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Abstract

INTRODUCTION: Alzheimer’s disease (AD) is often misclassified in electronic health

records (EHRs) when relying solely on diagnosis codes. This study aimed to develop

a more accurate, computable phenotype (CP) for identifying AD patients using

structured and unstructured EHR data.

METHODS: We used EHRs from the University of Florida Health (UFHealth) sys-

tem and created rule-based CPs iteratively through manual chart reviews. The CPs

were then validated using data from the University of Texas Health Science Center at

Houston (UTHealth) and the University ofMinnesota (UMN).

RESULTS: Our best-performing CP was “patient has at least 2 AD diagnoses and AD-

related keywords in AD encounters,” with an F1-score of 0.817 at UF, 0.961 at UTHealth,

and 0.623 at UMN, respectively.

DISCUSSION:We developed and validated rule-based CPs for AD identification with

good performance, which will be crucial for studies that aim to use real-world data like

EHRs.
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Highlights

∙ Developed a computable phenotype (CP) to identify Alzheimer’s disease (AD)

patients using EHR data.

∙ Utilized both structured and unstructured EHR data to enhance CP accuracy.

∙ Achieved a high F1-score of 0.817 at UFHealth, and 0.961 and 0.623 at UTHealth

and UMN.

∙ Validated the CP across different demographics, ensuring robustness and fairness.

1 BACKGROUND

Alzheimer’s disease (AD) andAD-relateddementias (AD/ADRD) repre-

sent complex neurodegenerative diseases affecting approximately 6.7

million Americans over 65 and over 40 million people worldwide.1–3

Significant efforts have been made to better understand AD/ADRD,

seek effective treatments and prevention strategies, and address

the needs of AD/ADRD patients. The United States (US) National

Alzheimer’s Project Act (NAPA) has recommended a $2 billion annual

budget and calls for an aggressive and coordinated national plan to

accelerate AD/ADRD research and improve patient care.4

The widespread adoption of electronic health record (EHR) sys-

tems has made large-scale, longitudinal clinical datasets available

for research. As an important real-world data (RWD) source,5 EHRs

have become increasingly important for generating real-world evi-

dence (RWE)6 in AD/ADRD research reflecting the patient population

treated in real-world clinical settings. For example, Miller et al. exam-

ined the prevalence of AD/ADRD in the state of Florida and character-

ized thedemographic characteristics of theAD/ADRDpopulationusing

EHR data from the OneFlorida (now OneFlorida+) Clinical Research
Consortium.7 Many studies have also developed AD/ADRD prediction

models using diagnosis, medication history, and biomarker data from

RWD like EHRs and administrative claims.8–11 However, identifying

target populations manually from large collections of RWD sources

(e.g., OneFlorida+ and others) for AD/ADRD research is notably diffi-

cult. Algorithms that can accurately and automatically identify patients

with required phenotype characteristics (e.g., AD differentiating from

other ADRD) are essential in constructing research-grade cohorts to

support AD/ADRD research.

Previously, AD/ADRD cohorts were often identified solely by diag-

nosis codes (e.g., International Classification ofDiseases [ICD]), leading

to significant misclassification errors. High variations in classification

accuracies have been reported in validation studies when using diag-

nosis codes to define dementia, including AD/ADRD.12 In a study that

used two Swedish national RWD registers and six population-based

studies, Rizzuto et al.13 found that relying solely on diagnosis codes

yields a positive predictive value (PPV) of 0.82. In two other studies

using Danish nationwide hospital registers, diagnosis codes accurately

identified AD in only 60-80% of cases, with a PPV ranging from 0.78

to 0.81.14,15 In a US-based study, Taylor et al. found that the AD diag-

nosis codes in Medicare claims data only have a sensitivity of 0.64

and a specificity of 0.96 for identifying AD.16 In addition to diagnosis

codes, EHR data elements like AD-related medications have also been

used to identify AD patients. Tjandra et al. developed and validated

an AD cohort discovery tool using a rule set that included encounters,

diagnosis codes, medications, and procedure codes (e.g., for psycho-

logical/cognitive testing), and achievedmoderate performance with an

F1-score of 0.73, a PPV of 0.77, and a sensitivity of 0.70 in a Michigan

Alzheimer’s Disease Research Center (ADRC) cohort.17

Identifying patients with a particular condition, for example, AD,

within the context of EHRs, is accomplished through a computable

phenotype (CP) or simply phenotype (traditionally often called cohort

identification or case-finding algorithms), which is defined as “clinical

conditions, characteristics, or sets of clinical features that can be determined

solely from EHRs and ancillary data sources and does not require chart

review or interpretation by a clinician.”18 CPs have gained popularity for

their high specificity and sensitivity in EHR-based cohort identification,

demonstrating success in various domains such as the identification

of HIV prevalent cases, transgender and gender nonconforming indi-

viduals, and resistant hypertension, among others.19–21 Traditionally,

EHR-based CPs only considered structured information (e.g., diag-

noses, medications), while EHR contains rich unstructured clinical

narratives (e.g., progression notes, discharge summaries).22 In fact,

over 80% of patient information in EHRs is documented in free-text

clinical narratives,22 which contain more detailed patient information,

including important variables such as cognitive assessments that can

facilitate the identification of AD patients. Prior studies across differ-

ent disease domains have shown that leveraging both structured EHR

data and unstructured narratives in CPs can significantly enhance their

performance.23,24

In this study, aimedat addressing the challengesof accurately identi-

fying individualswithAD,wedeveloped and validated aCP that utilizes

both structured and unstructured data from the University of Florida

Health (UFHealth) EHR. We assessed the prevalence of AD in the
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UFHealthpatient cohort, detailing the characteristics of thesepatients.

Additionally, to ensure the CP’s applicability and generalizability, we

conducted validation studies in other sites’ EHRs, including the Uni-

versity of Texas Health Science Center at Houston (UTHealth) and the

University ofMinnesota (UMN). Resources such as the diagnosis codes

and keywords used in this study are available on GitHub25 and also in

the supplemental material “Supplement_AD_CP_Final.xlsx.”

2 METHODS

2.1 Data sources

We retrieved individual patient-level data from the UFHealth Inte-

grated Data Repository (IDR) after obtaining approval from the UF

Institutional Review Board (IRB). The UFHealth IDR serves as an

enterprise data warehouse consisting of data from across UFHealth’s

clinical and administrative information systems (e.g., Epic EHR system;

Janesville, WI), covering a population of over 2 million patients.26 We

then used data from the UTHealth and the UMN Academic Health

Center Information Exchange (AHC-IE) clinical data repository (CDR)

for external validation of the CPs developed using UFHealth data.

The UTHealth Physicians CDW encompasses all UTHealth Physicians

outpatient EHR data, serving approximately 1.8 million patients. The

UMN AHC-IE CDR comprises data from over 4.5 million patients who

received care at eight hospitals andmore than 40 clinics.

2.2 Overall study design

We developed the CP for identifying AD patients using structured

and unstructured EHR data. As shown in Figure 1, we adopted a two-

step process to develop the AD CP: (1) we applied a baseline CP (i.e.,

“patientswith at least oneAD-related diagnosis codes”) to identify a poten-

tial AD cohort via searching EHRs using International Classification of

Diseases-Ninth/Tenth Revision-Clinical Modification (ICD-9/10-CM)

codes as shown in Table 1. For all the patients within the cohort, we

collected their EHRdata, including structured data (e.g., demographics,

diagnoses, procedures, medications, laboratory results, procedures)

and unstructured clinical notes (e.g., progress notes, discharge sum-

maries, pathology reports, identified via regular expressions); and (2)

we iteratively derived the CP rules through manual chart reviews on

selected samples from the potential AD cohort.

2.3 Derive CP rules based on manual chart
reviews on selected samples from the potential AD
cohort

Based on insights from previous studies on case-finding algorithms for

AD17 and dementia,11,12,27,28 as well as consultations with clinicians

who specialize in ADpatient care, we proposed seven initial base rules:

(1) age equal to or greater than 65 years, (2) having at least two of the

RESEARCH INCONTEXT

1. Systematic review: The authors reviewed the literature

using PubMed and identified that previous Alzheimer’s

disease (AD) related computable phenotypes (CPs) were

often limited by misclassifications due to reliance on

AD diagnosis codes alone, highlighted the need for

incorporating diverse data elements (e.g., medications,

procedures, and keywords) to enhance specificity and

sensitivity of the CPs.

2. Interpretation: Our CP integrates structured and

unstructured data, improving upon previous CPs by

enhancing the accuracy of AD patient identification. The

best-performingCP,which includesADdiagnoses and rel-

evant keywords from clinical encounters, demonstrated

high sensitivity and F1-scores.

3. Future directions: Future research should focus on refin-

ing theseCPs to address variability in performance across

different EHR systems. Further studies could also explore

advanced natural language processing tools to better

interpret the context of keywords within clinical narra-

tives, improving the robustness and applicability of CPs

for identifying AD patients in diverse healthcare settings.

AD diagnosis codes, (3) having at least five of the AD diagnosis codes,

(4) having at least one of the other ADRD diagnoses, (5) having at least

one of the cognitive decline diagnoses, (6) use of at least one of the rel-

evantmedications, and (7) having at least one of the relevant keywords

in notes from an AD encounter. The value sets, codes, and keywords

used in the seven base rules are listed in Table 1.

We generated 69 distinct combinations by combining these seven

base rules, as shown in Table 2. Subsequently, we randomly sampled

10% of the patients whomet the rule combination for each of these 69

combinations. If the number of patients for the 10% sample was larger

than 20, we employed random selection to pick 20 patients for this

combination. Conversely, if the total patient count for a combination

was less than 3, we manually reviewed all patients within that combi-

nation. In total, we selected 363 patients and split them into a training

set and a testing set in an 8:2 ratio (i.e., 282 for training samples and 81

for testing samples). Only the training set was used to develop the CP

rules.

We first developed an annotation guideline for the manual chart

reviews to ensure consistent criteria were applied across all review-

ers. Three annotators (T.L., P.Y., and S.B.) conducted the chart review

iteratively. In each round, they independently reviewed the same 10

samples from the training set following the annotation guideline. After

each round, if any disagreements arose among the three reviewers,

the entire study team engaged in discussions to resolve these conflicts

and reach a consensus, and the annotation guideline was iteratively

revised accordingly to these discussions. After five rounds of chart
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F IGURE 1 Flow chart of the Alzheimer’s’ disease computable phenotype development process.

TABLE 1 Value sets, codes, and keywords used in the seven base rules.

Parameter Value sets/codes/keywords

AD diagnosis codes

ICD-9-CM 331.0 – “Alzheimer’s disease”

ICD-10-CM G30 – “Alzheimer’s disease”

G30.0 – “Alzheimer’s disease with early onset”

G30.1 – “Alzheimer’s disease with late onset”

G30.8 – “Other Alzheimer’s disease”

G30.9 – “Alzheimer’s disease, unspecified”

Other ADRD diagnosis codes (selected examples)

ICD-9-CM e.g., 290.0 – “Senile dementia, uncomplicated”, 331.11 – “Pick’s disease”, 437.2 –
“Hypertensive encephalopathy”, etc.

ICD-10-CM e.g., F01.50 – “Vascular dementia without behavioral disturbance”, G91.0 – “Communicating
hydrocephalus”, G94 – “Other disorders of brain in diseases classified elsewhere”, etc.

Cognitive decline diagnosis codes (selected examples)

ICD-9-CM e.g., 78093 – “Memory loss”, 79952 – “Cognitive communication deficit”, 331.83 – “Mild
cognitive impairment, so stated”, etc.

ICD-10-CM e.g., G31.84 – “Mild cognitive impairment, so stated”, G31.89 – “Other specified degenerative
disease of nervous system”, R41.81 – “Age-related cognitive decline”, etc.

Medication (selected examples)

Names/RxNorm e.g., “Aricept”, “Namzaric Oral Product”, “24 HR galantamine hydrobromide 16MG Extended
Release Oral Capsule”, “Namenda”, etc.

Keywords (selected examples)

e.g., “dementia”, “Alzheimer”, “memory loss”, “cognitive deficits”, “cognitive impairment”,
“cognitive disorders”, “cognitive decline”, “amnesia”, etc.
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TABLE 2 Summary of top 8 combinations of base rules, the number of patients identified by each rule combination, and the number of actual
patients confirmed bymanual chart reviews.

Age

(years)

AD diagnosis

codes

Other ADRD

diagnosis codes

Cognitive decline

diagnosis codes Medication Keyword

Total # of

patientsa
# of patients

selected

# of AD

patientsb

≥65 ≥2 ≥5 ≥1 ≥1 ≥1 ≥1

+ – – + – + + 773 20 2

+ – – + – – + 616 20 1

+ + + + + + + 565 20 19

+ + – + – + + 554 20 11

+ + – + + + + 552 20 17

+ – – + + + + 430 20 0

+ + + + – + + 283 20 17

+ + – + – – + 235 20 12

Note: “+” indicates that the patient must meet this rule.
aOverall, therewere 69 different rule combinations that identified patients. Only the top 8 rule combinations are displayed here. All the 69 rule combinations

are reported in Supplement Table 1.
bNumber of AD patients identified by chart review from the selected patient sample.

reviews (i.e., after assessing 50 samples), the inter-rater agreements

between any two of the three annotators achieved a Cohen’s kappa

of 1, indicating perfect agreement. Subsequently, the three annota-

tors began annotating the remaining training samples independently,

with the explicit instruction to be cautious when a case was deemed

ambiguous. A fourth reviewer (J.B.) helped resolve the discrepancies

when inconsistent annotations were encountered. We assessed the

performance of each rule combination on both the training and testing

sets, which were derived from the chart-reviewed cohort, using multi-

plemetrics, including sensitivity, PPV, and F1-score, with a satisfactory

cutoff point of 0.8 (80%) for all these metrics. To well explain the met-

rics, we introduced four basic concepts for calculating sensitivity, PPV,

and F1-score: P is the number of positive instances, N is the number

of negative samples, PP is the number of samples that are predicted

as positive, PN is the count of instance that predicted as negative, TP

(true positive) denotes the number of samples predicted as positive

correctly, FP (false positive) is the count of instances incorrectly pre-

dicted as positive, FN (false negative) indicates the number of samples

that aremisclassified intonegative, andTN (truenegatives) is the count

of instances correctly predicted as negative.

Sensitivitymeasures the proportion of actual positive cases that are

correctly identified as such (true positives) by the CP rule:

Sensitivity = TP
P

PPV, or precision, is the proportion of predicted positive cases that

are truly positive. It reflects the probability that a predicted positive

case accurately indicates the presence of the condition:

PPV = TP
P

F1-score is a balanced measure, encapsulating both sensitivity and

PPV. It is the harmonic mean of the two, offering a single, consolidated

score that mitigates the impact of extreme values in either sensitivity

or PPV, thus providing amore balanced assessment of our CP rules:

F1 − score = TP

TP + 1

2
(FP + FN)

The rule with the highest F1 score was selected as the best-

performing CP, considering two distinct scenarios: (1) only considering

structured data, and (2) considering both structured and unstructured

data.

2.4 External validation

To further validate thebest-performingCPsandevaluate their general-

izability, we distributed the annotation guidelines, the best-performing

CP rules, and the corresponding codesets to UTHealth and UMN. Both

institutions independently performed manual chart reviews on a ran-

domly selected sample of 50 patients from their EHR data, adhering

to the same annotation guidelines previously utilized at UFHealth. The

performanceof theCPalgorithmwas subsequently evaluatedbasedon

these annotated patient samples.

2.5 Statistical analysis

All three sites independently applied the baseline CP and the over-

all best-performing CP to their EHR data to identify a potential

AD cohort and a definitive AD cohort. Subsequently, we employed

chi-squared tests to statistically verify the significance of observed

differences across demographic categories—such as age, gender, and

race/ethnicity—between the definitive and potential AD cohorts at

each site. Moreover, we performed proportional Z-tests to compare

the prevalence rates of certain chronic conditions within the two

identified AD groups at each site.
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TABLE 3 Performance of the baseline CP rule and the best-performing CP rules in terms of F1-score on the training data and the testing data.

Parameter Rulea Sensitivity PPV F1-score

Training data

Baseline With at least 1 AD diagnoses 1.000 0.415 0.586

Structured data only (best F1-score) With at least 2 AD diagnoses 0.949 0.673 0.787

Structured and unstructured data (best F1-score) With at least 2 AD diagnoses, andwith

keywords in AD encounters

0.932 0.747 0.829

Testing data

Baseline With at least 1 AD diagnoses 1.000 0.370 0.541

Structured data only (best F1-score) With at least 2 AD diagnoses 1.000 0.652 0.789

Structured and unstructured data (best F1-score) With at least 2 AD diagnoses, andwith

keywords in AD encounters

0.967 0.707 0.817

2.6 Performance evaluation on demographic
subgroups

To evaluate the performance variability of the developed CPs across

different demographic subgroups, we assessed the performance of the

baseline CP and the best-performing CPs within the UF-site chart-

reviewed cohort (i.e., the combination of the training and testing

data) on subgroups of gender (i.e., “Female,” “Male”), age (i.e., “<= 64”

and “>64”), and race/ethnicity (i.e., “Hispanic,” “Non-Hispanic White,”

and “Non-Hispanic Black”). The performance metrics reported include

sensitivity, PPV, and F1-score.

3 RESULTS

3.1 Development of the CP for the identification
of AD patients

Using the AD diagnosis codes (i.e., ICD codes in Table 1), we iden-

tified a potential AD cohort of 5,263 patients from the UFHealth

IDR. Our final CP identified 2,756 AD patients among this cohort, as

shown in Figure 1. A final set of CP algorithms was selected based on

the best F1-score of the various base CP rule combinations listed in

Table 3, using manual chart review results as the gold standard. The

best-performing CP with structured data only was “the patient has at

least 2 AD diagnoses,” having an F1-score of 0.787 on the training set.

When considering both structured and unstructured data, the best-

performing CP was “the patient has at least 2 AD diagnoses and has

keywords in AD encounters,” with an F1-score of 0.829, outperforming

the one considering structured data only. The performance of these

CP algorithms was further assessed using the independent testing set

(i.e., the test sample with 81 patients). When applying the final CP

algorithms to the testing set, the CP with structured data received an

F1-score of 0.789, while the CP using both structured and unstruc-

tureddata achieved abetter F1-score of 0.817. BothCP rules exhibited

significant improvements in the F1-score compared to the baseline

CP rule. Table 3 shows the different performance metrics (i.e., sen-

sitivity, PPV, and F1-score) of these CP algorithms under different

settings.

3.2 External validation

There were 6,821 patients and 10,387 patients with at least one AD

diagnosis code identified at UTHealth andUMN sites, respectively. For

the validation process, a random sample of 50 patients from each site

was selected for manual chart reviews. Table 4 shows the performance

of the final CP rules on the two validation sites. Our CPs showed dif-

ferent performances across the two sites. For the structured data-only

CP, the F1-score was 0.871 and 0.667, respectively, for the two val-

idation sites. On the other hand, the CP using both structured data

and unstructured data had an F1-score of 0.961 and 0.623 for the

respective sites.

3.3 Definitive AD cohort characteristics

Weapplied the best-performingCPusing both structured and unstruc-

tured data (i.e., “the patient has at least 2 AD diagnoses and has keywords

in AD encounters”) to identify the definitive AD cohorts in each site.

Table 5 describes the patient characteristics for both the definitive

AD cohort and the potential AD cohort across the three sites. In our

site-specific comparisons, significant demographic differences were

identified between the definitive and potential AD cohorts. Notably,

across each site, a comparison of age group and race/ethnicity dis-

tribution between the two cohorts revealed a statistically significant

difference (p< 0.05). Conversely, when examining sex distribution, the

analysis across all sites indicated no statistical significance (p > 0.05).

Further examination focused on the prevalence of several chronic con-

ditions within each cohort. Across all sites, the definitive AD cohort

showed a significantly higher prevalence of depression and cancer

compared to the potential AD cohort (p< 0.05).

3.4 Performance on different demographic
subgroups

Table 6 shows the performance of the baseline CP rule and the

best-performing CP rules on different demographic subgroups in

the UFHealth chart-reviewed cohort. Our overall best-performing
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TABLE 4 Performance of best-performing CP rules on external validation sites.

Parameter Rule Sensitivity PPV F1-score

UTHealth validation data

Structured data only With at least 2 AD diagnoses 0.974 0.787 0.871

Structured and unstructured data With at least 2 AD diagnoses, andwith

keywords in AD encounters

0.974 0.949 0.961

UMNvalidation data

Structured data only With at least 2 AD diagnoses 0.550 0.846 0.667

Structured and unstructured data With at least 2 AD diagnoses, andwith

keywords in AD encounters

0.475 0.905 0.623

TABLE 5 Characteristics of the definitive AD cohort and the potential AD cohort within UFHealth IDR, UTHealth physicians CDW, and UMN
AHC-IE CDR.

UFHealth IDR UTHealth Physicians CDW UMNAHC-IE CDR

Definitive AD

cohorta
Potential AD

cohortb

p-Value

Definitive AD

cohort

Potential AD

cohort

p-Value

Definitive AD

cohort

Potential AD

cohort

p-ValueParameter N= 2,756 N= 5,263 N= 1,823 N= 6,821 N= 5,311 N= 10,387

Age

<55 53 (1.9%) 111 (2.1%) <0.05 124 (6.80%) 433 (6.35%) <0.05 52 (1.0%) 105 (1.0%) <0.05

55-64 194 (7.0%) 364 (6.9%) 327 (17.94%) 981 (14.38%) 170 (3.2%) 354 (3.4%)

65-74 665 (24.1%) 1,165 (22.1%) 607 (33.30%) 2,011 (29.48%) 778 (14.6%) 1,347 (13.0%)

75-84 1,178 (42.7%) 2,183 (41.5%) 620 (34.01%) 2,472 (36.24%) 2,136 (40.2%) 3,939 (37.9%)

>=85 666 (24.2%) 1,440 (27.4%) 144 (7.90%) 911 (13.36%) 2,175 (41.0%) 4,642 (44.7)

Unknown 0 (0%) 0 (0%) 1 (0.05%) 13 (0.19%) 0 (0%) 0 (0%)

Sex

Male 1,028 (37.3%) 2,023 (38.4%) 0.331 669 (36.70%) 2,490 (36.50%) 0.696 1,783 (33.6%) 3,620 (34.9%) 0.114

Female 1,728 (62.7%) 3,240 (61.6%) 1,152 (63.19%) 4,317 (63.29%) 3,528 (66.4%) 6,766 (65.1%)

Unknown 0 (0%) 0 (0%) 2 (0.11%) 14 (0.21%) 0 (0%) 0 (0%)

Race/ethnicity

Hispanics 148 (5.4%) 239 (4.5%) <0.05 59 (3.24%) 492 (7.21%) <0.05 50 (0.9%) 98 (0.9%) <0.05

NHW 1,828 (66.3%) 3,648 (69.3%) 1,011 (55.46%) 2,883 (42.27%) 4,681 (88.1%) 9,253 (89.1%)

NHB 643 (23.3%) 1,094 (20.8%) 323 (17.72%) 1,548 (22.69%) 142 (2.7%) 275 (26.5%)

Other 90 (3.3%) 136 (2.6%) 291 (15.96%) 1,295 (18.99%) 438 (8.2%) 84 (0.8%)

Unknown 47 (1.7%) 146 (2.8%) 139 (7.62%) 603 (8.84%) 396 (7.5%) 677 (6.5%)

Chronic conditions

Depression 1,162 (42.2%) 1,972 (37.5%) <0.05 710 (38.95%) 1,857 (27.22%) <0.05 2,530 (47.6%) 4,531 (43.6%) <0.05

Diabetes 876 (31.8%) 1,611 (30.6%) 0.270 412 (22.60%) 1,815 (26.61%) <0.05 1,271 (23.9%) 2,549 (24.5%) 0.407

Hypertension 2,108 (76.5%) 3,921 (74.5%) <0.05 1,226 (67.25%) 4,489 (65.81%) 0.249 4,154 (78.2%) 7,951 (76.6%) <0.05

Cancer 852 (30.9%) 1,414 (26.9%) <0.05 455 (24.96%) 1,219 (17.87%) < 0.05 1,668 (25.2%) 3,028 (29.1%) <0.05

Abbreviations: NHB = Non-Hispanic Black; NHW = Non-Hispanic White; UFHealth IDR = University of Florida Health Integrated Data Repository;

UTHealth Physicians CDW = University of Texas Health Science Center at Houston (UTHealth) Physicians Clinical Data Warehouse (CDW); UMN AHC-IE

CDR=University ofMinnesota (UMN) Academic Health Center Information Exchange (AHC-IE) clinical data repository (CDR).
aThe definitive AD cohort identified through the developed best performance CP rules.
bThe potential AD cohort identified through the “having at least 1 AD-related diagnosis code” criterion.
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TABLE 6 Performance of the baseline CP rule and the best-performing CP rules on different demographic subgroups in the UF-site
chart-reviewed cohort.

Parameter Rule Sensitivity PPV F1-score

Sex: Female (N= 229)

Baseline With at least 1 AD diagnoses 1.000 0.402 0.573

Structured data only (best F1-score) With at least 2 AD diagnoses 0.946 0.664 0.780

Structured and unstructured data (best F1-score) With at least 2 AD diagnoses, andwith

keywords in AD encounters

0.913 0.757 0.828

Sex:Male (N= 134)

Baseline With at least 1 AD diagnoses 1.000 0.410 0.582

Structured data only (best F1-score) With at least 2 AD diagnoses 0.982 0.675 0.800

Structured and unstructured data (best F1-score) With at least 2 AD diagnoses, andwith

keywords in AD encounters

0.982 0.711 0.824

Age:<= 64 (N= 72)

Baseline With at least 1 AD diagnoses 1.000 0.361 0.531

Structured data only (best F1-score) With at least 2 AD diagnoses 0.962 0.641 0.769

Structured and unstructured data (best F1-score) With at least 2 AD diagnoses, andwith

keywords in AD encounters

0.962 0.694 0.806

Age:> 64 (N= 291)

Baseline With at least 1 AD diagnoses 1.000 0.416 0.587

Structured data only (best F1-score) With at least 2 AD diagnoses 0.959 0.674 0.792

Structured and unstructured data (best F1-score) With at least 2 AD diagnoses, andwith

keywords in AD encounters

0.934 0.748 0.831

Race: Non-HispanicWhite (N= 252)

Baseline With at least 1 AD diagnoses 1.000 0.381 0.552

Structured data only (best F1-score) With at least 2 AD diagnoses 0.958 0.630 0.760

Structured and unstructured data (best F1-score) With at least 2 AD diagnoses, andwith

keywords in AD encounters

0.938 0.714 0.811

Race: Non-Hispanic Black (N= 67)

Baseline With at least 1 AD diagnoses 1.000 0.448 0.619

Structured data only (best F1-score) With at least 2 AD diagnoses 0.933 0.718 0.812

Structured and unstructured data (best F1-score) With at least 2 AD diagnoses, andwith

keywords in AD encounters

0.933 0.718 0.812

Race: Hispanic (N= 24)

Baseline With at least 1 AD diagnoses 1.000 0.583 0.737

Structured data only (best F1-score) With at least 2 AD diagnoses 1.000 0.875 0.933

Structured and unstructured data (best F1-score) With at least 2 AD diagnoses, andwith

keywords in AD encounters

1.000 0.933 0.966

CP (i.e., “with at least 2 AD diagnoses, and with keywords in AD

encounters”) demonstrates consistently satisfactory performance (i.e.,

F1-score > 0.8) across all demographic subgroups. Meanwhile, the

best-performing CP rule, considering both structured and unstruc-

tured data, consistently overperformed the best-performing CP, which

only considers structured data.

4 DISCUSSION

In this study, we successfully developed and validated CP algorithms

for identifying AD patients in EHRs, leveraging information from mul-

tiple EHR domains. Our study extended previous work on AD patient

identification in several significant ways. First, in the development of

the CP algorithm, we introduced more flexibility in the inclusion and

exclusion criteria by considering and testingmultiple EHRdomains (i.e.,

medications, procedures, and keywords) in addition to AD/ADRDdiag-

nosis codes. Second, in addition to considering information directly

related toAD,we also considered diagnosis codes for cognitive decline.

These codes may be recorded for patients with known AD status, and

including them in the CP algorithms further improved its coverage

and robustness. Third, our final CP algorithm is simple (i.e., “patient

has at least 2 AD diagnoses and AD-related keywords in AD encounters”),

making it readily applicable to other EHR systems. Despite the use of
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varied data models by institutions in our validation study, the algo-

rithm’s focus on diagnosis codes and clinical notes allowed for easy

adaptation without significant effort. We employed code matching in

diagnosis/condition tables and regular expressions in clinical notes,

streamlining the adaptation process across diverse data architec-

tures. Further, compared with previous studies,12,14–17 our algorithm

demonstrated superior performance, achieving higher sensitivitywhile

maintaining comparable PPV. Our final algorithm achieved a per-

fect sensitivity on the testing dataset, indicating that it can correctly

identify all patients who truly have AD.

Nevertheless, there were a few false positives because: (1) in the

unstructured data, the patient is recorded as “suspicious of two or more

subtypes of ADRD” but was either diagnosed as “having subtypes of

ADRD other than AD” or there is no conclusion yet at the time of our

chart review; (2) in the unstructured data, the patient was recorded

as “has dementia, possibly Alzheimer’s,” but whether the patient truly

had AD was not confirmed; and (3) potential document errors, where

the patient had not been diagnosed with AD, but the condition was

listed incorrectly in patient’s chart because of suspicion of AD. Our

high-performing EHR-based CPs provide the opportunity for fast and

accurate identification of AD patients from EHR systems, which can

be used to build patient cohorts for research, clinical care, and pub-

lic health initiatives. Our CP algorithms successfully identified a total

of 2,756, 1,823, and 5,311 AD patients across the three sites, respec-

tively, with most of them older than 65. The statistical analysis of

both definitive and potential AD cohorts reveals significant differ-

ences in demographic attributes, notably age and race/ethnicity, aswell

as their clinical characteristics. The baseline CP rule incorporates a

large number of non-AD patients to form a broad AD cohort with low

PPV, which significantly deviates from the precise AD cohort identi-

fied by our designed best-performing CP rule, thereby impacting the

cohort’s characteristics. Such disparities between the broad and pre-

cise cohorts could potentially skew findings in downstream analyses.

This underscores the importance and benefits of our validated and

well-performed CP rules in EHR-data-based AD research.

In addition, our overall best-performing CP demonstrated con-

sistently superior performance across a wide range of demographic

subgroups, showcasing its robustness and ensuring fairness in its appli-

cation. The analysis revealed that the CP, which incorporates both

structured and unstructured data, significantly exceeded the perfor-

mance of the CPwhich utilizes only structured data. This pattern holds

true across all demographic groups, thereby emphasizing the substan-

tial value of integrating unstructured data into CP development.

Our study has several limitations. One concerns the generalizability

of our best-performing CP rules. While validating the best-performing

CPs at different sites (i.e., UTHealth and UMN), we observed substan-

tial variability in their performance, particularly in sensitivity metrics.

The low sensitivity at UMN for both CP rules—the one relying solely

on structured data and the one incorporating both structured and

unstructured data—suggests a generalizability issue. This problemmay

stem from differences in data distribution across sites, such as vari-

ations in demographics, clinical practices, or documentation styles.

Consequently, these differences hinder the application of our CP rules

in settings that are markedly different from the UFHealth population.

To address this issue, one potential strategy is to fine-tune the CP rules

at each site, particularly if initial evaluations showsubpar performance.

Fine-tuning involves enhancing the precision and breadth of diagno-

sis codes and keywords, which includes eliminating those with poor

PPV in identifying AD patients and incorporating additional relevant

codes and keywords tailored to the specific site. These findings under-

score the challenges in developing robust CP algorithms across diverse

settings, emphasizing the necessity of incorporating data from a vari-

ety of sources throughout the CP development process, not merely

during the validation phase. Another potential strategy is using feder-

ated learning29 to improve CP generalizability and applicability. This

approach allows for collaborative development across multiple sites

without direct data sharing, thus addressing privacy and data exchange

concerns while aiming for a universally effective CP algorithm.

Further inspection of our CP revealed two additional limitations

regarding AD-related keywords. In the current developed CP algo-

rithm, we focused solely on AD-relevant keyword matchings with-

out considering their context within unstructured clinical notes. For

instance, we overlooked negations (e.g., “the patient does not have cog-

nitive impairment”) and references to third parties (e.g., “he lived with a

relative who has cognitive impairment”). Moreover, the keyword list from

UFHealth did not work consistently well on other sites. This was evi-

dent inUMN’s validation,where theCPrule that includedunstructured

data underperformed compared to the structured data-only rule. This

discrepancy could be due to lexical variations (i.e., differences in word

usage for the same medical concept) in clinical documentation across

institutions,30 rendering theUFHealth-developed keywords less effec-

tive at UMN. However, a previous study30 indicated that while lexical

variations are notable, semantic-level information (i.e., the meaning

and context of the medical concept) might remain relatively consis-

tent, suggesting that advanced natural language processing methods

that could understand documentation from the semantic level could

enhance CP algorithm accuracy in the future. For instance, leverag-

ing large medical language models,31,32 known for their proficiency in

understanding and answering questions over free-text clinical notes,

could transform the AD-related keyword-matching approach into a

more accurate and robust question-answering approach.

In sum, we have successfully developed and rigorously validated

CP algorithms for accurately identifying AD patients in large medi-

cal databases. The final CP can be effectively applied in structured

data alone or in combination with unstructured clinical notes. The

CPs we developed achieved good overall performance. The AD patient

cohort identified through our CP can be used in downstream analysis

to provide real-world evidence in understanding the disease burdens,

social and behavioral determinants of health, patterns in utilization of

services, and health outcomes in AD patients.
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