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Artificial intelligence diagnosis of Helicobacter pylori infection 
using blue laser imaging-bright and linked color imaging: a  
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Abstract Background Deep learning is a type of artificial intelligence (AI) that imitates the neural network 
in the brain. We generated an AI to diagnose Helicobacter pylori (H. pylori) infection using blue 
laser imaging (BLI)-bright and linked color imaging (LCI). The aim of this pilot study was to 
establish an AI diagnosing system that predicts H. pylori infection status using endoscopic images 
to improve the accuracy and productivity of endoscopic examination.

Methods A total of 222 enrolled subjects (105 H. pylori-positive) underwent 
esophagogastroduodenoscopy and a serum test for H. pylori IgG antibodies. During 
esophagogastroduodenoscopy, an endoscopist sequentially took 3 still images of the lesser 
curvature of the stomach using white light imaging (WLI), BLI-bright, and LCI. EG-L580NW 
endoscopic equipment (FUJIFILM Co., Japan) was used for the study. The specifications of the AI 
were as follows: operating system, Linux; neural network, GoogLeNet; framework, Caffe; graphic 
processor unit, Geforce GTX TITAN X (NVIDIA Co., USA).

Results The area under the curve (AUC) on receiver operating characteristics analysis was 0.66 
for WLI. In contrast, the AUCs of BLI-bright and LCI were 0.96 and 0.95, respectively. The AUCs 
obtained for BLI-bright and LCI were significantly larger than those for WLI (P<0.01).

Conclusions The results demonstrate that the developed AI has an excellent ability to diagnose 
H. pylori infection using BLI-bright and LCI. AI technology with image-enhanced endoscopy is 
likely to become a useful image diagnostic tool.

Keywords Endoscopic diagnosis, gastric carcinogenesis, Helicobacter pylori, deep convolutional 
neural network, image-enhanced endoscopy
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Introduction

Esophagogastroduodenoscopy (EGD) is of growing 
importance in the diagnosis of Helicobacter pylori (H. pylori) 

gastritis because H. pylori infection is strongly associated 
with gastric carcinogenesis [1-4]. Studies have reported 
that conventional image-enhanced endoscopy (IEE) with 
a magnifying function is useful for improving diagnostic 
accuracy for H. pylori-associated gastritis [5-8]. However, 
since the light source was insufficient in conventional IEE 
systems, these systems were not able to diagnose a wide range 
of gastritis.

Recently, a new IEE system that uses a laser light source was 
introduced. This IEE system, called LASEREO (FUJIFILM Co., 
Japan), has two laser light sources, offering four observation 
modes of white light imaging (WLI), blue laser imaging (BLI), 
BLI-bright, and linked color imaging (LCI) [9-11]. This novel 
system appears appropriate for non-magnifying endoscopic 
diagnosis of H. pylori gastritis [11].

With progress in computer technology, artificial intelligence 
(AI) approaches are being increasingly applied in medicine. In 
particular, deep learning has attracted attention in diagnostic 
imaging [12,13]. Deep learning is a type of AI that imitates neural 
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network functioning and can learn to identify scene-specific 
features in images; thus, it automatically establishes a classification 
protocol. Some previous articles reported the effectiveness of 
diagnosis of H. pylori infection using conventional endoscopic 
WLI with a deep learning method [14,15]. Nevertheless, there is 
no published article regarding the usefulness of new IEE systems 
without a magnifying function for the endoscopic diagnosis 
of H. pylori infection. Here, we attempted to generate an AI to 
diagnose H. pylori infection using BLI-bright and LCI without a 
magnifying function.

Patients and methods

Study subjects and endoscopic examination

We designed a prospective pilot study of all subjects 
who underwent EGD and were tested for serum H. pylori 
IgG antibodies at our medical clinic over a 13  month 
period beginning in November 2015. We obtained written 
agreement to participation in this study from all subjects. All 
of the 290 subjects were candidates for the study. Of these, 
46  patients with a history of H. pylori eradication therapy 
were excluded, so as to avoid contamination of patients who 
had gastric intestinal metaplasia despite a negative reaction 
to serum H. pylori IgG antibodies. In addition, 22 subjects 
with serum H. pylori IgG antibody titers between 3.0 and 

9.9 U/mL (so-called “high negative titer”) were excluded 
to prevent the inclusion of false-positive or false-negative 
H. pylori infection in the study [16]. A serum H. pylori IgG 
antibody titer of ≥10 U/mL was considered positive for 
H. pylori infection, while a titer <3.0 U/mL was considered 
negative. Finally, 222 subjects were stratified into those 
currently infected or uninfected with H. pylori. Fig. 1 shows 
the enrolment process for subjects in this study. The total 
cohort consisted of 139  males and 83  females, mean age 
55.1±13.2 years of age.

All EGDs were performed by an endoscopist (HN), qualified 
as a board-certified fellow of the Japan Gastroenterological 
Endoscopy Society, blinded to the serum titer of H. pylori 
IgG antibodies. The endoscopic equipment used for the study 
was an EG-L580NW instrument (FUJIFILM Co., Japan). This 
endoscopic system has two laser light sources for excitation of 
WLI (typical wavelength: 450 nm) and BLI (typical wavelength: 
410 nm), providing 4 different imaging observation modes—
WLI, BLI, BLI-bright, and LCI—by combining different 
emission strength ratios and image processing. BLI visualizes 
vascular microarchitecture and micro-surface feature of 
the gastrointestinal mucosa, similarly to narrow-band 
imaging  [17]. LCI improves the ability of the endoscopist to 
recognize slight differences in mucosal color, such as those 
caused by inflammation or atrophy [11].

At our medical clinic, we routinely record approximately 40 
WLI images of the stomach during EGD. In the present study, 
we focused on endoscopic images of the lesser curvature of the 
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State after H. pylori eradication (n= 46)
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Figure  1 Enrollment of subjects in this study. Subjects who had a history of Helicobacter pylori (H. pylori) eradication 
therapy and a serum H. pylori IgG antibody titer between 3.0 and 9.9 U/mL were excluded. Finally, 222 subjects were 
enrolled (105 H. pylori-positive) who underwent esophagogastroduodenoscopy (EGD) and a serum test for H. pylori 
IgG antibodies. All of the 222 enrolled subjects were allocated to a training group (n=162) or a test group (n=60) 
WLI, white light imaging; BLI, blue laser imaging; LCI, linked color imaging; ROC, receiver operating characteristics; AUC, area under the curve; 
Ab, antibodies
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gastric body, because mucosal features of atrophy and intestinal 
metaplasia are most prominent in this area [18,19]. During 
EGD, the endoscopist sequentially captured 3 still images at 
the same position in all subjects using WLI, BLI-bright, and 
LCI, with an endoscope fixed in position at the lesser curvature 
of the gastric body.

This study was designed according to the Helsinki 
Declaration of the World Medical Association and was 
approved by the ethics review committee of our medical 
foundation (approval number 15-02).

Preparation of endoscopic images for AI

The 222 enrolled subjects were allocated to a training group 
(n=162) or a test group (n=60) to evaluate the diagnostic 
accuracy of the AI. The subjects in the training group were 
registered in the first 10 months, and those in the test group 
were registered in the last 3 months of the study. The H. pylori 
IgG antibody titer of each subject was taken as the gold standard 
for infection status during evaluation of the AI diagnosis [20]. 
H. pylori infection was present in 75 of the training group and 

30 of the test group subjects. For each patient, one WLI, one 
BLI-bright, and one LCI image of the lesser curvature of the 
gastric body was included.

For each image, a central part without personal information 
about the subject was clipped out at a resolution of 880 × 880 
pixels as the region of interest and then converted to a 224 
× 224 pixel image to adapt to the visual calculation area of 
the AI. For training the AI, images linked to information on 
H. pylori infection status were employed as training images. 
For each training group (WLI, BLI-bright, and LCI) we 
prepared 486 images (rotated 90, 180, and 270 degrees) in 
addition to the original 162, for a total of 648. Thus, 1944 
images were used for the AI training. After training, 180 
images from the test group (60 each for WLI, BLI-bright, 
and LCI) were analyzed by the AI without information on 
H. pylori infection. The accuracy of the AI in diagnosing H. 
pylori infection was assessed by comparing the output data 
from the test group with the actual data on H. pylori infection 
status. In the study presented here, we used a total of 2124 
endoscopic images for the training and test groups in a study 
design shown schematically in Fig. 2.
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Figure 2 Data preparation for the study. In the present study a total of 2124 endoscopic images were used for the training and test groups. Data 
augmentation was applied to the training group but not to the test group
WLI, white light imaging; BLI, blue laser imaging; LCI, linked color imaging; H. pylori, Helicobacter pylori
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pale-white color change in the same area of mucosa. Fig. 3D,E,F 
are feature maps of convolutional layers during the AI test in 
WLI, BLI-bright and LCI, respectively. In each IEE image, the 
AI responded to the lesser curvature of the stomach, which was 
the region of mucosal atrophy with intestinal metaplasia and 
was indicated by a light green or a light blue color. The response 
of the AI to WLI (Fig. 3D) was relatively weak. In these 3 test 
images, the AI correctly diagnosed H. pylori infection.

Fig. 4 shows ROC curves, sensitivity, specificity, and AUC for 
WLI, BLI-bright, and LCI. The AUC was 0.66 for WLI, whereas 
for BLI-bright and LCI it was 0.96 and 0.95, respectively. The 
AUCs were significantly larger for BLI-bright and LCI than for 
WLI (WLI and BLI-bright, P=3.37 × 10-5; WLI and LCI, P=4.08 
× 10-5). The sensitivities for BLI-bright and LCI were 96.7% and 
96.7%, respectively. The diagnosis time for 60 test images by 
each AI was 7 sec. There was no difference in diagnosis time 
between WLI, BLI-bright, and LCI.

Discussion

IEE combined with magnifying endoscopy has been shown 
to be useful in the diagnosis of H. pylori-associated gastritis, 
because features of the image obtained using these endoscopic 
systems correspond well to the pathological findings of gastritis 
and mucosal atrophy [5-8]. Furthermore, the new laser IEE 
techniques of BLI-bright and LCI provide brighter endoscopic 
views and enable us to observe gastrointestinal mucosa over a 
wider area without a magnifying function, unlike conventional 

The method of AI training and testing

The specifications of the AI used in this study were as 
follows: operating system, Linux (Ubuntu 14.04, LTS Canonical 
Ltd. United  Kingdom); neural network, GoogLeNet [21]; 

framework, Caffe (version 0.15.9) [22]; graphic processor unit, 
Geforce GTX TITAN X, (NVIDIA Co., USA). The GoogLeNet 
used was a 22-layer deep convolutional neural network 
(DCNN) incorporating convolutional and pooling layers.

Here, we elaborate on the AI utilized. We used GoogLeNet 
as a pre-trained DCNN model, created in advance using a 
large number of public supervised images. GoogLeNet sets 
its initial neural network weights based on 1.2 million general 
images [21]. In the present study, GoogLeNet was additionally 
trained with approximately 2000 endoscopic images from our 
training group, including data augmentation by image rotation, 
to diagnose the two categories sought (H. pylori-positive and 
H. pylori-negative). This method is called fine-tuning [23]. 
For the fine-tuning of the AI the batch size was set at 20, the 
training epoch at 100 and the initial learning rate at 0.0005. 
The learning rate was stepped down by one digit after every 
third of the training epoch. The momentum was set at 0.9, 
and the weight decay at 0.0005. The AI automatically revised 
the original weights of the DCNN through fine-tuning, thus 
acquiring image recognition ability as an endoscopic diagnosis 
system.

Statistical analysis

The present study was an initial pilot study for endoscopic 
diagnosis using AI without sample size calculation. We 
determined the sample size, set at approximately 200 examinees, 
according to a previous study [24]. As noted above, a total of 
180 test images obtained from 60 subjects (30 H. pylori-positive 
and 30 H. pylori-negative images) were used for testing the AI. 
The diagnostic accuracy for H. pylori infection was determined 
quantitatively in terms of specificity, sensitivity, and receiver 
operating characteristic (ROC) area under the curve (AUC). 
The trained AI delivers a continuous predicted value between 0 
and 1.0 for the probability of H. pylori infection corresponding 
to each test image. In this study, the predicted value for H. pylori 
infection yielded by the AI was used as a continuous variable for 
the ROC curve. The AUC was then determined comparatively 
for each WLI, BLI-bright and LCI case. All statistical analyses 
were performed using R computer software (version 3.3.2. The 
R Project for Statistical Computing, Austria) [25].

Results

Fig. 3 shows endoscopic images from a subject with H. pylori 
infection. In the WLI (Fig.  3A), the gastric mucosa of the 
lesser curvature was relatively smooth and yellowish. Fig. 3B 
shows an image in BLI-bright. There were small whitish spots 
scattered in the lesser curvature. In an LCI (Fig. 3C), there is a 

Figure  3 Feature maps of the AI corresponding to the endoscopic 
images. Endoscopic images of a H. pylori-positive subject (test group). 
An image in WLI of EGD (A) shows yellowish mucosa in the lesser 
curvature (lower part of the picture). An image in BLI-bright (B) 
shows small whitish spots scattered over the mucosal surface (region 
between the central part and the lower right part of the picture). An 
image in LCI (C) shows a pale-white color change in the same area. 
Feature maps of convolutional layers during the AI test are also shown 
for WLI (D), BLI-bright (E) and LCI (F). In each IEE image, the AI 
responded to the lesser curvature of the stomach, which was the region 
of mucosal atrophy with intestinal metaplasia, indicated by a light 
green or a light blue color
AI, artificial intelligence; WLI, white light imaging; BLI, blue laser 
imaging; LCI, linked color imaging; H. pylori, Helicobacter pylori
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IEEs. Previous studies reported that the use of these new 
laser IEE systems facilitates the diagnosis of inflammation 
and atrophy at the mucosal surface [11]. However, there is 
no published evidence supporting the usefulness of new IEE 
systems without a magnifying function for the endoscopic 
diagnosis of H. pylori infection. Therefore, non-expert 
endoscopists may feel difficulty with the endoscopic image 
because a large amount of diagnostic information is contained 
in the picture with new IEEs [26].

Nowadays, progress in AI technology has resulted in its 
increasing application in medicine. In particular, deep learning 
has attracted attention in diagnostic imaging. Two articles have 
already reported on AI diagnosis systems for H. pylori infection; 
however, the previous AIs only used conventional white light 
endoscopic images in the diagnosis [14,15]. Itoh et al reported 
that their DCNN demonstrated an AUC and sensitivity for 
WLI of 0.956 and 86.7%, respectively [14]. There were some 
environmental differences in DCNN between that paper and 
the present study, such as learning rate, training epoch, methods 
of data augmentation and the number of testing subjects. In 
this study, the authors mainly set the DCNN environment for 
adaptation to IEEs rather than WLI. Therefore, the sensitivity 
for BLI-bright and LCI was 10% superior to the previous 
paper using WLI. Shichijo et al described using a maximum 
of 32,208 endoscopic white light images to generate DCNNs; 
that is about 180  times more endoscopic images and training 
calculations than we used [15]. Other studies have evaluated 
the diagnostic accuracy of WLI and IEE for H. pylori gastritis. 
Anagnostopoulos et al reported that five expert endoscopists 
who performed over 2000 upper endoscopic examinations 
showed a positive predictive value of 83.8% for H. pylori 
infection using WLI with magnifying function [27]. Meanwhile, 
in the present situation, where IEEs are becoming more 
widespread, some endoscopists acknowledge that they can be 
effective for diagnosing gastritis  [5-8]. Tahara et al reported a 

sensitivity of 95.2% and a specificity of 82.2% for magnifying 
narrow band imaging endoscopic findings in the prediction 
of H. pylori infection status  [8]. Considering the prior reports 
and the current situation, we judged that AI could be created 
effectively using IEE. Hence, we aimed to generate a new AI for 
endoscopic diagnosis of H. pylori infection using two novel laser 
IEE systems: BLI-bright and LCI. Our new AI was efficiently 
adapted to those laser IEEs rather than WLI; consequently, it 
demonstrated an excellent ability to diagnose H. pylori infection 
using the IEEs. The AUCs for BLI-bright and LCI were 0.96 and 
0.95, respectively; moreover, the sensitivity for BLI-bright and 
LCI was 96.7%.

Our study had some limitations. First, the AI was 
constructed as a fine-tuned transfer learning model, it was not 
a fully developed program of DCNN for endoscopic diagnosis. 
Second, in this study we selected endoscopic images of the 
lesser curvature of the stomach for region of interest and 
excluded all patients who had a history of H. pylori eradication 
therapy. The reason is that our AI is not yet a mature enough 
tool to respond to the inflammatory findings. Endoscopic 
images of H. pylori-infected gastric mucosa show various 
features of inflammation, atrophy and intestinal metaplasia. 
An expert endoscopist recognizes such complex findings in 
the whole of the stomach, whereas our AI simply responds 
to the whitish atrophic mucosa with intestinal metaplasia 
in H.  pylori-positive subjects and the smooth mucosa with 
regular arrangement of collecting venules in H. pylori-negative 
subjects solely in the lesser curvature of the stomach. There is 
a difference between an expert endoscopist and the AI in the 
diagnosis of H. pylori infection by EGD. In addition, our AI did 
not incorporate endoscopic images of other kinds of gastritis, 
such as autoimmune atrophic gastritis, environmental gastritis 
or bile gastritis [28,29]. Thus, we consider it is necessary to 
further improve the AI so that it can also respond to various 
inflammatory states in the H. pylori-infected mucosa and to 
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P=4.08 × 10-5)
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avoid mistakes in diagnosing the other kinds of gastritis. If 
we can establish such a complete AI, it might be possible to 
demonstrate similar diagnostic accuracy for H. pylori infection 
or other gastritis in all regions of the stomach.

In the present study, we have generated an innovative image 
diagnosing system using AI and IEEs for diagnosing H. pylori 
infection. The authors believe that AI technology with IEE is 
likely to become a useful image diagnostic tool for EGD in the 
near future.
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Summary Box

What is already known:

•	 Esophagogastroduodenoscopy	(EGD)	is	of	growing	
importance in the diagnosis of Helicobacter pylori 
(H. pylori) gastritis, because H. pylori infection is 
strongly associated with gastric carcinogenesis

•	 Studies	have	reported	that	use	of	image-enhanced	
endoscopy (IEE) with magnifying function is 
useful for improving the diagnosis of H. pylori 
infection. However, a non-expert endoscopist may 
have difficulty evaluating this image information

•	 We	 have	 reported	 the	 effectiveness	 of	 diagnosis	
of H. pylori infection in endoscopic white light 
images using a deep learning method

What the new findings are:
•	 We	aimed	to	generate	a	computer-aided	endoscopic	

diagnosis system for H. pylori infection using IEE 
and artificial intelligence (AI) technology of deep 
learning

•	 The	 AI	 demonstrated	 an	 excellent	 ability	 to	
diagnose H. pylori infection using the novel IEEs

•	 AI	technology	with	IEE	is	likely	to	become	a	useful	
image diagnostic tool for H. pylori infection
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