doi.org/10.1038/nprot.2011.457
http://www.ncbi.nlm.nih.gov/pubmed/22343431
https://doi.org/10.1073/pnas.0803479105
https://doi.org/10.1073/pnas.0803479105
http://www.ncbi.nlm.nih.gov/pubmed/18606989
https://doi.org/10.1534/g3.116.035444
https://doi.org/10.1534/g3.116.035444
http://www.ncbi.nlm.nih.gov/pubmed/27770026
https://doi.org/10.1186/1471-2164-13-654
http://www.ncbi.nlm.nih.gov/pubmed/23170910
https://doi.org/10.1038/ng.2653
http://www.ncbi.nlm.nih.gov/pubmed/23715323
https://doi.org/10.1038/nbt.3772
https://doi.org/10.1038/nbt.3772
http://www.ncbi.nlm.nih.gov/pubmed/28398314
https://doi.org/10.1038/nbt.3838
http://www.ncbi.nlm.nih.gov/pubmed/28398307
https://doi.org/10.1371/journal.pcbi.1009939


24. Fusi N, Stegle O, Lawrence ND. Joint modelling of confounding factors and prominent genetic regula-

tors provides increased accuracy in genetical genomics studies. PLoS Comput Biol. 2012; 8. https://doi.

org/10.1371/journal.pcbi.1002330 PMID: 22241974

25. McCarthy DJ, Campbell KR, Lun ATL, Wills QF. Scater: pre-processing, quality control, normalization

and visualization of single-cell RNA-seq data in R. Bioinformatics. 2017; 33:btw777. https://doi.org/10.

1093/bioinformatics/btw777 PMID: 28088763

26. McCarthy DJ, Chen Y, Smyth GK. Differential expression analysis of multifactor RNA-Seq experiments

with respect to biological variation. Nucleic Acids Res. 2012; 40:4288–97. https://doi.org/10.1093/nar/

gks042 PMID: 22287627

27. Risso D, Schwartz K, Sherlock G, Dudoit S. GC-Content Normalization for RNA-Seq Data. 2011;

PLOS COMPUTATIONAL BIOLOGY Transcriptome diversity is a systematic source of variation in RNA-sequencing data

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009939 March 24, 2022 20 / 20

https://doi.org/10.1371/journal.pcbi.1002330
https://doi.org/10.1371/journal.pcbi.1002330
http://www.ncbi.nlm.nih.gov/pubmed/22241974
https://doi.org/10.1093/bioinformatics/btw777
https://doi.org/10.1093/bioinformatics/btw777
http://www.ncbi.nlm.nih.gov/pubmed/28088763
https://doi.org/10.1093/nar/gks042
https://doi.org/10.1093/nar/gks042
http://www.ncbi.nlm.nih.gov/pubmed/22287627
https://doi.org/10.1371/journal.pcbi.1009939

