
 

Open Peer Review

F1000 Faculty Reviews are commissioned
from members of the prestigious F1000

. In order to make these reviews asFaculty
comprehensive and accessible as possible,
peer review takes place before publication; the
referees are listed below, but their reports are
not formally published.

Discuss this article

 (0)Comments

REVIEW

Co-evolution techniques are reshaping the way we do structural
 bioinformatics [version 1; referees: 2 approved]

Saulo de Oliveira, Charlotte Deane
Department of Statistics, University of Oxford, Oxford, UK

Abstract
Co-evolution techniques were originally conceived to assist in protein structure
prediction by inferring pairs of residues that share spatial proximity. However,
the functional relationships that can be extrapolated from co-evolution have
also proven to be useful in a wide array of structural bioinformatics applications.
These techniques are a powerful way to extract structural and functional
information in a sequence-rich world.
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Introduction
A large number of structural bioinformatics applications rely on 
extracting structural features from a protein’s sequence. This is 
traditionally done by performing multiple sequence alignments 
(MSAs) of homologues. MSAs have been used as input to pre-
dict features such as secondary structure, torsion and bond angles, 
solvent accessibility, disorder regions, and domain boundaries. 
The main limitation of most of these descriptors such as predicted 
secondary structure is that, although often highly accurate, they  
provide information only about a protein’s local conforma-
tion. For instance, they may tell us how a set of residues com-
prise an alpha-helix, but they do not provide any information as 
to how different alpha-helices are oriented with respect to one 
another. Techniques based on co-evolution go a step further by  
extracting non-local structural information from MSAs. These 
techniques are based on the notion that two residues which 
mutate in a correlated fashion, so that a mutation in one is often 
compensated by a mutation in the other, can be considered to be  
co-evolving. Co-evolution is interpreted as functional depend-
ence, i.e. if two residues are co-evolving, there is a cost in fitness 
for mutating only one of these residues. Although these tech-
niques were originally conceived and applied to protein structure  
prediction, they are now established tools with a diverse set of 
applications in structural bioinformatics.

Initial attempts at identifying co-evolving residues were imple-
mented by calculating the correlation between columns in an 
MSA1–6. To quantify the precision of different methods, protein  
contacts (residues that share spatial proximity; usually C-βs 
less than 8 Å apart) were considered as true positives. These 
early attempts presented low precision and therefore limited  
usefulness. Methods based on calculating the Mutual Infor-
mation (MI) between MSA columns were able to extend the  
applicability of these approaches7–9, but predictions were still  
not precise enough to be useful for most cases10.

The exponential growth in the number of protein sequences  
combined with the application of existing statistical techniques 
that solved the inverse statistical problem to infer evolutionary  
couplings have allowed the development of methods with a preci-
sion range that has proved useful for many applications11–14. Direct 
Coupling Analysis (DCA) techniques are based on a generalised 
Ising model and, unlike MI and previous approaches, addressed 
the problem of transitivity by considering the correlation amongst 
all columns in the MSA as background to establish if two residues 
are co-evolving. Subsequent implementations based on similar 
ideas attempted to relax some of the assumptions of the origi-
nal model and yielded progressively better results15–18. Although 
close in conception, these methods managed to produce a signifi-
cant number of non-overlapping predicted correlations19. Meta- 
predictors were then developed to combine the non-overlapping 
set of predictions to produce a consensus19–21, further improving 
the precision of co-evolution inference. A large-scale comparative 
study (~3,500 cases) has shown that the most precise of these meth-
ods, metaPSICOV22, achieved a precision greater than 50% for its 
top L predictions, where L is the protein length, for over 68% of test 
cases23. Other methods were developed with specific applicability, 
such as inferring co-evolving residues in membrane proteins24–26 or 
between β-sheets27. The precision of predicted correlated mutations 

has continued to increase with improved methods using physico-
chemical information28 and ultra-deep learning29.

Co-evolution and protein structure prediction
The implementation of DCA led to consistent and accurate  
de novo structure prediction for both soluble14,15,30 and transmem-
brane proteins31,32 when sufficient sequence information is avail-
able. Recent results from the critical assessment of methods of 
protein structure prediction33 have shown that in the presence of 
a sufficiently accurate number of predictions, topology predic-
tion can be performed consistently and accurately. However, a few 
challenges remain regarding the identification and assignment of 
domain boundaries, longer proteins, and, most importantly, for 
cases where the number of available sequences is insufficient for 
accurate co-evolution inference. This latter problem is the main 
limitation; without enough diverse sequence information, accu-
rate evolutionary coupling inference is currently impossible. When 
considering the results of the Critical Assessment of methods for 
protein Structure Prediction (CASP), a blind community-wide  
experiment that evaluates different prediction methods, pro-
tein structure prediction has been applied to a large number of 
cases where the target structure was unknown, providing reliable  
large-scale information about unknown folds34.

Understanding protein–protein interactions in light of 
co-evolution
Co-evolution analysis of paired sequences from interacting pro-
teins has been shown to be effective in identifying pairs of residues 
involved in complex formation35. A subsequent study has shown that 
when the number of paired sequences exceeds the average length of 
the proteins in the complex, most of the co-evolving residues are in 
contact at the protein–protein interface36.

Co-evolution has also been shown to assist in protein–protein  
docking during the rounds 28–35 of the critical assessment of pre-
diction of interactions. A potential based on co-evolution infer-
ence called InterEVScore was used in conjunction with ZDock, 
SOAP-PP, and Rosetta refinement to produce correct predictions 
for 10 out of 18 targets37,38. Co-evolution has also been used to 
identify protein–protein interactions and was shown to predict the 
only two experimentally known interactions of the trp operon39. 
The main limitation that co-evolution techniques encounter when  
used to infer protein–protein interactions is that these methods 
require a large number of pairs of protein sequences of the same 
organism, which currently restricts its applicability to a small 
number of cases. Furthermore, pairing of same-organism sequences 
is particularly difficult in the presence of paralogues, and methods 
have been proposed to address this problem40,41.

Co-evolving residues may be suggestive of 
multimerisation
The concept of using co-evolution to predict protein-protein  
interactions can be further extended to include protein mul-
timerisation. This offsets the limitation of dependence on 
paired sequences. However, multimerisation prediction is more  
challenging than the identification of co-evolving residues in a  
protein–protein interaction interface, since it is necessary to  
discriminate between multimeric contacts and intra-monomer  
contacts.
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Co-evolution techniques were used to correctly identify multimeric 
contacts for 18 dimeric complexes42 and to validate a suggested 
dimeric interface between two Hsp70 molecules in the DnaK 
crystal43. This success in multimeric prediction suggests that the  
existing quality assessment of co-evolution techniques may be 
underestimating their precision. This is because of the fact that 
pairs of residues interacting in the multimeric conformation would 
not necessarily share spatial proximity when considering the mono-
meric protein chain and thus would be incorrectly considered as 
false positives.

Predicting domain boundaries by means of 
correlated mutations
Domain boundary identification is particularly useful for, but not 
restricted to, protein structure prediction, and it has been reported 
as one of the main challenges encountered in the free-modelling 
category of CASP44. Protein contacts have been used for automatic 
domain boundary assignment and prediction by means of mini-
mising the inter-domain contacts whilst maximising the number 
of intra-domain contacts45,46. However, these contact-based meth-
ods depend on an existing structure for the target sequence and are 
therefore not applicable when predicting new structures. This limi-
tation, however, can potentially be overcome by using co-evolution 
inference to predict protein contacts. Correlated mutations output 
by MI led to the successful prediction of domain boundaries47. A 
more precise co-evolution inference method has also been used 
for domain prediction. It was shown to produce better results for 
368 targets compared to sequence-based methods and comparable 
results to homology-based methods48.

Identifying alternative conformations, allostery, and 
flexibility by means of co-evolution
Co-evolution provides a way of assessing the biological relevance 
of different conformations observed in coarse-grained structural-
based models or molecular dynamics simulations. Co-evolving 
residues have been used to guide coarse-grained simulations either 
towards the native conformation or to explore conformational 
ensembles that are supported by evolution49. They have also been 
used to identify distinct functional conformational states suggested 
to be observed between apo and holo conformations50–53. In another 
study, co-evolution was used to identify a framework for allostery 
for the MutS DNA mismatch repair protein54 by means of Statis-
tical Coupling Analysis (SCA). This approach differs from the 
traditional DCA, as it aims to construct a network of co-evolving 
residues as opposed to performing the correlation assessment on a 
pairwise level.

Identification of alternative conformations and allostery using 
experimental techniques is challenging, suggesting co-evolution 
techniques may be a powerful tool for exploring and targeting con-
formational dynamics. The success of co-evolution approaches sug-
gests that co-evolving residues can be in contact only in a subset 
of a protein’s conformations. Once again, this highlights that the 
precision of co-evolution methods may be underestimated if they 
are tested against a single protein structure.

Co-evolution can assist in experimental 
determination
Structural models produced ab initio can be used to assist in  
crystallographic protein structure determination, particularly when 
no other structural information is available. In these scenarios,  
ab initio models are used in molecular replacement protocols to 
solve the phasing problem. However, this is limited by the quality 
and reliability of the input models. Up until the advent of more 
precise co-evolution methods, ab initio protein structure prediction 
led to poor modelling results for a large number of cases, including 
longer and/or multi-domain proteins. Co-evolution has broadened 
the applicability of models produced in the absence of a template, 
leading to more consistent and reliable predictions. Models gen-
erated ab initio in conjunction with co-evolution constraints have 
been shown to improve the success of molecular replacement55,56. 
Co-evolution has also been used to characterise the order in which 
macromolecular complexes self-assemble, complementing existing 
experimental data for those complexes57.

Expanding the applicability of co-evolution via 
metagenomics
The precision of co-evolution methods is known to be dependent on 
the number of non-redundant sequences used in the MSA13–15,19,30. 
Insufficient sequence information constitutes the main limitation 
for co-evolution techniques. In the absence of a minimal number 
of non-redundant sequences, the inferred evolutionary couplings 
are unlikely to suit any of the purposes mentioned thus far. The 
usefulness of the predictions is therefore restricted to protein fami-
lies for which a sufficient number of non-redundant sequences is 
available. It was previously reported that approximately 25% of 
the protein families on Pfam58 would have a sufficient number of 
sequences for reliable co-evolution inference17. Metagenomics data 
have been used as a source for additional sequences, thus expand-
ing the applicability of co-evolution59. Ovchinnikov and colleagues 
used metagenomics to increase the number of MSA sequences 
and subsequently to predict the protein structure of an additional 
614 protein families, 140 with no members with known structure. 
Metagenomics provides a wealth of sequence information that is 
yet to be explored in other applications of co-evolution techniques, 
such as protein–protein interaction prediction and functional  
characterisation.

Functional characterisation and fitness estimation
A common application in bioinformatics is to predict the effect 
of a particular mutation on a phenotype. Given that co-evolution  
aims to capture correlated mutations, it can be used to quantify 
how likely a mutation is to be compensated for by a second muta-
tion in another residue. This, in turn, provides a means of estimat-
ing the fitness cost for a particular mutation considering its effect 
based on co-evolving residues. A recent method, EVmutation, uses  
co-evolution to quantify the effects of multiple mutations on 
the phenotype60. Though the method can be generalised for any  
organism, it was tested for 34 cases to identify deleterious muta-
tions in humans, showing comparable results to state-of-the-art 
supervised methods.
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Maximum entropy models, which serve as a basis for several  
co-evolution methods, can also provide insights on the fitness  
landscape of a particular protein family61–63. These methods can 
estimate an energy for a target sequence that can be interpreted as 
the compatibility of this sequence to the fitness landscape of its 
family.

Another application of co-evolution-based fitness estimation relates 
to bioengineering. Co-evolution can be used to identify pairs of 
residues which, if mutated, can alter a protein’s stability and/or 
function. This is particularly important when selecting hotspots for 
enzyme engineering64. As an example, co-evolving site mutagenesis 
was used to improve protein thermostability of alpha-amylase65. 
There are also examples where mutations in co-evolving positions 
were shown to be de-stabilising64. Evolutionary couplings can also 
highlight residue interactions that are not known either because a 
structure is unavailable or because such relationships are not evi-
dent from structural data (e.g. unresolved residues). This provides 
additional insights into protein folding, stability, and function that 
can be explored by synthetic biology/bioengineering.

Conclusions
The advent of precise methods for the identification of co- 
evolving residues has led to progress in many areas of structural 

bioinformatics. The limited applicability of these methods, usu-
ally constrained by the amount of sequence information avail-
able, may be offset by metagenomics efforts and the exponential  
growth in sequence information. This paves the way for co-evolu-
tion to become as pivotal to bioinformatics analyses as sequence 
alignments themselves. The functional relationships that can be 
derived from these predictions provide a source of additional data 
that goes beyond the realm of structural prediction, translating an 
abundant source of information (sequence) into biological signal. 
Though still in their infancy, many of the alternative applications 
of co-evolution show great promise, and we can expect to see  
many advances and new techniques in these areas over the coming 
years.
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