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ABSTRACT

Mapping gene interactions within tissues/cell types
plays a crucial role in understanding the genetic ba-
sis of human physiology and disease. Tissue func-
tional gene networks (FGNs) are essential models for
mapping complex gene interactions. We present Tis-
sueNexus, a database of 49 human tissue/cell line
FGNs constructed by integrating heterogeneous ge-
nomic data. We adopted an advanced machine learn-
ing approach for data integration because Bayesian
classifiers, which is the main approach used for con-
structing existing tissue gene networks, cannot cap-
ture the interaction and nonlinearity of genomic fea-
tures well. A total of 1,341 RNA-seq datasets con-
taining 52,087 samples were integrated for all of
these networks. Because the tissue label for RNA-
seq data may be annotated with different names or
be missing, we performed intensive hand-curation
to improve quality. We further developed a user-
friendly database for network search, visualization,
and functional analysis. We illustrate the applica-
tion of TissueNexus in prioritizing disease genes.
The database is publicly available at https://www.
diseaselinks.com/TissueNexus/.

INTRODUCTION

Functional gene networks (FGNs) (1–7) are an essential
model for mapping the functional interaction landscape
among genes. In an FGN, the node represents a gene and
the edge weight indicates the co-functional probability that
two genes participate in the same biological pathway (9).
The evidence that supports the co-functional relationship
of two genes includes diverse interaction data, such as reg-
ulatory relationship, coexpression, protein-protein interac-
tion, etc. (1,6,8). Constructed by integrating heterogeneous
genomic data, FGNs are a type of composite network,

which differs from coexpression or regulatory networks
where there is only one type of edges. For example, the edge
in a regulatory network represents transcriptional factor-
target gene binding. FGNs have been continuously devel-
oped and applied successfully to solving fundamental bi-
ological and biomedical questions, including novel inter-
action discovery and disease gene prioritization (1,10–13).
Early efforts in this field are devoted to constructing global
(i.e. not tissue-wise) gene networks (2). Because gene inter-
actions may be remodeled in different tissues, tissue net-
works are later constructed, examples of which are included
in the GIANT (1), diseaseQUEST (5) and BaiHui databases
(8).

In the broader context of human gene networks including
coexpression and regulatory networks, RNA-seq data have
been successfully applied to network modeling. For exam-
ple, using the expression data generated by the Genotype-
Tissue Expression (GTEx) consortium, coexpression net-
works for 35 human tissues are constructed, providing a rich
resource for understanding gene regulation and function
(14). The gene regulatory networks built with the GTEx ex-
pression data suggest the tissue specificity of transcriptional
control (15). Further, sample-specific regulatory networks
are constructed for yeast and lymphoblastoid cell lines (16).
A database of sample-specific regulatory networks for hu-
man tissues is later developed (17,18). In the area of FGNs,
RNA-seq data have also been used but in a limited number
of studies. One example is the HumanNet database (13), for
which RNA-seq expression data are used to build the net-
work.

For FGNs, existing networks have mainly been built with
Bayesian Classifiers (BCs) (1,4,5,8), and a few are built
using Bayesian-based likelihood (13). Both methods have
the limitation of not considering the dependence among
features, and they cannot capture the nonlinearity in real
data well (19,20). Because the functional interaction be-
tween genes is complex and have nonlinear nature, leverag-
ing more advanced machine learning models may improve
the accuracy of networks.
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In this work, we improve the construction of human
tissue FGNs as follows. First, rather than using BCs, we
adopt XGBoost, which is a state-of-the-art machine learn-
ing method and can capture nonlinearity in data (21–23), to
predict functional interactions between genes. Another rea-
son for choosing XGBoost is that it can be scaled to large
datasets; this is important in practice because the number of
training samples (gene pairs) is on the order of millions. In
addition, because tissue labels of public genomic data may
be annotated with different names or be missing, we per-
formed intensive hand-curation of the tissue labels of the
input expression data. Thus, we obtained a set of RNA-seq
expression datasets for each tissue.

With the proposed approach, we constructed Tis-
sueNexus, a compendium of 49 tissue/cell line FGNs. What
distinguishes our networks from existing FGNs is summa-
rized in Table 1. The major features of TissueNexus in-
clude the following. (i) The tissue labels of the input gene
expression data are intensively hand-curated. The curation
of a large number of RNA-seq datasets is extremely labor-
intensive and has not previously been available. (ii) The
networks are constructed by integrating by far the largest
number of RNA-seq datasets (n = 1,341) and samples
(n = 52,087). (iii) The networks are constructed using an
advanced machine learning approach, namely, XGBoost,
which can result in more accurate networks as will be shown
in the Construction and analysis of TissueNexus networks
section.

We deployed a web server for users to query genes and
visualize functional interactions between the queried gene
and its neighbors for each individual tissue. To gain func-
tional insight into the network, we implemented functional
analysis tools for the network including Gene Ontology en-
richment and disease enrichment. We also provide func-
tional annotations of the queried gene such as annotations
of associated diseases/traits and drugs. We illustrate the ap-
plication of TissueNexus to prioritizing risk genes of com-
plex diseases and demonstrate its better performance over
existing networks.

MATERIALS AND METHODS

An overview of TissueNexus is presented in Figure 1. The
methods employed to construct the networks and the in-
structions for using the web server are described below.

Curation and processing of RNA-seq data for each tissue/cell
line

The Digital Expression Explorer 2 (DEE2) (24) is a
database of RNA-seq gene expression data generated by
applying a unified pipeline to the raw RNA-seq reads in
the short read archive (SRA) database (25). In DEE2,
the RNA-seq data are organized into datasets, with each
dataset containing gene expression measurements of mul-
tiple different samples. The human RNA-seq data along
with the description of sample information including tis-
sue origins were downloaded. We also downloaded gene
expression data of different tissues from the GTEx por-
tal (version:v8, https://gtexportal.org/home/datasets). Gene
expression is measured in fragments per kilobase of exon

model per million mapped reads (FPKM) values. Because
the tissue labels of the expression data may be annotated
with different names or be missing, we manually read the
descriptions of individual samples and performed intensive
hand-curation of the tissue label of the input expression
data. Thus, we assigned a tissue or cell line label to each
sample. Because the Pearson correlation coefficients (PCCs)
of pairs of genes in each dataset need to be calculated as
features and PCCs could be spurious if the number of sam-
ples is small, we retained only the datasets containing at
least 10 samples following the practice applied in the pre-
vious work (26). In each dataset, lowly expressed genes (i.e.
those with FPKM values < 0.1 in more than 90% samples
as used in (26)) were removed. This preprocessing procedure
was applied to the data of each tissue. Finally, we obtained
RNA-seq gene expression data for 49 tissues. The numbers
of the RNA-seq datasets and samples for each tissue are
shown in Table 2. The details of these datasets are available
at https://diseaselinks.com/TissueNexus/data.php.

Construction and analysis of TissueNexus networks

Feature calculation. Genomic features are calculated as in-
put for machine learning approaches to build gene net-
works. Because we predict pairwise gene-gene relationships,
pairwise features must be used. For each RNA-seq dataset,
the PCC of gene pairs was calculated and used as a feature.
Therefore, the number of expression-based features is equal
to that of RNA-seq datasets for each tissue. Taking the liver
tissue with 35 RNA-seq datasets as an example, the num-
ber of RNA-seq expression features is 35 (Table 2). In addi-
tion to expression-based features, we also integrate six pair-
wise genomic features, which are obtained from the GIANT
website (1), including shared 3

′
UTR microRNA binding

motifs, the cooccurrence of transcription factor binding
sites, chemical and genetic perturbations, and three protein-
protein interaction (PPI) features from MINT (27), IntAct
(28) and BioGRID (29), respectively. For each tissue, gene
expression is the dominant feature type used to construct
the network (Table 1).

Network construction and performance. For each tissue,
the tissue-wise RNA-seq features and the six general inter-
action features are integrated to build the FGN using XG-
Boost (Figure 1A; see details in Supplementary Note 1).
The evidence supporting the functional relationship of gene
pairs comes from both RNA-seq and the general features.
Only the expressed genes in each tissue are used to build the
network. In the network, the node represents a gene and
the edge weight represents the probability (in the range of
[0, 1]) that two genes take participate in the same biological
process or pathway.

We evaluate the performance of each functional gene net-
work based on 5-fold cross-validation. To avoid overesti-
mation of performance, the cross-validation is conducted
based on gene holdout rather than edge holdout; that is,
genes are split into 5-fold to make sure that any gene used
for training models during cross-validation will not occur in
the holdout set. The FGNs based on XGBoost are accurate,
with AUROC = 0.9249 ± 0.0119 and AUPRC = 0.4817
± 0.0355 across all tissues; the AUROC and AUPRC for
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Table 1. Comparison of TissueNexus with existing functional gene network databases

Databases Tissues
Gene expression
technology

Tissue gene
expression

#Datasetsa

(all/expression) #Samples Methods References

mouseNet Not tissue-wise Microarray No 340/333 13,634 Bayesian (2)
classifier

diseaseQUEST Multiple tissues Microarray No 174/169 2,736 Bayesian (5)
classifier

GIANT Multiple tissues Microarray No 987/980 38,000 Bayesian (1)
classifier

HumanNet Not tissue-wise Microarray
(125 datasets)

No NAb/158 16,220 Bayesian (6)

RNA-seq (33 datasets) likelihood
BaiHui Brain only Microarray Yes 216/213 4,688 Bayesian (8)

classifier
TissueNexus Multiple tissues RNA-seq Yes 1,345/1,341 52,087 XGBoost This work

aIn the Datasets column, all and expression indicate the numbers of all genomic datasets and only the gene expression datasets used to build functional
networks in each database, respectively. Expression is the dominant data type used to construct networks.
bThe number of all integrated datasets is not provided in the original paper.

Figure 1. Overview of the TissueNexus database. (A) Hand-curation of tissue labels for human RNA-seq samples of the DEE2 database. The gene expres-
sion data in the GTEx portal are also included. A total of 1,341 RNA-seq datasets containing 52,087 samples were obtained for 49 tissues or cell lines. (B)
Construction of functional gene networks for each tissue or cell line. The networks are stored in the MySql database. (C) Network search, visualization and
analysis. After querying a gene, its local network containing top-connected neighbors is obtained and visualized. The web server also provides a series of
analyses for the network and the queried gene, including analyses of Gene Ontology enrichment, disease enrichment, evidence supporting the functional
relationship of gene pairs, expression level across tissues, annotation of associated diseases/traits, and annotation of associated drugs.

each network is shown in Figure 2 A. A comparison based
on exactly the same data shows that XGBoost outperforms
Bayesian classifiers which have AUROC = 0.7893 ± 0.0159
and AUPRC = 0.1612 ± 0.0103 (Figure 2B). Further, we
investigated whether the networks achieved high precision
at low recall values. We considered three low recall values =
0.05, 0.1 and 0.2. The precisions for each tissue network at
these three low values are shown in Supplementary Figure
S1. At recall = 0.05, these networks show appreciably high
precision values ranging from 0.8625 to 0.9253 across all tis-
sues, with a mean = 0.890 and standard deviation = 0.014.
When the recall increases to 0.1 and 0.2, respectively, the
precision decreases correspondingly (Supplementary Fig-
ure S1). We find that the number of interacting genes of the

same gene vary across tissues and the edge weight of the
same pair of genes also change from tissue to tissue; most
interactions are shared between tissues and some belong to
one of the tissues compared (Supplementary Figure S2);
this result suggests the importance of tissue context when
analyzing functional interactions between genes.

We investigate the influence of feature datasets on tis-
sue functional gene networks. We observe that restricting
RNA-seq data to the tissue of interest improves network
performance compared to integrating RNA-seq data also
from other tissues (Supplementary Figure S3). We test the
performance of the network built with only RNA-seq fea-
tures. The AUROC and AUPRC values across all tissues are
0.7901 ± 0.0237 and 0.1857 ± 0.0295, respectively, which
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Table 2. The numbers of human RNA-seq datasets and samples integrated
for each tissue or cell line

#Tissues #Datasets

Proportion
of

datasets% #Samples

Proportion
of

samples%

A549 13 1.0 264 0.5
Acute
lymphoblastic
leukemia

46 3.4 1250 2.4

Acute myeloid
leukemia

20 1.5 1435 2.8

Adipose 12 0.9 1856 3.6
B lymphocyte 33 2.5 768 1.5
Bladder 12 0.9 254 0.5
Blood 112 8.4 7619 14.6
Bone 41 3.1 1383 2.7
Bone marrow 31 2.3 1210 2.3
Brain 48 3.6 4459 8.6
Breast 71 5.3 2477 4.8
Bronchial
epithelium

14 1.0 373 0.7

Bronchus 16 1.2 501 1.0
Chronic myeloid
leukemia

11 0.8 765 1.5

Colon 57 4.3 1988 3.8
Embryo 28 2.1 610 1.2
Embryonic stem
cell

30 2.2 743 1.4

Epidermis 27 2.0 909 1.7
Forebrain 15 1.1 540 1.0
Frontal cortex 14 1.0 630 1.2
Glia 18 1.3 568 1.1
Glioma 13 1.0 406 0.8
Hct116 20 1.5 375 0.7
Heart 13 1.0 1621 3.1
Hek293 28 2.1 580 1.1
Hela 23 1.7 430 0.8
Intestinal
epithelium

16 1.2 288 0.6

Intestine 15 1.1 326 0.6
Kidney 30 2.2 605 1.2
Liver 35 2.6 1304 2.5
Lung 49 3.7 1902 3.7
Macrophage 17 1.3 446 0.9
Mammary gland 12 0.9 315 0.6
Mcf7 35 2.6 722 1.4
Melanocyte 29 2.2 962 1.8
Neural progenitor 13 1.0 302 0.6
Neural stem cell 17 1.3 560 1.1
Neuron 29 2.2 683 1.3
Non-small cell lung
cancer

31 2.3 1097 2.1

Ovary 15 1.1 477 0.9
Pancreas 22 1.6 873 1.7
Prostate 36 2.7 915 1.8
Serum 10 0.7 179 0.3
Skin 55 4.1 3349 6.4
Skin fibroblast 19 1.4 371 0.7
T lymphocyte 36 2.7 1241 2.4
Umbilical cord 15 1.1 366 0.7
Uterine cervix 26 1.9 496 1.0
Urinary bladder 13 1.0 294 0.6

are lower than that based on all features (Supplementary
Figure S4). We also observe that, for each tissue, the net-
work performance is correlated with the number of RNA-
seq datasets of the tissue of interest (Supplementary Fig-
ure S5).

We compare the coverage of the networks with existing
human RNA-seq based gene networks, including coexpres-
sion networks in GTEx-TSN (14), regulatory networks in
GTEx-PANDA (15), and sample-specific regulatory net-
works in GRAND (17,18). We observe that GTEx-PANDA
has higher coverage than GTEx-TSN. For some tissues, the
coverages of TissueNexus networks are higher than that
in GTEx-PANDA; for the other tissues, GTEx-PANDA
networks have higher coverages (Supplementary Table S1).
The coverages of GRAND networks vary across individual
samples and the mean coverage of each tissue network is
roughly on the same order of magnitude of GTEx-PANDA
or TissueNexus networks.

Implementation

TissueNexus has been implemented with a mixture of pro-
gramming languages on the Apache HTTP server (v2.4.41).
The HTTPS protocol is deployed on TissueNexus to sup-
port secure communication over computer networks. The
main web interface is implemented using PhP (v7.4.3) and
HTML5. As the full database contains tens of millions of
records (gene pairs), the network data of each tissue or cell
line are stored in the open-source MySql (v8.0.25) database
to make the database robust and scalable. The network of
the queried gene is stored in json format, which enables ef-
ficient communication between the server and client when
coupled with Ajax. The d3 JavaScript package is used to
visualize the network of each query gene. A sliding bar is
designed to dynamically visualize subnetworks containing
only the edge with weights higher than the threshold set by
the sliding bar. The queried network in json format is stored
as HTTP cookies, thus enabling highly efficient threshold-
ing of the network. In addition, considering the widespread
application of mobile devices, the web server is also de-
signed to be mobile-friendly.

DATABASE OVERVIEW

Database content

TissueNexus is a database of FGNs for 49 human tissues
or cell lines, which are constructed by integrating hand-
curated tissue functional genomic data. The web server pro-
vides functions to query functional interactions between
genes for each individual tissue, visualize the network, view-
ing the evidence of each interaction, investigate biological
functions, and download the network. The web interface
mainly consists of three modules: (i) tissue and gene input,
(ii) network visualization and (iii) network and gene analy-
sis, which are summarized in Figure 1 and detailed below.

Tissue and gene input

On the Home page, users can select one of the 49 tissues/cell
lines from the pull-down menu. To input gene symbols,
the autocomplete function is implemented so that candi-
date gene symbols will pop up when one or more characters
are typed in by users. In addition, we also implemented the
function to query multiple genes at a time. Users can in-
put multiple genes separated by a comma. Then, when the
Search button is clicked, users will be guided to the result
page for the queried gene and network.
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Figure 2. Performance of tissue functional gene networks. (A) Network performance of each network based on 5-fold cross-validation. The cross-validation
is conducted based on gene holdout rather than edge holdout; that is, genes are split into 5-folds to make sure that any gene used for training models during
cross-validation will not occur in the holdout set. (B) Comparison of XGBoost with Bayesian classifiers in constructing tissue functional gene networks.

Network visualization

On the result page, the local network containing the queried
gene and its top-connected neighbors will be shown. For the
sake of visualizability, only the top 25 connected genes as
well as the between-neighbor connections are shown. Users
can use the sliding bar to determine the threshold of the
edge weight and only connections with weights higher than
the threshold will be displayed.

Network and gene analysis

Functional analysis and annotation are implemented for
the network and the queried gene (Figure 1C), as detailed
below.

Network analysis. First, the weight of the top neighbors
connected to the queried gene is presented. Second, to
help users to gain functional insight into the network,
Gene Ontology enrichment analysis (GOEA) is performed
using GOTermFinder (30). The enrichment analysis is
based on the most recent versions of the Gene Ontology
database (2021-09-01 version, http://current.geneontology.
org/ontology/go-basic.obo) and functional gene annota-
tions (2021-09-01 version, http://geneontology.org/gene-
associations/goa human.gaf.gz). Third, a disease enrich-
ment approach established in our previous work (8) is
applied to test whether a disease or trait is overrepre-
sented in the network. To help users understand whether
a given edge is supported by RNA-seq based features or
other general features or both, we estimated the contri-
bution of each dataset to the functional relationship of
gene pairs using a Bayesian approach, of which the de-
tails are described on https://humanbase.readthedocs.io/

en/latest/functional-networks.html#evidence. The evidence
of the edge on each dataset is provided on the web
server.

Gene analysis. This panel provides five types of annota-
tions for the queried gene, including expression levels across
tissues, annotation in the GO database (http://ftp.ncbi.nlm.
nih.gov/gene/DATA/gene2go.gz, 2021-5-21), annotation of
human phenotype ontology (Jun 2021 release), annotation
of disease/traits based on the GWAS Catalog database
(2020-11-20), and annotation of drugs based on DGIdb
(2021-May).

An example search

An example of the usage of our database is provided by
searching the brain network for APOE, a gene related
to multiple diseases/traits, such as blood lipid levels and
Alzheimer’s disease (AD) (31–33). An overview of this ex-
ample search is presented in Figure 3.

First, we select the brain tissue, and we type in APOE
on the Home page (Figure 3A).

Second, on the result page, the local network of APOE
containing the top-connected genes is visualized. The edge
color indicates the weight between two genes. Users can use
the sliding bar below the network to adjust the threshold of
edge weight (Figure 3B).

Third, we can investigate the network via the functional
analysis implemented on the server. These analyses consist
of two parts: network analysis and gene analysis (Figure 3C).
The network analysis panel includes submenus. The weight
between APOE and each neighbor is shown under the local
network menu. For example, MAPT is functionally related

http://current.geneontology.org/ontology/go-basic.obo
http://geneontology.org/gene-associations/goa_human.gaf.gz
https://humanbase.readthedocs.io/en/latest/functional-networks.html#evidence
https://humanbase.readthedocs.io/en/latest/functional-networks.html#evidence
http://ftp.ncbi.nlm.nih.gov/gene/DATA/gene2go.gz
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Figure 3. Overview of an example search. The brain network is searched for APOE. (A) Selecting brain tissue and inputting the APOE gene. (B) Visualiza-
tion of the local network of APOE containing the top-connected genes. (C) Functional analysis of the local network, including Gene Ontology and disease
enrichment. (D) Annotation to APOE, including expression level across tissues and annotation of GO terms, phenotypes, diseases/traits, and drugs.

to APOE with weight = 0.9155; these two genes are known
to interact with each other, supporting the high weight be-
tween them. The network is enriched in biological processes
such as the amyloid fibril formation (GO:1990000, false dis-
covery rate (FDR) = 1.8 × 10-6), negative regulation of
endothelial cell proliferation (GO:0001937, FDR = 7.5 ×
10-4). Some of these processes, e.g. amyloid fibril forma-
tion, are associated with AD, suggesting that the network
is biologically meaningful because APOE is a known ge-
netic risk factor of AD. Based on disease enrichment, it

is observed that the network is associated with dementia
(FDR = 5.52×10-6) and neurofibrillary degeneration (FDR
= 1.63 × 10-3).

The gene analysis panel provides expression profiles
across tissues and functional annotation for the queried
gene based on publicly available databases. As shown in Fig-
ure 3D, APOE is most highly expressed in the liver and is
associated with multiple disease/traits such as LDL choles-
terol levels. The associated drugs, such as lutein and ganci-
clovir, are also provided.
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Application to prioritizing disease risk genes

Gene networks can be applied to many subsequent analysis,
such as gene function prediction, novel interaction discov-
ery, and disease gene prediction, etc. The focus of this work
is not the application of networks but presenting a resource
of tissue FGNs for the community. Here we illustrate the
application of FGNs in prioritizing disease risk genes. We
test the performance of our networks in predicting disease
risk genes using the approach established in previous work
(1,4). Briefly, this method first extracts network weights as
features to characterize each gene, and then adopts machine
learning methods to build a model to distinguish disease-
associated genes (positives) from non-disease genes (nega-
tives) (see the method details in Supplementary Note 2). We
obtain disease genes from GWAS and Online Mendelian In-
heritance in Man (OMIM). For GWAS, following the previ-
ous study (1), the genes achieving genome-wide significance
(P < 5.0 ×10-8) in the GWAS Catalog database (down-
loaded on 2020-11-20) are treated as positives. Negatives are
randomly sampled after excluding positives. The tree-based
method ExtraTree is used to build the model.

We consider a number of diseases representing a wide
spectrum of pathological mechanisms, including cancers
(breast cancer (BC), prostate cancer (PC), colorectal
cancer (CC), lung cancer (LC), melanoma skin cancer
(MSC)), neurological degeneration disease (Alzheimer’s
disease (AD), Parkinson disease (AD)), psychiatric disor-
ders (autism spectrum disorder (ASD), major depression
disorder (MDD), and schizophrenia (SZ)), heart disease
(atrial fibrillation (AF)), and metabolic disorders (type 2
diabetes (T2D) and obesity (OB)). The genes for these
diseases are deposited to the Zenodo repository (https://
zenodo.org/record/5553579). Based on the above-described
method, we evaluate the performance of these networks in
predicting disease risk genes using 5-fold cross-validation.
During each fold, the features corresponding to the left out
genes are also removed to avoid overestimation of the per-
formance. The AUROC and AUPRC are used as the per-
formance metrics. For each disease, a relevant tissue net-
work is selected to construct the feature matrix. For exam-
ple, because Parkinson’s disease is pathologically rooted in
the brain, the brain network is selected. As shown in Figure
4, the networks accurately predict disease risk genes accord-
ing to AUROC and AUPRC.

We compare our networks with the tissue FGNs in the
GIANT and BaiHui databases, the regulatory networks
in the GTEx-PANDA and GRAND databases (disease-
QUEST and mouseNet are not compared because they are
not human networks. GTEx-TSN networks are not com-
pared, because their low coverage results in a highly sparse
feature matrix; the high sparsity matrix further makes the
network not able to predict the disease gene well and makes
it unfair to compare with other networks with high cover-
age. The BaiHui database contains only a brain gene net-
work and is therefore compared only on brain disorders).
We find that TissueNexus perform better than GIANT, Bai-
Hui, GTEx-PANDA and GRAND (Figure 4). In addition,
we compare these networks using independent test genes
from the DisGeNet database (34). Briefly, for these dis-
eases, we obtain additional risk genes from DisGeNet. We
find that TissueNexus achieves better performance for most

Figure 4. Comparison of TissueNexus to existing tissue gene networks
based on their performance in predicting risk genes for different types of
diseases. (A) AUROC. (B) AUPRC. (Notes: The BaiHui database contains
only a brain gene network and is therefore compared on only brain dis-
orders; For the GRAND database, Because it contains multiple sample-
specific networks for each tissue, we calculate the mean and standard de-
viation of AUROC and AUPRC. The mean of AUROC and AUPRC is
presented, with the standard deviation provided in Supplementary Table
S2; GRAND does not contain networks for prostate so that prostate can-
cer gene prediction is not performed on GRAND). Disease abbreviations:
AD (Alzheimer’s disease), PD (Parkinson’s disease), ASD (autism spec-
trum disorder), SZ (schizophrenia), MDD (major depression disorder),
BC (breast cancer), PC (prostate cancer), LC (lung cancer), CC: (colon
cancer), MSC (melanoma skin cancer), AF (atrial fibrillation), T2D (type
2 diabetes), OB (obesity).

of the diseases (Supplementary Figure S6). Furthermore,
we also compare our networks with general integrated net-
works including PCNet (7), STRING (35) and HumanNet
(6). We find that TissueNexus networks achieve overall bet-
ter performance (Supplementary Figure S7).

We investigate whether disease gene prediction could
be improved by using relevant tissue networks. We ana-
lyze T2D and AD as case studies. The pancreas and brain
networks are used as the disease-relevant tissue networks
for T2D and AD, respectively. For T2D, we compare the
pancreas network to all other tissue networks. We find that
the pancreas network ranks in the first place among all 49
networks (Supplementary Figure S8A), suggesting that the
prediction model based on relevant tissues is more accurate
than using other tissue networks. For AD, we compared the
brain network to all other tissue networks. The brain net-
work ranks in the fourth place (the top 8%) among all 49
networks (Supplementary Figure S8B). Although the brain
network does not rank in the first place, the percentile of
the rank (8%) is appreciable, especially considering the com-
plexity of AD, the cross talk among tissues, and the noise
in genomic data. This analysis suggests that the network of
relevant tissues is more informative in predicting risk genes
than other tissue networks.

https://zenodo.org/record/5553579
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In summary, these results suggest that our networks
could be valuable for prioritizing disease risk genes.

DISCUSSION AND FUTURE DIRECTIONS

FGNs represent essential models for mapping the func-
tional interaction landscape among genes. To help under-
stand the functional interaction in different tissues, we built
a compendium of FGNs for 49 human tissue-/cell lines.
Our comparison shows that the interaction partners of the
same gene across different tissues are different and that the
weight of the same pair of genes also varies across tissues.
This finding indicates the remodeling of functional gene
network in human tissues. The differences among these net-
works could be further explored to understand the molecu-
lar basis of tissues or cell types. In a broader context, tissues
gene networks have been constructed in other studies, such
as the tissue coexpression networks (14), tissue-specific reg-
ulatory networks (15), and sample-specific regulatory net-
works (16). FGNs are different from coexpression or reg-
ulatory networks, because the edge in an FGN represents
the co-functional probability that two genes participate in
the same biological pathway (9). In contrast, the edge in
coexpression networks represents the correlation between
gene expression profiles and the edge in a regulatory net-
work means transcriptional factor-target gene binding.

Motivated by the study of sample-specific regulatory net-
works (16–18), a natural and meaningful extension of our
work is to build FGNs for individual samples. To this end,
the merits of the method used in building sample-specific
regulatory networks could be leveraged and novel meth-
ods that take into account the specific nature of functional
gene networks need to be established. Further, a challenge
we would face is how to evaluate the accuracy of sample-
specific networks, due partly to the difference for networks
from individuals to individuals and the dynamic nature of
the networks.

Regarding the application of tissue FGNs to disease gene
prediction, we have shown that FGNs are promising for pre-
dicting risk genes. However, because the human body is a
system and interactions exist between tissues, it is possible
that including multiple tissues that are related to the dis-
ease could further improve risk gene prediction. We plan to
study this question in the future. In addition, it needs to be
noted that tissue gene networks-based prediction of disease
genes could be affected by multiple factors, including the
above-mentioned between-tissue interactions, the noise in
genomic data, and the false positives of disease genes. De-
signing novel approaches to address these issues could po-
tentially improve disease gene prediction and benefit subse-
quent applications such as drug development.

Our database could be improved in several ways in the
future. First, except for some cell line networks, most net-
works in this database are built for major organs or tis-
sues. As human tissues are composed of heterogeneous cell
types that carry out different functions, we plan to extend
this work to build cell type networks by integrating sin-
gle cell RNA-seq data (36–38). Second, while this work
focuses on presenting the networks as a rich resource for
the community, mining these networks using advanced ma-
chine learning approaches may deepen our understanding

of gene functions. Such network mining approaches will be
implemented in our subsequent work to better exploit the
networks.

In summary, we present TissueNexus as a rich resource
of 49 tissue-/cell line functional gene networks. We illus-
trate its application in prioritizing disease risk genes. It is
expected that these networks will contribute to the under-
standing of gene functions and complex diseases, and will
become a valuable resource in the field.
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