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Protein–protein interactions (PPIs) in plants play an essential role in the regulation of
biological processes. However, traditional experimental methods are expensive, time-
consuming, and need sophisticated technical equipment. These drawbacks motivated
the development of novel computational approaches to predict PPIs in plants. In this
article, a new deep learning framework, which combined the discrete Hilbert transform
(DHT) with deep neural networks (DNN), was presented to predict PPIs in plants. To
be more specific, plant protein sequences were first transformed as a position-specific
scoring matrix (PSSM). Then, DHT was employed to capture features from the PSSM.
To improve the prediction accuracy, we used the singular value decomposition algorithm
to decrease noise and reduce the dimensions of the feature descriptors. Finally, these
feature vectors were fed into DNN for training and predicting. When performing our
method on three plant PPI datasets Arabidopsis thaliana, maize, and rice, we achieved
good predictive performance with average area under receiver operating characteristic
curve values of 0.8369, 0.9466, and 0.9440, respectively. To fully verify the predictive
ability of our method, we compared it with different feature descriptors and machine
learning classifiers. Moreover, to further demonstrate the generality of our approach, we
also test it on the yeast and human PPI dataset. Experimental results anticipated that
our method is an efficient and promising computational model for predicting potential
plant–protein interacted pairs.

Keywords: deep neural networks, discrete hilbert transform, plant, protein–protein interactions, position-specific
scoring matrix

INTRODUCTION

Identification of protein–protein interactions (PPIs) in plants is essential for exploring the
mechanisms underlying of biological processes, such as organ formation, homeostasis control
(Canovas et al., 2004), plant defense (Zhang et al., 2010), signal transduction (Khan and Kihara,
2016), and stress response (Bracha-Drori et al., 2004). Although numerous high-throughput
techniques have been developed to identify PPIs of model species, such as affinity purification
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mass spectrometry (Fukao, 2012; Armean et al., 2013) and yeast
two-hybrid (Causier and Davies, 2002; Fang et al., 2002), these
approaches are cumbersome, costly, particularly time consuming,
and always suffer from high false positive rate. To overcome these
problems, there is an urgent need to develop sequence-based
computational methods that can accurately predict potential PPIs
while analyzing the functions of plant genes.

In recent years, many studies have been introduced for
detecting PPIs. These methods can be broadly classified
into several categories: protein structure–based method
(Hayashi et al., 2018), genomic information–based method
(Zahiri et al., 2014), evolutionary relationship–based approach
(Xu et al., 2011), and protein sequence–based method (Richoux
et al., 2019). In fact, the first three methods have better
prediction performance. However, these methods typically
require the structural details of proteins such as 3D structural
and protein homology information. If this prior knowledge is
not available, then the method will not perform as expected.
Theoretically, amino acid sequence contains all the necessary
information to detect PPIs. In addition, with the improvement
of sequencing technology, more and more plant genome
sequences are available. Hence, it is meaningful to develop
computational methods to predict potential PPIs from
sequence information.

To date, some new approaches have been proposed to
predict PPIs using the feature descriptors of protein sequence,
such as the composition-transition-distribution descriptor (Yang
et al., 2010), auto-covariance descriptor (Guo et al., 2008),
Zernike moments descriptor (Wang et al., 2017), and local
descriptor (Davies et al., 2008). These descriptors summarize
specific aspects of amino acid sequence, including frequencies
of local patterns, physicochemical properties, and positional
distribution of protein sequence. However, the coverage of these
feature descriptors is still limited. Recently, many deep learning
techniques also have been applied on PPI-based prediction. For
example, Du et al. (2017) presented an approach called DeepPPI,
which adopted deep neural networks (DNN) to extract high-level
features from raw input features of protein sequence to identify
PPIs. Zeng et al. (2020) were inspired by the deep learning
algorithm and proposed a framework called DeepPPISP, which
extracts local and global features from amino acid sequences
and employs DNN to predict PPIs. Sun et al. (2017) employed
stacked autoencoder (SAE), which is a deep learning algorithm
to predict PPIs from human protein sequence. Hashemifar et al.
(2018) developed a novel sequence-based approach called DPPI
that used Siamese-like convolutional neural networks (CNN)
combined with data augmentation and random projection to
improve PPI prediction. Sledzieski et al. (2021) proposed a novel
model named D-SCRIPT, which indicated that employing a deep
learning language modeling of protein sequence data is effective
for PPI prediction. Chen et al. (2019) put forward an end-
to-end framework that combined contextualized information
and local features with a deep residual recurrent CNN in the
Siamese architecture to predict PPIs only using protein sequence
information. Yi et al. (2018) proposed the RPI-SAN model using
a deep learning stacked autoencoder network to extract features
from RNA and amino acid sequences. Finally, they fed these

features to the RF model for training and predicting. Despite
these advances in previous studies, there is still a need to improve
the accuracy and efficiency of the PPI prediction models.

In this article, we combined DNN with discrete Hilbert
transform (DHT) and singular value decomposition (SVD) to
predict PPIs in plants. More specifically, for each plant primary
sequence, position-specific score matrix (PSSM) was constructed,
and then DHT was applied to gather important information
from the protein PSSM. Subsequently, SVD algorithm was
adopted to reduce feature dimension and noise interference
and finally generated a 600-dimensional feature vector. Lastly, a
deep neural network was applied to make predictions between
target plant proteins. When the proposed method was applied
on the Arabidopsis thaliana, maize (Zea mays), and rice (Oryza
sativa) PPI datasets, it yielded promising results of average
AUC (area under ROC curve) values of 0.8369, 0.9466, and
0.9440. When compared with some different feature selection
methods and state-of-the-art machine learning classifiers, our
method obtained better results. In addition, to achieve more
convincing evidence, we also applied our method to the yeast
and human PPI dataset. These combined results suggest that the
proposed approach is effective and trustworthy for predicting
potential PPIs in plants.

MATERIALS AND METHODS

Data Collection and Construction of the
Benchmarking Set
To validate the robustness and effectiveness of the proposed
model, we performed it on three plant PPI datasets, A. thaliana,
Z. mays, and O. sativa. The A. thaliana dataset was collected
from TAIR1 (Rhee et al., 2003), IntAct2 (Kerrien et al., 2012), and
BioGRID3 (Stark et al., 2006). After removing the redundancy,
the final A. thaliana–positive dataset comprised 28,110 PPI
pairs containing 7,437 A. thaliana proteins. These protein-
interacted pairs constructed the primary A. thaliana PPI network.
For the construction of the negative dataset, we employed

1https://www.arabidopsis.org/
2https://www.ebi.ac.uk/intact/
3https://thebiogrid.org/

FIGURE 1 | The construction of deep neural networks.
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a bipartite to formulate a network of plant PPIs, where the
nodes represent the plant proteins and the links denote the
interactions between them. Here, we use A. thaliana as an
example. The whole associations between the 7,437 proteins
are 55,308,969 (7,437 × 7,437) in the corresponding bipartite.
However, only 28,110 PPIs had been demonstrated to have
the interactions. Thus, the possible number of negative pairs
is 55,280,859 (55,308,969–28,110), which is significantly more
than the positive samples. To handle this binary classification
problem, we randomly collected 28,110 non-interacting pairs as
the negative dataset. In theoretical terms, the negative samples
may contain a small number of positive samples; however, given
the size of the whole non-interaction pairs, the probability of this
situation is very small. In this way, the whole A. thaliana dataset
consists of 56,220 protein pairs.

Maize and rice are the main cash crops in the world. The
maize (Z. mays) dataset contains 14,800 positive pairs, which
was downloaded from PPIM4 (Zhu et al., 2016) and agriGO5

(Tian et al., 2017). Similarly, we assumed that the proteins in
different subcellular work compartments have no interactions
and finally achieved 14,800 non-interacting protein pairs. The
rice (O. sativa) dataset consisted of 9,600 protein pairs, 4,800

4http://comp-sysbio.org/ppim/
5http://systemsbiology.cau.edu.cn/agriGOv2/

positive pairs, and 4,800 negative pairs collected from the PRIN
database6 (Gu et al., 2011).

Representation of the Plant Amino Acid
Sequence
To mine highly efficient features for training the models,
each protein pair is encoded as 800-dimensional feature
vector by PSSM (Gribskov et al., 1987). PSSM has been
successfully employed in various fields of biological research
including the prediction of PPI site, subcellular localization,
and DNA-binding protein identification. In this section, we
applied PSI-BLAST (Altschul and Koonin, 1998) tool to
represent protein sequence as a U × 20 matrix, where Q ={
ηa,b : a = 1 · · ·U and b = 1 · · · 20

}
, and it can obtain the

information of plant sequential evolution. PSSM can be defined as

Q =


η1,1, η1,2, · · · η1,20
η2,1, η2,2, · · · η2,20
...

... · · · · · ·

ηU,1, η1,2, · · · ηU,20

 (1)

where ηa,b represents probability that the a-th mutate to b-th
amino acid during the evolutionary process. In the experiment,

6http://bis.zju.edu.cn/prin/

TABLE 1 | Five-fold CV results performed on the A. thaliana dataset by the proposed model.

Testing set Acc (%) PR (%) Sens (%) Spec (%) MCC (%) AUC

1 71.54 66.45 87.08 55.98 45.31 0.8415

2 72.05 67.73 84.64 59.36 45.49 0.8340

3 72.25 67.30 85.69 59.03 46.35 0.8378

4 70.87 66.28 85.80 55.73 43.59 0.8325

5 70.71 65.46 87.25 54.30 43.98 0.8386

Average 71.48 ± 0.69 66.64 ± 0.89 86.09 ± 1.08 56.88 ± 2.21 44.94 ± 1.14 0.8369 ± 0.0036

TABLE 2 | Five-fold CV results performed on the Zea mays dataset by the proposed model.

Testing set Acc (%) PR (%) Sens (%) Spec (%) MCC (%) AUC

1 84.63 80.07 91.80 77.59 70.04 0.9471

2 84.36 78.90 93.40 75.50 69.95 0.9479

3 85.84 83.41 90.28 81.19 71.87 0.9421

4 84.94 80.73 91.95 77.89 70.56 0.9474

5 87.26 84.59 90.91 83.67 74.74 0.9485

Average 85.41 ± 1.18 81.54 ± 2.38 91.67 ± 1.18 79.17 ± 3.24 71.43 ± 2.00 0.9466 ± 0.0026

TABLE 3 | Five-fold CV results performed on the Oryza sativa dataset by the proposed model.

Testing set Acc (%) PR (%) Sens (%) Spec (%) MCC (%) AUC

1 80.21 72.29 96.03 65.28 64.03 0.9419

2 82.60 75.00 96.24 69.74 68.04 0.9490

3 85.05 78.77 96.73 72.93 71.95 0.9503

4 83.33 77.17 94.33 72.49 68.40 0.9360

5 81.82 75.71 96.12 66.12 65.84 0.9437

Average 82.60 ± 1.79 75.79 ± 2.43 95.89 ± 0.91 69.31 ± 3.53 67.65 ± 2.98 0.9440 ± 0.0058
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plant protein sequences were adopted as seeds to search and align
homogenous sequences from SwissProt database by PSI-BLAST
tool. The tool will be used to recognize members of gene family
and evolutionary relationships between plant protein sequences.
It is also able to generate a 20-dimensional vector to denote the
probabilities of conservation against mutations to the 20 amino
acids. The number of iterations is set to 3 and the E-value is cut
off at 0.001 to achieve homologous sequences. The PSI-BLAST
tool and SwissProt database can be accessed online7.

Discrete Hilbert Transform
In this section, we introduce discrete Hilbert transform (DHT;
Cizek, 1970) to extract feature descriptors from the PSSM to make
the prediction more convenient and accurate. DHT is used as a

7http://blast.ncbi.nlm.nih.gov/Blast.cgi

FIGURE 2 | The ROC curves of our approach on the A. thaliana dataset
under five-fold CV.

FIGURE 3 | The ROC curves of our approach on the Zea mays dataset under
five-fold CV.

FIGURE 4 | The ROC curves of our approach on the Oryza sativa dataset
under five-fold CV.

tool for signal analysis in the time and frequency domains. Before
describing the 2-dimensional DHT, the 1-D DHT (Ponomareva
et al., 2018) is used in the spatial and frequency domain and has
been previously described (Stark, 1971; Bracewell and Bracewell,
1986; Zhu et al., 1990; Onodera et al., 2005).

To better extract the feature descriptors, we used the 2-D
DHT for constructing the local energy of PSSM. In this work,
we applied the 2-D DHT, which is defined by Read and Treitel
(1973) in the frequency domain. Our Matlab code is shown as
follows:

function x= hilbert2(xr,m,n)
%HILBERT2 Discrete-time 2D analytic signal via Hilbert
transform.
% X = HILBERT2(Xr) computes the 2D discrete-time analytic
signal
% X = Xr + i∗Xi such that Xi is the Hilbert transform of real
image Xr.
% If the input Xr is complex, then only the real part is used:
Xr= real(Xr).
% HILBERT2(Xr,M,N) computes the MxN-point Hilbert
transform. Xr is padded
% zeros if it has less than MxN points, and truncated if it has
more.

if nargin< 2, n= []; end
if∼isreal (xr)

warning (’HILBERT2 ignores imaginary part of input.’)
xr= real (xr);

end
if isempty (n)

[m, n]= size (xr);
end
if m< 2 | | n< 2,

x=Hilbert (xr); % 1D analytic signal
return;

end;
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In this work, PSI-BLAST encoded each protein sequence as a
U × 20 matrix. Due to the different lengths of protein sequences,
the size of each matrix constructed by PSSM is also different. To
handle this problem, we transformed the variably sized PSSM into
a 20× 20 matrix, and the 2-D DHT is applied to extract feature
vectors from the PSSM profile. In this way, each plant protein
sequence will be converted into a 400-dimensional vector by 2-
D DHT. As a non-linear filtering technique, SVD has been widely
applied in noise reduction of vibration signals. This is because the
signals after noise reduction have a small phase-shift and there
is no time delay effect. To improve the prediction accuracy and
reduce the dimensionality of the input feature matrix, we applied
SVD (Klema and Laub, 1980) algorithm to reduce size of feature
vectors from 400 to 300. At the same time, the lower dimensions
could reduce the complexity of the model and increase the
generalization error of the classifier. Finally, each protein pair will
be represented as a 600-dimensional DHT descriptor.

Deep Neural Networks
Considering the larger numbers of hidden layers that can be
used for training networks, artificial neural networks consist
of two or more hidden layers that are often referred as DNN
as shown in Figure 1. The depth of a neural network relates
to the quantity of hidden layers, and the largest number of
neurons determines the width of DNN (Hinton et al., 2006;
Hinton and Salakhutdinov, 2006).

In terms of structure, DNN is composed of many plain
modules, which appear as a multilayer stack. The data are first
received by the input layer, and then converted through a non-
linear way across many hidden layers. Before calculating the
final output, the average gradient is first computed and the
corresponding weights are adjusted. Neurons of a hidden layer
or input layer are associated with the neurons of the existing
layer. Each neuron will compute a weighted sum of its input and
perform a non-linear activation function to capture its outputs.

TABLE 4 | Five-fold CV results yielded by KNN and RF classifier on the three plant PPI datasets.

Dataset Classifier AUC PR (%) Sens (%) Spec (%) MCC (%)

A. thaliana KNN 0.7346 ± 0.22 71.12 ± 0.44 79.00 ± 0.54 67.92 ± 0.43 60.77 ± 0.22

RF 0.8333 ± 0.77 82.63 ± 0.94 68.31 ± 1.23 85.63 ± 0.88 64.01 ± 0.69

Our method 0.8369 ± 0.36 66.64 ± 0.89 86.09 ± 1.08 56.88 ± 2.21 44.94 ± 1.14

Zea mays KNN 0.8251 ± 0.42 78.38 ± 0.77 89.77 ± 0.48 75.25 ± 0.77 70.83 ± 0.57

RF 0.9336 ± 0.40 96.98 ± 0.28 89.52 ± 0.48 97.21 ± 0.34 87.57 ± 0.49

Our method 0.9466 ± 0.26 81.54 ± 2.38 91.67 ± 1.18 79.17 ± 3.24 71.43 ± 2.00

Oryza sativa KNN 0.8086 ± 0.89 76.41 ± 1.55 89.28 ± 0.78 72.44 ± 1.58 68.59 ± 1.17

RF 0.9199 ± 0.58 87.30 ± 1.35 88.00 ± 1.34 87.22 ± 1.16 78.26 ± 1.28

Our method 0.9440 ± 0.58 75.79 ± 2.43 95.89 ± 0.91 69.31 ± 3.53 67.65 ± 2.98

FIGURE 5 | Comparison results of AUC values obtained by deep neural network (DNN), K-nearest neighbor (KNN), and random forest (RF) classifiers on the three
plant PPI datasets.

Frontiers in Genetics | www.frontiersin.org 5 September 2021 | Volume 12 | Article 745228

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-745228 September 17, 2021 Time: 11:3 # 6

Pan et al. Predicting PPI in Plants

FIGURE 6 | ROC curves obtained from SMR-based method on the
A. thaliana dataset.

The non-linear activation functions usually include sigmoid,
rectified linear unit (ReLU), and hyperbolic tangent. In this work,
we used the sigmoid and ReLU. We constructed a DNN-based
model using the TensorFlow platform shown in Figure 1. This
model consists of two hidden layers with 48 neurons each. The
DHT feature descriptors are employed as the inputs for the
DNN model. After that, these features were set into the hidden
layers for training and predicting PPIs. Adam algorithm (Kingma
and Ba, 2014), which is an adaptive learning rate approach,
was adopted in our methods to accelerate the training process.
At the same time, to avoid overfitting, the dropout technique
was also applied to our model (Khan et al., 2019). We also
used the cross-entropy loss and ReLU activation function to
speed our training and achieve better predictive performance

(Hinton et al., 2015). The loss can be calculated by the following
formulas:

Rmi1 = σ
(
Ti1Xi1 + bi1

)
(i = 1, 2, 3, · · · , n; m = 1, 2) (2)

Rmij = σ
(
TijRi (j−1) + bij

)
(i = 1, 2, 3, · · · , n;

j = 2, 3, 4 · · · , h1; m = 1, 2
)

(3)

R3
ik = σ1

(
Tik

(
R1
ih1
⊕ R2

ih1

)
+ bik

) (
i = 1, · · · , n; k = h1 + 1

)
(4)

R3
ik = σ1

(
TikRi (k−1) + bik

) (
i = 1, · · · , n; k = h1 + 2, · · · , h2

)
(5)

L = −
1
n

n∑
i=1

[
yi ln(σ2

(
Tih2Rih2 + bih2

)
+
(
1− yi

)
ln(1− σ2(Tih2Rih2 + bih2))

]
(6)

In Eqs. 2–6, n describes the amount of protein pairs that need
to be trained, m denotes the individual network, h1 represents the
depth of two individual networks, and h2 denotes the depth of the
fused network. The activation function of ReLU and output layer
with sigmoid is σ1 and σ2, respectively; ⊕ is the concatenation
operator. R represents the output of hidden layer and y is the
corresponding desired output. T and b indicate the weight matrix
and bias vectors.

RESULTS

Evaluation Criteria
To prevent overfitting and validate the robustness of our
method, five-fold cross-validation (CV) scheme is performed
on our method. Specifically, the entire plant’s PPI dataset will

TABLE 5 | Comparison of PSSM with SMR-based method on the A. thaliana dataset.

Testing set Acc (%) PR (%) Sens (%) Spec (%) MCC (%) AUC

1 71.54 71.26 72.27 70.81 43.08 78.72

2 61.05 57.03 90.82 31.04 27.29 79.00

3 58.44 54.79 92.68 24.74 23.70 78.43

4 72.47 74.73 68.51 76.50 45.14 78.66

5 72.02 71.34 73.25 70.80 44.06 78.94

Average 67.10 ± 6.79 65.83 ± 9.2 79.51 ± 11.34 54.78 ± 24.76 36.65 ± 10.29 0.7875 ± 0.0023

Our method 71.48 ± 0.69 66.64 ± 0.89 86.09 ± 1.08 56.88 ± 2.21 44.94 ± 1.14 0.8369 ± 0.0036

TABLE 6 | Performance comparison of the DHT with different feature extraction methods on Oryza sativa dataset.

Descriptors Acc (%) PR (%) Sens (%) Spec (%) MCC (%) AUC

DCT+DNN 80.95 ± 1.10 73.70 ± 1.41 96.12 ± 1.15 65.64 ± 2.40 64.99 ± 1.97 0.9360 ± 0.0017

FFT+DNN 75.31 ± 1.37 68.61 ± 1.03 93.34 ± 1.59 57.23 ± 2.90 54.26 ± 2.81 0.8760 ± 0.0096

DWT+DNN 81.54 ± 3.05 75.10 ± 3.84 94.81 ± 0.65 68.26 ± 6.61 65.50 ± 4.99 0.9309 ± 0.0052

AC+DNN 66.63 ± 4.48 62.02 ± 4.91 88.42 ± 4.77 45.02 ± 12.49 37.39 ± 5.39 0.7931 ± 0.0126

Our method 82.60 ± 1.79 75.79 ± 2.43 95.89 ± 0.91 69.31 ± 3.53 67.65 ± 2.98 0.9440 ± 0.0058
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FIGURE 7 | Five-fold CV results obtained by DNN classifier with different feature descriptors on the Oryza sativa dataset. (A) is the ROC curves obtained by DCT
descriptors; (B) is the ROC curves obtained by FFT descriptors; (C) is the ROC curves obtained by DWT; (D) is the ROC curves obtained by AC.

be randomly split into five equal parts; four of them will be
employed for training and the remaining one was used for
testing. The training and testing data will not overlap with
each other to prevent overfitting. The final validation results
were the mean value obtained by the five-fold CV scheme. The
predictive performance of the proposed approach is verified by
five different measurements, including accuracy (Acc), precision
(PR), sensitivity (Sens), specificity (Spec), and MCC. They can be

represented by

Acc =
TP + TN

TP + FP + TN + FN
(7)

PR =
TP

TP + FP
(8)

Sens =
TP

TP + FN
(9)

TABLE 7 | Five-fold CV results performed on the yeast dataset by the proposed model.

Testing set Acc (%) PR (%) Sens (%) Spec (%) MCC (%) AUC

1 77.20 70.38 93.33 61.31 57.60 0.9176

2 79.88 73.51 91.84 68.50 61.82 0.9241

3 79.44 73.17 93.73 64.80 61.27 0.9181

4 80.20 73.97 93.31 67.03 62.56 0.9263

5 81.00 76.27 90.95 70.70 63.09 0.9158

Average 79.54 ± 1.43 73.46 ± 2.11 92.63 ± 1.18 66.47 ± 3.60 61.27 ± 2.16 0.9203 ± 0.0046
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Spec =
TN

FP + TN
(10)

MCC =
TN × TP − FP × FN

√
(TP + FP)× (TP + FN)× (TN + FN)× (TN + FP)

(11)

where TP, FP, TN, and FN are associated with the number of
true positive, false negative, true negative, and false negative,
respectively. In addition, receiver operating characteristic (ROC)
curves (Hand, 2009) were plotted for better accessing the
predictive performance of the proposed model. Furthermore,
AUC (area under ROC curve) Huang and Ling (2005) values were
also used as an evaluation criterion.

Predictive Performance of Our Model on
Three Plant Datasets
We validated the predictive performance of the proposed
model on three plant PPI datasets by five-fold CV scheme,
including A. thaliana, Z. mays, and O. sativa. It can be observed
from Table 1 that the average accuracy (Acc), precision (PR),
sensitivity (Sens), specificity (Spec), and Matthews correlation
coefficient (MCC) and AUC values obtained on the A. thaliana
dataset are 71.48%, 66.64%, 86.09%, 56.88%, 44.94%, and 0.8369,
respectively. Their SDs are 0.69, 0.89, 1.08, 2.21, 1.14, and 0.36%,
respectively. Table 2 lists the prediction results obtained on the
Z. mays dataset, from which we can see the average Acc of 85.41%,
PR of 81.54%, Sens of 91.67%, Spec of 79.17%, MCC of 71.43%,
and AUC of 0.9466, respectively. Their SDs are 1.18, 2.38, 1.18,
3.24, 2.00, and 0.26%, respectively. On the O. sativa dataset,
shown in Table 3, our model performs at an Acc of 82.60%, PR
of 75.79%, Sens of 95.89%, Spec of 69.31%, MCC of 67.65%, and
AUC of 0.9442, with SDs of 1.79, 2.43, 0.91, 3.53, 2.98, and 0.58%,
respectively. Figures 2–4 illustrate the ROC curves yielded on
A. thaliana, Z. mays, and O. sativa datasets. In the figure of ROC
curves, x-axis is the false positive rate and y-axis represents the
true positive rate.

Based on the experimental results, it can be indicated that
the proposed model is effective for identifying PPIs in plants.
We attributed this better prediction performance to the powerful
DHT–SVD descriptors and the excellent DNN classifier. The
PSSM not only encodes the sequence into matrix but also obtains
the sufficient prior information of plant proteins. In addition,
the application of DHT extracted robust feature descriptors from
PSSM, and then, SVD algorithm was employed to reduce the
noise and decrease the dimension of feature matrix that can
better improve the prediction performance. As a popular deep
learning classifier, DNN shows the powerful ability for training
and predicting, which makes us more convinced that our method
can be a useful tool for plant PPI prediction.

Comparison With Random Forest and
K-Nearest Neighbor Classifier
There are many machine learning classifiers that have been
applied to predict PPIs. K-nearest neighbor (KNN) (Keller et al.,
1985) and random forest (RF) (Breiman, 2001) are the most
widely used algorithms. The KNN algorithm is one of the
simplest classification approaches and it has been widely applied

FIGURE 8 | ROC curves performed by the proposed model on yeast dataset.

FIGURE 9 | ROC curves performed by the proposed model on human
dataset.

to detect PPIs (Li et al., 2009). RF is a decision tree–based
ensemble learning method, and it is known for its powerful
ability of classification (Li et al., 2012). To further verify the
predictive ability of DNN classifier, we compared it with the
KNN and RF model by the five-fold CV scheme and adopted
the same DHT feature descriptors. The results list in Table 4
illustrates that our method achieved higher AUC values across
the A. thaliana, Z. mays, and O. sativa datasets. It can be
observed that the average AUC values of the DNN classifier
are 0.1023, 0.1215, and 0.1354 higher than those of KNN
classifier. Similarly, when compared with the RF classifier, the
AUC value of our model improved 0.0036, 0.013, and 0.0241,
respectively. From the comparison results shown in Figure 5,
we considered that the combination of DNN classifier and DHT
descriptors can significantly improve the performance in plant
PPI prediction.
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TABLE 8 | Five-fold CV results performed on the human dataset by the proposed model.

Testing set Acc (%) PR (%) Sens (%) Spec (%) MCC (%) AUC

1 82.41 74.69 94.07 72.28 67.18 0.9487

2 82.05 74.09 95.19 70.34 66.92 0.9484

3 83.76 78.61 92.33 75.36 68.60 0.9428

4 84.99 78.87 92.96 77.92 71.17 0.9492

5 80.59 72.70 96.36 65.59 64.75 0.9481

Average 82.76 ± 1.68 75.79 ± 2.79 94.18 ± 1.64 72.30 ± 4.74 67.72 ± 2.37 0.9473 ± 0.0026

Comparison of Position-Specific Scoring
Matrix With Different Protein
Representation Methods
To evaluate the performance of PSSM, we compared it with the
substitution matrix representation (SMR), which was proposed
by Yu et al. (2012) to represent protein sequence. In this
section, we employed the BLOSUM62 matrix to encode the
A. thaliana protein sequence as a 20 × 20 matrix. Then,
the DHT algorithm was applied to extract feature descriptors
from SMR matrix and SVD was also adopted to reduce the
feature dimensions. By this way, we can generate a 600-
dimensional SMR–DHT descriptor for each protein pair. The
five-fold CV results of SMR–DHT descriptors combined with
DNN classifier on the A. thaliana dataset are summarized
in Table 5. It can be observed that the PSSM-based method
performs significantly better than the SMR-based method. For
example, the accuracy and AUC gaps between PSSM and
SMR-based method are 4.38 and 4.94%, respectively. The
higher predictive accuracy and lower SDs further indicated
that our method performs better than the SMR-based approach
(Figure 6).

Comparison With Different Feature
Extraction Methods
To illustrate the effectivity of our feature extraction approach,
we compared DHT with some popular correlative methods,
including discrete cosine transform (DCT) (Ahmed et al.,
1974), fast Fourier transform (FFT) (Nussbaumer, 1981), discrete
wavelet transform (DWT) (Nanni et al., 2012), and auto-
covariance (AC) (Zeng et al., 2009). As shown in Table 6 and
Figure 7, on the O. sativa dataset, our method obtained a
high prediction accuracy of 82.60%. The prediction accuracy
values of other methods are 80.95, 75.31, 81.54, and 66.63%,
respectively. Our method performs better than the other four
methods. Especially compared with the AC-based method, our
approach improved the Acc, Spec, MCC, and AUC by over 15%,
and PR and Sens by over 7%, respectively. Although the Sens
value of our method is not the highest, it still obtains an excellent
value of 95.89%. The Acc, PR, Sens, Spec, MCC, and AUC
values obtained from our model are 1.06, 0.69, 1.08, 1.05, 2.15,
and 1.31% higher than the values of the DWT-based method.
These comparison results further indicated the superiority of the
proposed method.

Predictive Ability on Yeast and Human
Dataset
To further validate the potential of the presented method, we
performed it on the yeast and human PPI dataset, which was
introduced by Guo et al. (2008) and Huang et al. (2015). The
predictive results of the two datasets are listed in Tables 7, 8,
and the corresponding ROC curves are shown in Figures 8, 9.
When performing on the yeast dataset, it achieved average
Acc, PR, Sens, Spec, MCC, and AUC value of 79.54%, 73.46%,
92.63%, 66.47%, 61.27%, and 0.9203, with SDs of 1.43, 2.11,
1.18, 3.60, 2.16, and 0.46%, respectively. From Table 8, it can
be observed that the proposed model yielded great results on
the human dataset, an average Acc of 82.76%, PR of 75.79%,
Sens of 94.18%, Spec of 72.30%, MCC of 67.72%, and AUC
of 0.9473, with SDs of 1.68, 2.79, 1.64, 4.74, 2.37, and 0.26%,
respectively. From these results, we can observe that the powerful
DNN-based classifier combined with the DHT feature descriptor
is accurate and robust for exploring cross-species predictions
of PPIs.

DISCUSSION

In this article, we proposed a deep learning framework to
predict PPIs in plants only using the information of amino
acid sequence. This approach is based on DNN combined
with DHT descriptors and PSSM. More specifically, we first
used the PSSM to represent plant protein sequences, and then
extracted feature vectors from these matrices by DHT. To
improve the prediction accuracy and reduce the computational
complexity, the SVD algorithm was adopted to reduce the
feature dimensions. Lastly, these feature descriptors were sent
to the DNN classifier for training and predicting. To verify
the performance of the proposed approach, we performed
it on A. thaliana, Z. mays, and O. sativa datasets. To
evaluate the power of the DNN-based classifier, we compared
it with the KNN and RF classifier using the same DHT
descriptors. In addition, we also compared the DHT with
some different feature descriptors. To further indicate the
generality of our model, we also applied it to the yeast
and human datasets. The experimental results indicated that
our model performs significantly well in predicting PPIs in
plants. In further work, we will continue to design more
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effective computational models for better analyzing biomolecular
interactions in plants.
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