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The homeobox family and its subset of HOX gene products represent a family of transcription factors directing DNA-protein and
protein-protein interactions. In the embryo, they are central regulators in cell differentiation during morphogenesis. A series of
genes of the four HOX gene clusters A, B, C, and D were reported to show aberrant expressions in oncogenesis, particularly in
cutaneous malignant melanoma (CMM). They are involved in cell proliferation and progression in the CMM metastatic path. We
present relevant peer-reviewed literature findings about the aberrant expression of HOX genes in CMM. The number of CMM cell
nuclei exhibiting aberrant HOX protein expression appears correlated with tumour progression.

1. Introduction

Primary cutaneous malignant melanoma (CMM) is an
increasingly frequent malignancy in the White population of
western countries [1]. The neoplasm arises from melanocytes
in a complex process. In each CMM, the tumour size is
closely associated with cell proliferation including the size
of the growth fraction [2, 3]. In recent years, some progress
has been reached in the understanding of primary genetic
alterations involved in the CMM initiation [4—6]. The follow-
ing neoplastic progression is accompanied or supported by
other additional genetic mutations. Many oncogenes, tum-
our suppressor genes, and altered signalling pathways have
been identified [7-11]. Thus, following the initial malignant
thigmotropism step [12], a variety of subsequent mutations
occur promoting the CMM invasiveness [7]. Some of these
changes are probably involved in the rise of potential for
metastasis. The malignant cells prone to metastasize but
still in contact with the primary tumour are currently not
identifiable under the microscope.

Although some specific CMM subtypes are clinically and
histopathologically distinct, these features do not commonly
exhibit independent prognostic value. Despite a wealth of
information, the prognostic indicators for the progression of
primary CMM currently remain the tumour depth and pro-
liferation, as well as the presence or absence of ulceration and

micrometastases [13]. Several key molecular pathways are
involved in the CMM initiation and progression. The diver-
sity of CMM presentations allows to establish a classification
providing insight into CMM epidemiological data and their
molecular counterparts [14, 15]. In addition, the translation
of CMM molecular biology to relevant clinical correlates and
novel therapies has made significant progress over the past
few years [6, 9, 10].

Gene expression profiling of human cancers, in particular
CMM, allows for a unique insight into the genes intimately
involved in the neoplastic process. Clinical and genomic evi-
dence suggests that the metastatic potential of a primary
CMM may be dictated by prometastatic events that have
additional oncogenic capability [16]. The homeobox gene
family and its subset represented by HOX genes, and their
related proteins represent, a cluster of molecules that are
likely involved in the potential for metastasis expressed by
some cancer cells including CMM cells [17]. The home-
odomain is a four-a-helix helix-loop-helix DNA binding
motif, and its flanking sequences provide either activating or
repressing functions for target gene transcription [18, 19].
These homeogenes are organized in four multigene clusters
named A, B, C, and D mapped on chromosomes 2, 7, 12,
and 17 [20]. Each cluster is composed of 9 to 11 HOX
genes. Any HOX gene is part of a family of DNA sequences
involved in a series of transcription factors affecting tissue
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development and cell differentiation. HOX proteins are
present in nuclei and they direct DNA-protein and protein-
protein interactions.

The most common mutation in human CMM BRAF
(V600E) activates the serine/threonine kinase BRAF and
causes excessive activity in the mitogen-activated protein
kinase (MAPK) pathway [6]. BRAF (V600E) mutations are
also present in benign melanocytic naevi, highlighting the
importance of additional genetic alterations in the genesis
of malignancies [21]. Such changes include recurrent copy
number variations that result in the amplification of onco-
genes. For certain amplifications, the large number of genes
in the interval has precluded an understanding of the cooper-
ating oncogenic events.

The present coverage of peer-reviewed articles revisits
the salient aspects of aberrant expression of HOX genes in
human CMM.

2. HOX Landscape in CMM

HOX genes were originally discovered in Drosophila melano-
gaster. They appear highly conserved during evolution from
simple organisms to vertebrates including humans [18, 19].
In humans, HOX proteins are crucial for skin morpho-
genesis, involved in the control of axial patterning, and
responsible for hereditary malformations and some cancers
including CMM. During ontogenetic development HOX
gene expression appear-tumour-stage related and tissue or
region specific. Their relative position on chromosomes is
connected to their expression domains along the anterior-
posterior axis of the central nervous system. In addition,
HOX genes coding for transcription factors is involved in the
process of neoplastic progression including CMM [18-22].
Indeed, aberrant HOX expression is typically associated with
oncogenesis. They vary according to the histopathologic type
and progression stage of the neoplasm including metastasis.
The location of the primary CMM on the body is unrelated
to the aberrant HOX expression.

2.1. HOX-A Locus. HOX-AL1 is an oncogene playing a pivotal
role in human cancers by stimulating cell proliferation
anchorage-independent cell growth, and loss of contact in-
hibition [23]. In addition, HOX-A1 and -A2 expression was
higher in CMM with distant metastases compared to CMM
without metastases [16, 22]. Of note, HOX-A5 downregu-
lates angiogenesis by mitigating the activity of proangiogenic
genes and upregulating the expression of antiangiogenic
genes [24]. HOX-A9 was shown to be epigenetically silenced
in CMM [25]. The expression of HOX-A11 and -A13 was
reported to be higher in CMM than in melanocytic naevi
[22]. HOX-A11l expression was further more altered in
metastatic CMM than in the pT1-T3 nonmetastatic tumours.

2.2. HOX-B Locus. HOX-B9 aberrant expression was report-
ed to be higher in CMM than in melanocytic naevi [22].
HOX-B2 expression was higher in metastatic CMM than
in pT1-T3 nonmetastatic lesions. HOX-B13 appeared over-
expressed in CMM with distant metastases than in CMM
without metastases [26]. HOX-B7 was reported to be
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overexpressed in proliferative CMM cells [27, 28]. The bone
morphogenetic protein (BMP)-4 is overexpressed in CMM
cells leading to the induction of basic fibroblast growth factor
(bFGF) mediating CMM cell migration. This biological
pathway starts with the reduced expression of the micro-
RNA miR-196 in CMM cells compared to nonneoplastic
melanocytes. It is particularly activated by increasing HOX-
B7 transcription factor levels [27, 28]. An inverse relationship
was established in the patterns of expression of HOX-B7
and the promyelocytic leukemia zinc finger (PLZF) protein,
which acts as a suppressor. Hence, HOX-B7 and PLZF are
functionally independent and their coupled deregulation
may account for most if the alterations found in CMM [29].

2.3. HOX-C Locus. The HOX-C locus plays a role in the
CMM metastatic phase. There is an aberrant expression of
genes located near the HOX-C locus corresponding to HOX-
C10, C11, and CI13. It results in alterations in integrins,
ICAM-1, N-Ras, IL-1A, IL-6, and TNF-« [30]. HOX-C4 was
apparently overexpressed in CMM with distant metastases
compared to CMM without metastases [22]. HOX-C13 aber-
rant expression was higher in metastatic CMM compared
to pT1-T3 nonmetastatic tumours [22, 31]. MicroRNA
(miRNA)-196a appeared to negatively regulate the expres-
sion of the transcription factor HOX-C8 [32, 33].

2.4. HOX-D Locus. HOX-D3 is involved in regulating cell-
cell interactions in CMM, as well as the motile and invasive
behaviours of CMM cells [34]. By contrast, nonneoplastic
melanocytes do not express HOX-D3. HOX-D12 and -D13
were reported to be expressed in CMM at a higher level
than in melanocytic naevi [22, 33]. This finding is in line
with a study on 79 tumour tissue types in which significant
differences were reported between specific normal tissues
and the corresponding neoplasms exhibiting an increase in
HOX-D13 expression [35].

3. Discussion

Compared to primary CMM, their metastases commonly
express higher levels of genes including MAGE, GPR 19,
BCL2A1, MMP14, SOX5, BVB1, and RGS20 [32]. The same
is true for the presently gathered series of HOX gene dis-
turbances. The transition from non-metastatic to metastatic
expression of HOX activation levels occurs as the CMM
increases in thickness. The transition in gene expression
appears to occur at different thicknesses for different CMM
genes. This critical transition timing for the emergence of the
metastatic phenotype is a key moment in the evolution of
CMM [36]. Multiple genes are involved in the progression
or suppression of the metastatic CMM phenotype. Tumour
oncogenes include SPP-1, MITF, CITED-1, GDF-15, c-Met,
and HOX loci [37]. Suppressor genes include PITX-1, CST-
6, PDGFRL, DSC-3, POU2F3, CLCA2, and ST7L. Silencing
oncogenes and tumour suppressor genes is possible [25].
HOX genes are transcriptional regulators, which mod-
ulate embryonic morphogenesis and pathological tissue
remodelling in adults via regulation of genes associated with
cell-cell or cell extracellular matrix (ECM) interactions [24].
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Members of the HOX family of homeodomain-containing
transcription factors are deregulated in CMM [38]. HOX
proteins are transactivating factors regulation gene expres-
sion. The homeodomain is capable to bind to specific DNA
sequences, including promoters of other HOX genes, and to
enhance or inhibit transcription. Alteration of such a com-
plex network controlling cell proliferation contributes to the
multistep process underlying the onset of neoplasia. Indeed,
alterations of specific groups of HOX genes are associated
with neoplastic transformation in different tissues including
the breast, kidney, lymphoid organ, colon, lung, thyroid,
bladder, prostate, and skin [17]. Accordingly, identifying
the HOX expression levels is expected to have a diagnostic
value and to establish the prognosis of the neoplasm under
consideration. Different specific HOX gene aberrant expres-
sions have been reported in CMM. It has been suggested
that HOX genes contribute to CMM transformation and
progression via the basic fibroblast growth factor (bFGE),
which promotes an autocrine loop in CMM and is one of the
major angiogenic factors [27]. Initiation of CMM metastasis
is a key event in the neoplastic progression. The molecular
mechanisms and the possible genetic dysfunction underlying
this process remain obscure, but the intervention of HOX
genes is likely.

4. Conclusion

The gene expression profiling of primary, nonmetastatic and
metastatic CMM has resulted in the identification of several
genes that are centrally involved in the progression and
metastatic potential of CMM [7]. Among these mechanisms,
homeoproteins represent transactivating factors issued from
HOX genes that regulate a series of gene expression [18, 19].
Some alterations in specific HOX genes are activated during
various malignant transformations.

The regulatory function of HOX genes is possibly medi-
ated by crucial growth factor genes. After the identification
of the genes encoding several adhesion molecules, suc as
cytotactin [39], N-CAM [40, 41], and L-CAM [42], as target
genes for homeoproteins [43], it was shown that bFGF was
the first growth factor involved in the complex network
underlying HOX gene effects on cell proliferation and dif-
ferentiation [44]. The autocrine bFGF production by CMM
cells sustains tumoural growth as an early event in CMM
progression. Other autocrine loops are likely involved in the
same process and implicate diverse cytokines, growth factors,
and receptors [27]. HOX activation possibly boosts the rate
of proliferation of CMM or represents a critical step in the
progression and metastatic processes.

The intervention of HOX gene dysfunction in the meta-
static CMM switch is supported by the absence of such
altered function in melanocytic naevi and primary non-
metastatic CMM. The search for new molecular markers that
allow to select the tumour cell clones with respect to their
aggressiveness and their ability to metastasize is certainly one
of the most important future goals in CMM biomedical
research. In such a context, the HOX genes represent ideal
therapeutic targets. Several molecules, such as antisense
oligonucleotide (ASO) and interfering RNA (iRNA), were

shown to be possibly capable to interact with crucial genes
involved in the altered proliferation of the neoplastic cells
(34, 45].
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