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Abstract: Air pollution is a major public health problem. A significant number of epidemiological
studies have found a correlation between air quality and a wide variety of adverse health impacts
emphasizing a considerable role of air pollution in the disease burden in the general population
ranging from subclinical effects to premature death. Health risk assessment of air quality can play a
key role at individual and global health promotion and disease prevention levels. The Air Pollution
Health Risk Assessment (AP-HRA) forecasts the expected health effect of policies impacting air
quality under the various policy, environmental and socio-economic circumstances, making it a key
tool for guiding public policy decisions. This paper presents the concept of AP-HRA and offers
an outline for the proper conducting of AP-HRA for different scenarios, explaining in broad terms
how the health hazards of air emissions and their origins are measured and how air pollution-
related impacts are quantified. In this paper, seven widely used AP-HRA tools will be deeply
explored, taking into account their spatial resolution, technological factors, pollutants addressed,
geographical scale, quantified health effects, method of classification, and operational characteristics.
Finally, a comparative analysis of the proposed tools will be conducted, using the SWOT (strengths,
weaknesses, opportunities, and threats) method.

Keywords: air pollution exposure; health risk; air pollution aseessment tools; concentration-response
functions

1. Introduction

It is estimated that globally 8.9 million deaths happen due to air pollution exposure,
resulting in 7.6% of the total yearly mortality and leading to 103.1 million healthy life
years lost [1–4]. According to the World Health Organization (WHO), 4.2 Million lose
their lives every year due to Ambient outdoor air pollution and 3.8 Million from indoor
air pollution, mainly due to exposure to smoke from cookstoves and fuels [5]. Exposures
to the particle material (PM) for the long term and short term have been indicated to
increase mortality and reduce life expectancy [6–9]. It is assumed that by 2050 air pollution-
related premature mortality could be double, and air pollution is perceived to be the
most severe environmental health-related threats faced by the world [10]. Increases in
mortality, morbidity, premature death, cardiovascular and respiratory diseases are some of
the adverse effects due to air pollution exposure [11], Lung cancer [12], Adverse impact
on the activity of the central nervous system resulting in cognitive impairment [13,14],
and harmful effects on fetal development and pregnancy [15,16]. Air pollution, mostly
particulate matter (PM), may have carcinogenic effects on humans [17–19]. Increased PM10
concentration by 10 µg/m3 has been indicated to increase non-accidental mortality [20–22].
Air pollution has been found to have an adverse economic impact worldwide, leading to the
loss of GDP due to mortality and morbidity. With the increase in the GDP of the developing
countries, the cost of air pollution has also been increasing. The economic impact is
more evident in the urban areas [23–28]. Secondary pollutants such as ozone are also
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associated with respiratory, circulatory diseases, and mortalities [29,30], chronic respiratory
diseases, and asthma [29]. Other studies have associated higher ozone concentrations with
reproductive health [31], preterm birth [32], and cognitive disorders [33].

Since air pollution is now one of the most significant health hazards, there is a sufficient
scientific basis to justify developing approaches to incorporate epidemiological assessment
into the health-related risk. Although the idea of AP-HRA has been around since the 1950s,
the health-care system worldwide has not adopted them as quickly. AP-HRAs can play
a critical role at both individuals, community, and global health promotion and disease
prevention levels.

According to the (WHO), “AP-HRAs estimate the health impact to be expected from
measures that affect air quality, in different socioeconomic, environmental and policy
circumstances. It is, therefore, an important tool for informing public policy decisions” [34].
It synthesizes information on exposures to air emissions, health impacts, and community
risk used for regulatory decision-making and public participation [35].

AP-HRAs help to understand health benefits, which will be an outcome due to
improved air quality [36,37] and has been used in many studies like the global burden of
disease by WHO [3,38]. Over the last decade, they have evolved from more qualitative
approaches to quantitative tools. HRA tools assess the health risks of the major pollutants
such as oxides of sulfur (SOx) and oxides of nitrogen (NOx), ground-level ozone (O3),
and particles (PM2.5) on the population which is exposed to these pollutants [39]. They
relate the change in the level of the air pollutant concentration to the expected mortality
rates due to ischemic heart diseases, stroke, lung cancer, and respiratory infections, using
Concentration Response Functions (CRFs) [40]. Three main steps involved in developing
the HRA tools include (1) population exposure assessment, (2) Health effect estimation
related to air pollution, and (3) calculation of the uncertainty of the analysis [34].

The HRA tools can facilitate policy decision-making by evaluating the associated costs
and health benefits of climate change mitigation actions. The urgency of bold and timely
Low Emission Development Strategies (LEDS) coupled with the health, environmental,
and economic opportunities has been argued in China and Mongolia [41,42]. These tools
help raise public awareness regarding the adverse health impact of low air quality and
finally connect governing authorities with scientific research throughout the regulatory
process [43–45]. The HRA tools have been widely used in evaluating air quality policies
in the United States [46] and the European Union [47]. Many countries have developed
their own Nationally Appreciate Mitigation Action (NAMA) based on using the HRA tools,
taking into account the different air pollution reduction scenarios. These studies range
from local, national, regional, and global scales, which are reported in Table 1.

Table 1. Recent studies in the air pollution health risk assessment.

Purpose of the Study Region Health Impacts Ref

Evaluating the mortality impact of fine particles reduction
policies and Air quality modeling in Spain. Spain All-cause deaths [48]

Assessing the geographical spread and economic benefit of
the ozone health consequences associated with climate

change in the United States in 2030
USA Mortality and morbidity

impacts related to ozone [49]

Reductions of PM2.5 Air Concentrations and Premature
Mortality in Japan Japan Mortality [50]

Assessing the health-related benefits of attaining the ozone
level standard USA

Mortalities, emergency
department admissions,

hospitalization, restricted
activity day, and school

absences

[51]

Estimation of the national public health burden associated
with exposure to atmospheric PM2.5 and ozone USA Reduced life years and life

expectancy; and mortalities [52]

Evaluation of air quality in six Indian cities to create a
knowledge base for multi-pollutant pollution, dispersion

modeling of ambient particulate concentrations
India Premature mortality [53]
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Table 1. Cont.

Purpose of the Study Region Health Impacts Ref

Evaluation of the health-related economic externalities of air
emissions from particular emission sources or industries

that can be used to help emission reduction policy-making.
Europe Mortality and morbidity [54]

Using multi-sectoral emissions inventory to estimate health
impacts in terms of premature mortality and morbidity

in Delhi
Delhi, India Premature mortality and

morbidity effects [55]

Health benefits from the adaptation of cleaner brick
processing technologies Dhaka, Bangladesh, Mortality and morbidity,

health cost savings [56]

Study the linkages between indoor and outdoor PM in
Ulaanbaatar, Mongolia Ulaanbaatar, Mongolia Premature deaths [57]

Estimation of the citywide morbidity and mortality
attributable to ambient fine particulate matter (PM2.5) and

ozone in New York City
New York City, USA Health impacts and

disparities [35]

Assessment of the intercontinental impact of ozone
emissions on human mortality

Northern Hemisphere,
North America, East
Asia, South Asia, and

Europe

Premature mortality [58]

Estimation of the mortality impacts of 20% of anthropogenic
primary PM2.5 and PM2.5 precursor emission decreases in
each of the four major industrial regions (North America,

Europe, East Asia, and South Asia)

Europe, East Asia, and
South Asia, North

America,
Premature mortality [59]

Evaluation of the external health costs of air emissions in
Europe and the contribution of international

shipping activities
Europe Health-related cost of Air

pollution [54]

Calculation of premature deaths from cardiopulmonary and
lung cancer due to PM2.5 levels and the effect of reductions

in black carbon emissions on surface air quality and
human mortality

Global Mortality [60]

Estimation of premature air pollution-related mortalities
prevented, ozone-related yield reductions of large food

crops avoided and health damage avoided
Global

Mortalities, Morbidities and
avoided Ozone-related

reduction of yield of major
food crops.

[61]

Estimating the global and national health burden of
atmospheric PM2.5 pollution due to surface

transport emissions.
Global Mortality [62]

2. Methodological Approaches Used in the AP-HRAs

The health risk assessment for air pollutions contains the mathematical estimation
and modeling of several processes, including population estimates, population exposure to
pollutants, and adverse health impacts assessment through specific concentration-response
functions [63]. In general, precise data are required, such as population data, air quality
data, baseline mortality or disease rates, and risk estimation (change of the health effect
related to the concentration change of air pollutants, which is referred to as coefficient,
β) from epidemiological studies that quantify the association between health effects and
exposure to air pollution. The flow diagram (see Figure 1) represents the methods, typical
models, and data inputs of AP-HRA.

2.1. Population Estimates

The first stage of AP-HRA is to estimate the population exposed to air pollution once
the temporal and spatial resolution in the study has been determined. Past and current data
is accessible from some national census databases or the latest World Population Prospects
published by the UN Department of Economic and Social Affairs [64]. In most cases, the
health risk assessment is conducted for a particular socio-economic and environmental
scope with some potential mitigation policies to be implemented. Therefore, the population
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data for the incoming few years achieved from population forecast models is usually
required for the scenario setting.
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2.2. Population Exposure to Air Pollution

The adverse health impacts are mainly derived from population exposure to contam-
inated air. Therefore, one core component of AP-HRA is the assessment of exposure to
specific air pollutants for the target population, which is a comprehensive integral part
of pollution concentration, the time-activity pattern of the population of interest (e.g.,
exposure period and level), the proportion of susceptible population and characteristics of
pollutants (e.g., solubility and pattern of physiological contact). Most of the studies take
the ambient concentration of air pollutants as a surrogate indicator for pollution exposure,
as the measurement is conducted much more simply and conveniently [65]. Environmental
agencies worldwide have set the air quality criteria to identify the concentration for those
health-related pollutants [66]. Typically, the WHO air quality guidelines (2005) determined
specified indicators of four main air pollutants, including PM10/PM2.5 (particles with
diameter less than 10 µm or 2.5 µm), NO2, SO2, and O3, and proposed the interim targets
and air quality guidelines (AQG) (See Table 2) [67]. The interim targets are intended for
countries as incremental steps to move towards AQG, and the guidelines are selected based
on concentration-response functions to suggest the concentration level that, if achieved,
would contribute to significant benefits for the protection of public health.

Table 2. Air quality indicators of typical air pollutants.

Pollutant Indicator Interim
Target-1

Interim
Target-2

Interim
Target-3

Air Quality Guideline
(AQG)

PM2.5
annual mean 10 µg/m3 35 25 15 10

24-h mean 25 µg/m3 75 50 37.5 25

PM10
annual mean 20 µg/m3 70 50 30 20

24-h mean 50 µg/m3 150 100 75 50
O3 8-h mean 100 µg/m3

- 160 - - 100

NO2
annual mean 40 µg/m3 - - - -

1-h mean 200 µg/m3 - - - -

SO2
24-h mean 20 µg/m3 125 50 - 20

10-min mean 500 µg/m3 - - - 500
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Generally, modeling and monitoring are two major methods to estimate popula-
tion exposure. Monitoring data can be directly used by collecting past and current air
quality data near the monitoring sites. At the same time, modeling measurements can
be combined with advanced monitoring technologies to facilitate: (i) simulation of air
quality in different geographical areas, using specific socioeconomic or environmental
conditions; and (ii) prediction of changes in exposure, taking into account the future policy
implementations [68–70].

Recent analytical methodologies that have been commonly adopted in estimating the
population exposure to air pollution can be classified as follows:

1. The Global Model of Ambient Particulates model (GMAPS) which was developed by
the World Bank to estimate the ambient concentration of PM10 on the city-level and
used in the previous Global Burden of Disease (GBD) studies [71];

2. The global–regional chemistry transport model TM5, as well as the source receptor
(SR) relationship, developed from TM5 which have been widely applied to evaluate
the response of ambient air quality indicators to changes in emissions of various
pollutants from the certain source in different control strategy scenarios [72–74];

3. Global atmospheric models such as GEOS-Chem [75] and MOZART [76], which use a
similar approach, are also available to provide the ambient concentration estimates of
ozone and/or PM2.5;

4. Land-use regression models which can estimate outdoor pollutant concentrations
through specific geographic information of the source, landscape characteristics, and
roadway [77,78];

5. Hierarchical Bayesian models are applicable for multiple-pollutants estimation by
using tiered Bayesian statistical procedures [79,80].

2.3. Health Impact

The most important part of an AP-HRA is to quantify the health risk related to air
pollution exposure. Various adverse health effects (also called health endpoints) attributed
to short-term and long-term exposures can be categorized as follows:

1. For short-term exposure:

• Mortality
• Hospital admissions or emergency department visits caused by respiratory diseases
• Hospital admissions or emergency department visits caused by cardiovascular

diseases
• Days of restricted activity
• Absence from work or school
• Other acute symptoms

2. For long-term exposure:

• Mortality caused by cardiovascular and respiratory disease
• Lung cancer
• Chronic incidence caused by respiratory or cardiovascular disease
• Decline in physiologic functions
• Intrauterine growth restriction

Different subgroups of the population suffer the various risks of health effects caused
by air pollution exposure. These vulnerable populations include ailing individuals, children
and the aged, and sex differences would, in some cases, influence the level of burden of
health effects as well.

Statistical data such as the mortality or morbidity rate among the population exposed
to a particular air pollutant concentration is necessary. Numerous methodologies have
been developed on short and long-term exposure (see Table 3), while most of them were
conducted separately within different areas, resulting in generalizability limitation [67].
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Table 3. Epidemiological studies of short- and long-term exposure and their features.

Category Methodology Advantage Disadvantages

Short-term
exposure

Time-series studies: using the statistical
model to estimate the influence of

temporal (usually daily) changes of air
pollutant concentrations on daily health

incidence in the population exposed.

• Avoid disturbance caused by
long-term variations such as
individual occupations and
socioeconomic conditions;

• lower costs associated with
data collection.

• Uncertainty caused by the
quality of health data;

• Unable to quantify the
chronic effects of air
pollutants.

Case-crossover studies: studying the
risk of an acute health case after

momentary exposure.

• Get rid of confounder from
time-independent factors;

• Improve causal inferences on
the individual level.

• Unsuitable to estimate the
risk from exposures with a
time trend.

Panel studies: assessing the respiratory
diseases associated with air pollution

among susceptible subgroups.

• Availability of detailed health-
and exposure-related
information of individuals.

• Uncertainty caused by the
relatively small sample size.

Long-term
exposure

Cohort studies: examining the risk of
health endpoints attributed to
long-term pollution exposure.

• Consider the total impact of all
types of health cases.

• High cost and complication
of implementation;

• High demand for spatial,
temporal and average
concentration data.

2.3.1. Concentration-Response Functions (CRFs)

The health risk is represented by concentration-response functions (CRFs), which link
the health endpoints attributed to exposure to air pollutant concentration changes. The
relationship estimation between concentration change of air pollutants, ∆C and change in
health effects (usually an incidence or mortality rate), ∆y usually contains three steps: (i)
determining a functional form of the CRF; (ii) estimating the coefficient values of the CRF;
and (iii) deriving the relationship between ∆C and ∆y from the CRF.

There are two forms for the CRF, linear and nonlinear. Linear and log-linear models
are often used for simplification based on biological evidence [81–84], but nonlinear models
(e.g., logistic model) may also be applied for comprehensive computation, depending on
the baseline data, as well as specific air pollutants and endpoints [2]. For best regression
fitness, the Akaike Information Criterion (AIC) approach may be used, and the model with
a lower value of AIC is preferred [85]. Table 4 shows the different forms of CRFs which are
widely used in health impact risk assessment studies.

Table 4. CFRs in health impact risk assessment.

Functional Form Formula of CRFs Relationship between ∆C and ∆y

Linear function y = α + β× C ∆y = y0−yc= β×(C0−C)= β×∆C
Log-linear function ln(y)= α + β× C ∆y = y0−yc= y0(1− 1

exp(β×∆ C) )

Logistic function y = prob(occurrence |C× β) = (
exp(C · β)

1−exp(C · β) )

In the above table, α represents a combination of all the independent variables, and β
is the excess incidence rate of health outcome per 1 µg/m3 increase of pollutants.
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2.3.2. Relative Risk (RR)

The coefficient values of the CRF are typically derived based on Equation (1) from the
level of Relative risk (RR), which describes the risk of an adverse health effect among the
population exposed to a higher ambient air pollution level relative to a lower ambient level.

RR = exp(β×∆ C) (1)

Previous epidemiological studies [12,86–88] postulated that RR associated with am-
bient air pollution is in a linear relationship with the concentration level, with several
alternative linear function models established as below, where c represents the concentra-
tion of air pollutants and ct represents the minimum level below which there is no obvious
adverse health impact (also called threshold value):

For c < ct, RRLin50(c)= 1,
For ct< c < 50 , RRLin50(c)= 1 + γ(c− c t),
For c > 50 , RRLin50(c)= 1 + γ(50− c t).

(2)

However, the studies focused on estimating the RR functions are mainly carried out
in Europe and North America, where the pollutant concentration is low. Therefore, the
models mentioned above may not be suitable for other regions, especially for developing
countries where the concentration of the pollutant is relatively higher. Instead, the gradual
diminution of the marginal increase in RR is extracted from the logarithm model [89] or
power model [90,91] of RR and concentration. The WHO has subsequently recommended
the logarithmic model for GBD to measure the health impact attributable to air pollution at
the national level [92].

• Logarithm model:

For c < ct, RRLog(c) = 1,
For c ≥ ct, RRLog(c) = [c + 1/ct + 1]ρ.

(3)

• Power model:
For c < ct, RRPower(c) = 1,
For c ≥ ct, RRPower(c) = 1 + θ(c− ct)

η.
(4)

Based on the above mathematical forms used for burden assessment, recent studies
have also conducted the meta-analysis of observed data and proposed an integrated
exposure-response function (IERs) that flattens out at high exposures [93,94]:

For c < ct, RRIER(c) = 1,
For c ≥ ct, RRIER(c) = 1 + α[1− exp(−γ(c− ct)

δ)].
(5)

where α, γ, and δ jointly characterize the CRF which is derived from a fitting process.

2.3.3. Result Integration

1. Mortality and morbidity:

Results of AP-HRAs are often summarized into several metrics, including numbers of
deaths or diseases, years of life lost (YLL), disability-adjusted life years (DALY), or change
in life expectancy [63].

The excess deaths or diseases (ED) derived from an increase in concentration can be
calculated as follows:

ED =∆y× Population (6)

It can also be expressed in terms of the population attributable fraction [95–97]:

ED = PAF× I × P (7)
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where PAF (population attributable fraction) is the fraction of disease burden attributable
to pollution; I is the mortality incidence per year, and P is the all-age population. PAF can
be then computed as below:

PAF =
p(RR− 1)

p(RR− 1)+1
(8)

where RR represents the relative risk of premature mortality obtained from the IER model,
and p represents the fraction of the population exposed. When all people in the region of
interest are exposed to the air pollutant, that is p = 1.

2. Disability-Adjusted Life Year (DALY)

One DALY can be considered as one lost year of “healthy” life, while the total number
of DALYs in the entire population can be regarded as the gap between an ideal health
status where all people have no disease and disability and the current health status [98].

DALYs can be considered as the sum of YLL and YLD:

DALY = YLL + YLD (9)

YLL is a measure of the years of life lost due to premature death. The basic formula
for a given cause, age, and sex is shown below:

YLL = N × L (10)

where N represents the number of deaths, and L represents standard life expectancy at the
age of death in years.

YLD measures years lost due to disability. The basic formula considering the certain
disease, age, and gender is shown below:

YLD = I × DW × L (11)

where I represents the number of cases, L represents the average years of disease, and DW
represents the disability weight, reflecting the severity ranging from 0 (healthy) to 1 (dead).

2.4. Economic Assessment

The economic costs of the health effects can be monetized using two approaches: the
value of a statistical life (VSL) method [99,100] and the cost of illness (COI) method [101].

VSL can be calculated through the willingness to pay (WTP) approach, which measures
people’s willingness to pay for reducing a marginal death risk, following the equation
shown as below [102]:

VSL =
dWTP

dP
(12)

WTP represents the willingness to pay to avoid premature death and morbidity, and
P represents the probability of death. The values of WTP are directly obtained through a
survey-based conjoint analysis.

The cost of Illness (COI) method indicates the economic cost of some morbidity end-
points based on the mean estimation of unit values. Generally, the total COI comprises
hospital admission cost, medical cost, and lost earnings due to missed workdays or re-
stricted activity days. For this purpose, relevant data is obtained through the survey and
interview with medical practitioners. Since the detailed information of treatment costs is
not accessible in all regions, the following transfer approach can be used to calculate the
illness treatment cost in the region i, in comparison with the European Union (EU) [103]:

Cmorb(i)= Cmorb(EU)×(
PCIi

PCIEU

)e
(13)

where Cmorb(i) and Cmorb(EU) represent the illness treatment cost in the region i and EU
country, PCIi and PCIEU are the per capita income in the region and EU, respectively. The
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value of Cmorb(EU) can be obtained from the European valuation table [104], and e is the
elasticity coefficient of WTP [105].

3. AP-HRA Tools

There are currently various quantitative HRA tools developed by governmental and
non-governmental entities to provide timely information regarding air pollutant exposure
and its health impacts. Among them, COBRA (Co-Benefits Risk Assessment), Simair, Air
Q+, BenMAP-CE (Environmental Benefits Mapping and Analysis Program—Community
Edition), Ecosense, Household Air Pollution Intervention Tool (HAPIT), GAINS (Green-
house gas—Air pollution Interactions and Synergies model) were developed to quantify
the number of air pollution-related premature mortalities, disability-adjusted life years,
and cases of disease [106]. These tools use common data for population, sources for base-
line mortality rates, and concentration-response associations, but they vary in degree of
technical complexity, exposure information source, and format [107]. They use a different
methodological approach, spatial resolution, and geographical scope. However, most of
these tools are preset to estimate the effects of NOx, Sulfur Oxides (SOx), PM2.5, and PM10.
The input data can also vary depending upon the source of air pollution and its impact
on a specific population or sub-population like children or air pollution by a particular
sector [52,108]. Some of the tools allow user-specified inputs. However, most of these tools
use default values for demographic, concentration-response functions, and health data
to estimate the population’s exposure level. Table 5 represents some of the widely used
quantitative HRA tools.

Table 5. Widely used quantitative HRA tools.

Tool Developer Study Area Reference

Environmental Benefits Mapping and
Analysis Program—Community Edition

(BenMap-CE)

The United States Environmental
Protection Agency (EPA) USA, Turkey, Spain [46,48,109,110]

Greenhouse gas—Air pollution Interactions
and Synergies (GAINS) model

International Institute for Applied
Systems Analysis (IIASA) Europe [47,111,112]

CO-Benefits Risk Assessment (COBRA)
Health Impacts Screening and Mapping Tool

The United States Environmental
Protection Agency (EPA) USA [113–115]

Air Quality (Air Q+) World Health Organization (WHO) Iran, Italy [116–119]
Air Q+ and BenMAP-CE EPA and WHO USA [120]

The Simple Interactive Model for better Air
quality (SIM-air) Urban Emissions India, Europe [53,121,122]

Household Air Pollution Intervention Tool
(HAPIT)

Household Energy, Climate, and
Health Research Group at the

University of California, Berkeley
India [123–125]

Ecosense
Institute of Energy Economics and

Rational Energy Use (IER), University
of Stuttgart

Greece
France, Brazil [126–128]

TM5- FASST JRC Ispra (Italy) China, Multinational
study [30,129]

Aphekom French Institute of Public Health
Surveillance

25 European cities,
10 European cities [130–132]

BenMap-CE estimates health impacts and monetary benefits from reductions in PM2.5
and ozone. The possible economic consequences of air pollution-related health impacts can
be quantified by BenMap-CE, enabling users to measure the potential health and economic
benefits of improving air quality in any country or region of the world, using the air quality,
population, baseline health, and concentration-response criteria of the GBD. [120]. The
health impacts include heart attacks, Premature mortality, and other air pollution-related
health effects due to air quality changes. After determining ambient air quality changes
using user-specific air quality data, BenMAP-CE relates health effects or health endpoints
with changes in the air pollution concentration, using CFRs.
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HAPIT is a web-based tool that was developed to estimate the expected health benefits
from low indoor PM2.5 emission development strategies in middle and low-income coun-
tries. It can be used to estimate averted premature deaths and DALYs and health-associated
costs of the different intervention scenarios by using the best available background disease
and data available for the exposure-response [133]. HAPIT can be used to evaluate the im-
plication of the intervention scenarios for improving indoor air quality in countries where a
significant portion of the population uses solid fuel, allowing policymakers to compare the
relative merits of interventions within and between different countries. HAPIT depends on
up-to-date national health background information and the tools and databases built for
the Comparative Risk Assessment (CRA) which were used for the 2010 Global Burden of
Disease (GBD 2010). Exposure-response details are used in 57 countries where solid fuels
account for 50% of primary cooking fuel [134].

COBRA evaluates the human health and economic impacts of the state-level low
emissions development strategies in the US by translating the reduced PM and other
concentrations of air pollutants into preventable causes of death. It helps identify the best
option with the highest health benefits or reduce health risks in a cost-efficient manner [135].
COBRA uses county-level predicted PM2.5 concentrations as a proxy of PM2.5 exposures
for individuals living in those counties and estimates the health effects by comparing
them with exposure-response relationships based on the available data from the EPA. A
Gaussian dispersion model is being used in the COBRA tool that accounts for dry and wet
deposition as well as first-order chemical atmospheric transition. The S-R matrix includes
transfer coefficients in the U.S. between emissions and county-level PM2.5 concentrations
and integrates meteorological inputs determined in the 1990 EPA guideline impact analysis
based on weather observation [136].

The Simple Interactive Model for better Air quality (SIM-air) is used to assess the
implications of the integrated air quality management policies in developing countries’ urban
areas. It combines the Geographical Information System (GIS) with the local emission data
inventories in cities in evaluating various air quality scenarios. SIM-air uses the source-
receptor transfer matrix (SRTM) to convert emissions of the concentrations, which is an output
from a chemical transport model. It provides the necessary information for the policymakers
to prioritize their air quality management policies, optimizing options for both public health
and costs impacts in order to better adapt to local ambient standards in urban areas [53,137].

AirQ+ software tool for health risk assessment of air pollution is one of the most widely
used tools for calculating the possible health impacts of improving air quality. It assesses
the short-term and long-term exposure to both outdoor and indoor emissions of PM10,
PM2.5, O3, NO2, and black carbon. AirQ+ helps measure the health impacts of atmospheric
and household air pollution and aims to measure cancer risks and contain unit risk values
for nickel, benzene, vinyl chloride, and chromium (VI) arsenic, and benzopyrene calculates
the number of preventable premature deaths and diseases due to improvement in the air
quality using the Health Impact Function (HIF) equations. The HIF estimates the count of
premature deaths and diseases by using baseline rates of mortality or morbidity, population
data, air pollutant concentrations, concentration-response parameters [120]. EcoSense is an
atmospheric dispersion and air pollution exposure assessment model that helps estimate
the health and environmental impacts and related economic impacts in Europe. It calculates
long-term effects on human health, ecosystem, and crops by airborne pollutants, taking
into account the chemical transformational and dispersion of pollutants. The CRFs are used
to quantify the DALYs and morbidity rates causes by long-term exposure to NO2, PM, and
Ozone [138,139]. EcoSense integrates local and regional dispersion models with complex
exposure-response network functions to quantify the impacts of elevated concentrations of
air pollutants and also the economic value for the different impact categories like human
health, building materials, forests and ecosystems, and crops.

GAINS model identifies the cost-effective portfolios of pollution reduction policies that
achieve air quality improvements at a minimum cost. GAINS helps address the risks of fine
particulate matter and ground-level ozone to human health and the danger of acidification
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disruption to habitats, excess nitrogen accumulation (eutrophication), and exposure to
high ozone levels. The environmental and health impacts of primary pollutants (PM2.5-
PM10) particles, sulfur dioxide (SO2), non-methane volatile organic compounds (VOC),
ammonia (NH3), and nitrogen oxides (NOx) are quantified in a multi-pollutant context.
For the change in the emissions, source-receptor relationships have been established, and
compressive transport models together with the atmospheric chemistry are used to simulate
complex physical and chemical reactions [140]. The GAINS uses the Eulerian Unified EMEP
model for assessment describing the fate of atmospheric pollutants [141]. Health impact
estimation of GAINS is based on epidemiological studies quantifying mortalities due to
the long-term exposure to PM2.5 or SOMO35.

Table 6 represents the comparison between the above-mentioned AP-HRA tools,
concerning their methodologies, scopes, input parameters, and predicted health impacts.

Table 6. Comparison between the AP-HRA tools.

Characteristic AIRQ2.2 BenMAP-CE COBRA HAPIT SIM-Air GAINS EcoSense

Health Impacts

Mortality (cases)
√ √ √ √ √ √ √

Disability-adjusted
life years (DALY)

√ √ √ √ √ √

Morbidity (cases)
√ √ √ √ √ √

Economic Impacts
√ √ √ √ √

Pollutants:

PM2.5
√ √ √ √ √ √ √

PM10
√ √ √ √ √

Ozone
√ √ √ √

NO2
√ √ √ √ √

SO2
√ √ √ √ √

CO
√ √ √ √

Other Black smoke VOC CO2, VOC,
CH4, N2O

Hydrocarbons,
dioxins and

heavy metals

Spatial Resolution

Regional
√ √ √ √ √

National
√ √ √ √

City-level
√ √ √ √

Household/Indoor
√ √ √ √

4. Discussions

Air pollution health risk assessment tools have different advantages when it comes to
simplicity, consistency comparability, and quality assurance. These tools also help policy-
makers by providing necessary information to make action plans to reduce air pollutants by
reducing the combustion of fossil fuels. Substantial progress has been made in evaluating
the health and other environmental effects of the HIA tools. The number of these tools
has advanced over the past decade because of growing epidemiological data that offers
quantitative parameters of air emissions and health impact the concentration-response
relationship, which has helped decision-makers educate the public about the potential
estimated benefits of improved air quality [142]. Simultaneously, low-quality baseline
morbidity rates, especially in low-income countries, make it challenging to measure air-
pollution-related morbidity effects worldwide [107] accurately. Each of these tools has its
limitations and strengths. Knowing them is crucial while assessing the health and economic
impact of air pollution. A comparative SWOT (strengths, weaknesses, opportunities, and
threats) analysis of the tools mentioned above has been carried out in this research, which
is summarized in Table 7.
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Table 7. SWOT (strengths, weaknesses, opportunities, and threats) analysis of the selected AP-AHP tools.

Tool Strength Weakness Opportunities Threats

AirQ+

- Health impacts Quantification of
indoor/outdoor air pollution.

- Quantification of the cancer risks
and includes unit risk values for
chromium (VI), arsenic, nickel,
benzene, vinyl chloride, and
benzopyrene is an additional
feature in the tool.

- Multilanguage versions of the tool
are available.

Evidence-based health outcome
relationships are not strong, especially
with the air pollutants like NO2, BC
(Black Carbon), and long-term ozone
exposure.

There is an opportunity to refine further
the spatial resolution in the analysis
carried out with AirQ+ and integrate
new user-friendly features like
additional explanations for input data
and components to calculate economic
impacts and DALYs.

Often unrefined spatial resolution in the
analysis is carried out with AirQ+, which
may cover a whole country or city’s spatial
domain [120].

COBRA

- It helps researchers create a new
scenario that suggests
improvements in pollution from
baseline emissions smoothly and
efficiently.

- Detailed and comprehensive
estimation of the health and
economic gains that are related to
decreasing the atmospheric PM2.5
concentrations over a given year of
study.

- Entirely concentrated on
state-wise health impacts
assessment in the US, making it
difficult to be used in other
regions.

- The SR Matrix does not reflect the
interaction which takes place in
the atmosphere between the air
pollutants.

Currently, COBRA has baseline data,
which is only appropriate for the USA.
There is an opportunity to add baseline
data to make it suitable for regional or
global HIA studies. The tool needs to
continue to evolve and integrate the
functionality and improve the
sophistication of analysis.

- Some health endpoints like, upper
respiratory symptoms, lower
respiratory symptoms, and acute
bronchitis are using a comparatively
small sampling group and estimated
from a single local survey, which
increases the estimation’s
uncertainty.-For consistent distribution
of air pollutants, an initial probabilistic
method adjusted by the developers has
been only used in the COBRA, which
reduces the accuracy of the results.
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Table 7. Cont.

Tool Strength Weakness Opportunities Threats

BenMAP—
CE

Merging the CFRs with basic pooling
strategies (e.g., random effects and fixed
effects) to construct a new function that
can adequately consider the diverse
demographics data.

- The degree to which different
mixtures of air pollutants pose a
greater or lesser risk and the
extent to which
concentration-response
associations observed in one
group is limited to the particular
case studies and cannot easily be
extended to other cases.

- Estimating health impacts due to
air quality is limited to a single
year period and cannot be carried
out on a multiple-year horizon
[107].

Incorporating new features into the tool,
such as the estimate of the health
impacts due to the exposure to multiple
pollutants [120].

Spatial shifts in city-wide environmental
concentrations, diverse sets of individual
activity patterns, and indoor ambient air
pollution differences [142].

HAPIT

- HAPIT is an easy-to-use tool that
helps estimate averted DALYs,
averted premature deaths, and
choosing Cost-Effective
interventions.

- Information on total households
studied in the intervention, PM2.5
exposure to pre and
post-intervention population, and
the average proportion of the
population using intervention helps
estimate the cost per intervention of
the initiative the annual operating
costs per household.

- The estimation period is short
cannot be indicative of long-term
trends.

- Equal exposures among
household members is assumed in
the HAPIT. However, the
exposure levels vary among the
household members.

To decrease the uncertainty in the
results, information about the baseline
and intervention PM2.5 exposure levels
should be included for the developing
countries where solid fuel is mostly
used.

Background diseases and economic
characteristics of a population are assumed to
remain relatively unchanged in HAPIT. This
presumption will hold for a short life-span.
Therefore, for long-term interventions, such
as shifting from fossil fuel to renewable
energy or electricity, the forecasts will have to
be periodically updated.
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Table 7. Cont.

Tool Strength Weakness Opportunities Threats

GAINS

Compressive Transport models and
atmospheric chemistry to simulate
complex physical and chemical
reactions [140].

- The atmospheric dispersion model
in GAINS is simplified into the basic
linear function form based on the
regression of results from TM5 and
the relevant response-source model,
resulting in uncertainty.

- The health impact is assessed
according to general RR value
obtained from European and
American epidemiological studies,
which is unsuitable and inaccurate
for other areas [140].

- Future projections of activity data
such as macroeconomic drivers,
energy, and fuel consumption are
exogenous to the GAINS model,
derived from other model
calculations or national experts
provided to ensure timeliness and
authority.

- Alternative pathways can also be
specified in the GAINS Expert
mode, improving the applicability
for more scenarios.

Other models that focus on emission
estimation or health impact assessment
separately can provide more precise results
and, if combined, would be a better
alternative option than GAINS.

ECOSENSE

- Comprehensive estimation of air
pollution impacts on human
health and Ecosystems.

- Robust database including details
of major air pollutants,
hydrocarbons, and heavy
metals [143].

Considering a simple linear
source-receptor model for assessing the
atmospheric chemistry interactions that
perform a nonlinear behavior in nature
[107,128]).

Validation of the meteorological models
used in the EcoSense tool to make it
more appropriate for the developing
countries by reviewing the
meteorological databases and
concentration-response functions.

- Inability to capture complicated
atmospheric chemistry processes [107].

- The exact estimation of the form and
severity of the related environmental
impacts is hindered by limited
knowledge of receptor size [126].

- Present projections of the external cost
of climate change vary considerably,
reflecting the high uncertainty of the
forecasts since much of them would
take place over the long term.

SIM-AIR

Multiple benefits
(Environmental—health—economic)
assessment of the climate change action
plans, considering interactions between
emissions, dispersion of pollution,
impacts, and options for management
[53,137].

Uncertainty in spatial analysis resolution
matching the project (mainly urban
areas).

For the study of pollution inventories
and health effects, the database of
concentration-response functions and
emission sources is included in the tools
that can be modified with relevant data
from cities.

Recognizing the uncertainty of inventories is
important and needs to be adjusted carefully
as per the local data.
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To estimate air pollution, most tools rely on air quality modeling, but some may
also collect these data from air quality monitor observations or derive information from
both monitors and models. Using the models for health impact assessment offers an
advantage to cover a broader spatial area. On the other hand, monitoring data represents
real atmospheric concentrations over a discrete amount of time in a given area [107].

There are several complexities in the use of air quality models for health impact
assessment. In epidemiological studies from which concentration-response comparisons
are extracted, modeled concentrations do not correlate to the method or spatial resolution
of the characterization of exposure and may contribute to the inaccuracy of the analysis.
In addition to that, the inherent uncertainty of simulated concentrations may not have
enough resolution to represent the actual patterns of exposure. So, it sometimes becomes a
challenge to deliver reasonable outcomes for policymakers and other people who do not
have specialized skills in the field while keeping harmony between tools utilized and the
multifaceted nature of the data.

It is essential to use the most precise and highly accurate data in the health impact as-
sessment tools [144]. In addition to that, some unknown uncertainties and their interaction
with each other are also usually not known. Like the air we breathe could blend different
pollutants with various sources and pass through different chemical reactions in the at-
mosphere. Furthermore, considering air pollution as the only factor responsible for many
health outcomes and mortalities may not be the only solution. There are multiple factors,
such as social and cultural behaviors, and should be considered in AP-HRA tools [144].
While developing a tool for HIA studies, the main features like spatial resolution, emissions,
health impacts, population exposure characterization methods, accessibility, sophistication,
and application in policy contexts should be considered.

5. Conclusions

This study presents the scope and importance of air quality health risk assessment
(AP-HRA) and outlines the methodological approaches. AP-HRAs contain the estimation
and modeling of processes including population estimates, population exposure to air
pollutants, adverse health impacts assessment, and economic assessment, among which the
health impact assessment is the core part, with specified concentration-response functions
and relative risks for different cases of interest as the most significant methodological
models and parameters for quantification. In addition, in this paper, we reviewed seven
widely used air pollution health impact assessment tools. These tools, usually designed for
a specific assessment context, vary in geographical scope, resolution, method approach,
technical quality, and alternative aspects. Furthermore, nearly all of these tools use similar
knowledge sources for population, baseline mortality rates, and concentration-response
associations. Many of the tools mentioned in this paper have played a leading role in high-
lighting the health and economic impacts of low air quality and have directly contributed
to environmental initiatives to increase air quality. Those conducting AP-HRA need to
know what data are available and the way to communicate the results. When selecting the
tool, it is essential to define first the technical needs of the assessment, the geographic scale,
and the relevant pollutants. In addition to that, while selecting a study location, potential
differences in exposure patterns, pollution characteristics, lifestyle, population behavior,
and medical care system should also be considered.

Future work concerns the in-depth comparative analysis of particular AP-HRA tools,
mainly COBRA and GAINS, to quantify multiple (heath, environmental, and economic)
impacts of the clean transport scenario in Delhi, India, and de-capacity potential and clean
energy policies in the industrial sectors in the selected provinces in China. The objective
would be to gain a better understanding of the similarities and differences in the approaches
used in these tools to achieve the operationalization of HIA in the selected regions.
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