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Abstract: A unique coagulopathy often manifests following traumatic brain injury, leading the
clinician down a difficult decision path on appropriate prophylaxis and therapy. Conventional coagu-
lation assays—such as prothrombin time, partial thromboplastin time, and international normalized
ratio—have historically been utilized to assess hemostasis and guide treatment following traumatic
brain injury. However, these plasma-based assays alone often lack the sensitivity to diagnose and
adequately treat coagulopathy associated with traumatic brain injury. Here, we review the whole
blood coagulation assays termed viscoelastic tests and their use in traumatic brain injury. Modified
viscoelastic tests with platelet function assays have helped elucidate the underlying pathophysiology
and guide clinical decisions in a goal-directed fashion. Platelet dysfunction appears to underlie
most coagulopathies in this patient population, particularly at the adenosine diphosphate and/or
arachidonic acid receptors. Future research will focus not only on the utility of viscoelastic tests in
diagnosing coagulopathy in traumatic brain injury, but also on better defining the use of these tests
as evidence-based and/or precision-based tools to improve patient outcomes.

Keywords: adenosine diphosphate; arachidonic acid; blood platelets; brain injuries; traumatic;
cerebral hemorrhage; critical care; fibrinolysis; mortality; resuscitation; thromboelastography

1. Introduction
1.1. Incidence of Coagulopathy of Traumatic Brain Injury

Occult coagulopathy of traumatic brain injury (TBI) reportedly affects a high percent
of trauma patients with a significant increase in morbidity [1–6]. Literature frequently cites
an estimate that “one-third” of patients with a TBI will develop a coagulopathy of TBI
(CTBI). However, the true incidence of coagulopathy reported in these patients has been
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cited as anywhere from 7 to 63%. This variability arises from the lack of consistency in
the definition of coagulopathy and its causes in TBI. Thus, comparisons of diagnosis and
treatment among different populations of CTBI patients remain problematic [6–41].

1.2. Implications of CTBI and Relation to VET-Based Definition

In addition to its fluctuant frequency, CTBI is defined by variable cut-off values when
using common coagulation assays (CCAs), such as platelet count, prothrombin time (PT),
international normalized ratio (INR), partial thromboplastin time (PTT), and fibrinogen
levels. CCAs are also limited to detecting the initiation of clot formation and fail to
provide information regarding the strength and integrity of the clot formed [4,6,23,42–48].
Furthermore, CCAs are not sensitive detectors of hemostatic integrity in patients with
multiple systemic polytrauma, including TBI, and fail to predict coagulopathy in patients
on pre-injury anticoagulant medications, particularly antiplatelet drugs. Prescriptions for
anticoagulants are only continuing to rise due to the increased prevalence of cardiovascular
disease and an overall aging population [23,49]. Moreover, patients experience up to a 30-
fold increased risk of disability and morbidity when compared to TBI patients without the
development of coagulopathy [31,50–57]. These facts emphasize the need for a quick and
accurate test to identify an abnormal coagulation profile and provide rapid management of
coagulopathy if indicated [40].

On the other hand, whole blood hemostatic assays known as viscoelastic tests (VET)s
give a more detailed and rapid view of hemostatic integrity by providing a point of care
(POC) view of the lifespan of a clot. Published in 2019, the 5th edition of the European
guideline on management of major bleeding and coagulopathy following trauma changed
their recommendations to include the use of VETs such as thromboelastography (TEG®) and
rotational thromboelastometry (ROTEM®) for patients with systematic multiple trauma
and with TBI [47]. There are many advantages in using VETs to detect CTBI [4,6,23,48,58].
For example, VETs provide real-time coagulation information on the presence of anticoagu-
lation or antiplatelet medications and the patient’s initial coagulation profile, allowing for
the monitoring of therapeutic interventions such as hemostatic adjuncts or blood compo-
nent transfusion [23,47,58–63]. Furthermore, modified TEG® Platelet Mapping (TEG-PM®)
and ROTEM® with adjunctive multiple electrode aggregometry (MEA) can also be used
to quickly determine platelet function abnormalities from inherent TBI coagulopathy or
antiplatelet medications [23,39,58,61–67].

1.3. Inadequacy of Conventional Coagulation Assays in the Diagnosis of CTBI

CCAs have historically been the cornerstone of CTBI diagnosis, and this holds true
even as recently as a review from late 2020, citing the use of CCAs because of a paucity
in literature regarding VET use in CTBI [50]. Yet, CCAs lack of sensitivity in determining
hemostatic derangement may contribute to under-diagnosis of coagulopathy in trauma
patients [41,68].

Because of their “global” nature, VETs such as ROTEM®, TEG®, and thrombin gen-
eration tests may provide more detailed and useful data concerning the overall ability
to achieve hemostasis [6]. These global hemostatic assays use a surrogate endpoint of
maximum clot firmness and allow the evaluation of additional information on clotting
kinetics, platelet-fibrin interactions, and fibrinolysis [69]. In addition, POC non-VET
platelet function tests like Platelet Function Analyzer-100 (PFA-100), MEA (also known as
Multiplate®), VerifyNow P2Y12, and the modified VET TEG-PM® may assist in detecting
platelet dysfunction [39,58,63,64,67,70–74]. The degree of ADP-receptor inhibition has been
suggested to correlate with the severity of TBI, described as a “dose-response relationship”
between TBI severity and the degree of platelet dysfunction [64]. There may also be a role
for platelet function assays in monitoring platelet dysfunction mediated by antiplatelet
agents [23,52,58,61,64,66,67,74].

In both isolated TBI and polytrauma TBI patients, VET assays provide real-time as-
sessment of hemostasis and prognostication [6,44–47,60,75,76]. Compared to CCAs, the
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rapidity at which “global” hemostatic assays predict outcome and severity in a population
of patients with severe TBI is significant [6,77]. Because of these more timely and accurate
results, VETs offer additional opportunities to correct hemo-coagulative defects and, ulti-
mately, improve patient outcomes. With these capabilities, VETs like ROTEM® and TEG®

are gaining acceptance in clinical practice and represent a mechanism to improve patient
care [23,47,78–80].

VET analysis of the coagulopathic spectrum of CTBI reflects the pathophysiology of
that spectrum whether associated with isolated TBI or with TBI complicated by trauma-
induced coagulopathy [23,47,48,60–62,81].

2. Pathophysiology in CTBI and Its Relation to VETs

CTBI is associated with a disorder of primary hemostasis, requiring early utilization of
platelet function testing to define the coagulopathy. The progression of platelet dysfunction
can be monitored by VETs [23,48,53,56,60,82].

After the initial TBI, platelet receptors demonstrate early inhibition, and the degree
to which this occurs is a function of the TBI severity; mortality is irrespective of total
platelet count. This inhibited platelet phenotype is indicated by a malfunction in platelet
receptors for adenosine diphosphate (ADP) or arachidonic acid (AA) [1,53,83–86] as well as
other platelet receptors such as collagen, ristocetin, Thrombin receptor activating peptides
(TRAP), and protease activated receptor-1 (PAR-1) in TBI [39,65,87].

Xu et al. suggested TBI elicits two distinct processes that may cause coagulopathy: lo-
cal primary hemostasis to the injured site and systemic endotheliopathy in part attributable
to relatively high levels of von Willebrand factor (vWF) stored in brain tissue [88]. First,
the vWFs are immobilized at the injured site causing rapid local platelet activation to seal
off the vascular injury. Second, the damage in the blood-brain barrier (BBB) causes injured
brain cells to release extracellular vesicles comprising procoagulant molecules, notably
brain tissue factor (TF) (which is usually isolated from blood), which then further activates
the remote endothelial cells and platelets systemically to release more stored uncleaved
vWF and exacerbating systemic pro-coagulation [88,89].

The endothelial dysfunction of CTBI then results in a crosstalk between dysfunctional
platelets and endothelium. This is the earliest manifestation of CTBI, first demonstrated by
VETs, which quantify dysfunction of varying platelet receptors. This CTBI pathophysiology
often results in hemorrhagic expansion. Therefore, the pathophysiology of CTBI can be
more effectively assayed by VETs with specialized function analysis than by CCAs, as
has been shown for multiple systemic trauma [23,29,38,68,83,84,90–98]. Because of this
early platelet hyperactivation and subsequent hypercoagulation, the consumption and/or
exhaustion of platelets and coagulation factors leads to a decrease in fibrinogen, often
resulting in the later onset of bleeding [23,52,53,99,100].

In addition, a significant number of patients with CTBI have suppressed fibrinolysis,
termed ‘fibrinolytic shutdown’. True hyperfibrinolysis as manifested by VETs is uncom-
mon and has been supported by the recent failure of studies to confirm the findings of the
CRASH-3 trial, demonstrating a small therapeutic benefit of the antifibrinolytic tranexamic
acid. It has been proposed that VETs are not sensitive enough to determine occult fibrinoly-
sis. There may be intracerebral fibrinolysis not detected by in vitro measurement of whole
blood VET samples [95,101–104].

3. Basics of TEG®/ROTEM®

3.1. Description of the Cup and Pin

TEG® and ROTEM® tracings depict hemostatic integrity, measuring initiation, am-
plification, propagation, and termination of whole blood to form a clot. Figure 1 demon-
strates and describes the pin and cup procedure for carrying out TEG® and ROTEM®

testing [43,105–108]. TEG® and ROTEM® devices apply a rotation and measure the change
in tension on the pin within the cup as the clot forms (Figure 1). This is plotted over time,
generating the parameters of TEG® and ROTEM® (Figure 2) [43,106,107].
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In trauma patients and TBI patients, TEG-PM® AA inhibition is significantly higher 
than in healthy controls [1,110]. In TBI versus non-TBI trauma patients, TEG-PM® AA in-
hibition is also significantly higher [110]. CCAs and standard TEG® variables (R, α, MA) 
are relatively normal, while TEG-PM® ADP inhibition is significantly higher in patients 
with isolated TBI versus control subjects. Platelet dysfunction is also significantly higher 
in patients with severe versus mild-to-moderate TBI [1,53,63,64]. 

Figure 1. The TEG® and ROTEM® analyzers are each composed of a cup containing a whole blood sample, a pin suspended
in the blood sample, a torsion wire, and a transducer. The cup is rotated at a speed of 4.45◦ per 10 s in TEG®. In ROTEM®,
the pin is instead rotated, at the same speed of 4.45◦ per 10 s. In both assays, clotting of the whole blood gradually
synchronizes the rotations of the cup and pin, which causes a change in torque on the torsion wire that is measured by the
transducer. Various coagulation activators may be used depending on the assay. Intrinsic coagulation activators include
kaolin or ellagic acid; extrinsic activation most commonly uses tissue factor [43,106,107].

3.2. TEG-PM® and ROTEM® with Specialized Platelet Function Testing to Diagnose and Guide
Platelet Transfusion in Patients with CTBI

Trauma can induce platelet dysfunction, which may not be detectable by standard
ROTEM® or TEG® assays. Platelet function alone can be studied using TEG-PM® using
heparin, factor XIII, reptilase, AA, and ADP to form platelet-fibrin clots independent of
thrombin as demonstrated in Figure 3 [109]. Figure 4 shows the platelet mapping tracing
superimposed on a physiologic TEG® tracing.

In trauma patients and TBI patients, TEG-PM® AA inhibition is significantly higher
than in healthy controls [1,110]. In TBI versus non-TBI trauma patients, TEG-PM® AA
inhibition is also significantly higher [110]. CCAs and standard TEG® variables (R, α, MA)
are relatively normal, while TEG-PM® ADP inhibition is significantly higher in patients
with isolated TBI versus control subjects. Platelet dysfunction is also significantly higher in
patients with severe versus mild-to-moderate TBI [1,53,63,64].
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Figure 2. A typical graphical output of TEG® (parameters shown in black) and ROTEM® (parameters
shown in red). R (Reaction Time)/CT (Clotting Time) denotes the time taken for blood to begin
initiation of enzymatic clotting factor activation (marked by a movement of 2 mm along the y-axis).
K/CFT (Clot Formation Time) denotes the time taken for movement of the pin by 20 mm along
the y-axis. The α-angle is software-calculated using the slope of the secant line from the split point
of the curve to K [111]. Clot kinetics are typically determined by K and α-angle, which together
describe clot-strengthening rate and the cleavage of fibrinogen to fibrin by thrombin. Maximum
Amplitude (MA) or Maximum Clot Firmness (MCF) denotes the peak of the curve and the point
of greatest platelet-fibrin interaction [105,107]. Lysis at 30 min (LY30) is measured 30 min after
MA as a percentage dissolution from MA peak. LI30 (Lysis Index at 30min) is measured as the
amplitude 30 min after CT. Maximum Lysis (ML) is expressed as a percentage dissolution from MCF
peak at the time of evaluation during the performance of the test and is roughly equivalent to the
LY30 [43,106–108,112].

ROTEM® also has its own platelet functionality testing called PLTEM, which has not
been studied in TBI and is rarely used in the setting of polytrauma [113–115]. In PLTEM,
the A10 parameter represents the amplitude of the tracing 10 min after the end of CT.
PLTEM calculates the difference between the EXTEM A10 (A10EX) and the FIBTEM A10
(A10FIB). The A10EX represents the clot strength of the entire extrinsic pathway and the
A10FIB represents the same pathway but without the contribution by platelets. Thus, the
PLTEM represents the contribution of platelets to clot strength. Reporting the PLTEM
parameter would likely involve manually calculating and extracting A10 data from each as-
say [115,116]. For those situations where TEG-PM® and PLTEM are not available, ROTEM®

has adopted an accompanied MEA platform, also known as MultiPlate®, for determin-
ing activity of platelet function in TBI. The MultiPlate® analyser—after the platelets are
activated by a specific agonist in each well, such as ADP, AA, ristocetin, collagen, or
thrombin receptor activating peptide (TRAP)—operates by the platelets adhering to the
electrodes and reducing impedance (Figure 5). Platelet aggregation and activation are
described as an area under the curve in relation to a standard control baseline. This MEA
test is not a viscoelastic test but is used as an adjunct with ROTEM® to isolate platelet
dysfunction [39,65,66,87,117–119]. Intradevice variability is low for TEG-PM® and Multi-
Plate, but the measurement of platelet function overall correlates poorly in injured trauma
patients [120].
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dysfunction following TBI for patients with or without preinjury antiplatelet medications 
[2,63,72,74,120]. Notably, these assays have several shortcomings, including limited avail-
ability and methods that have not been subject to large-scale quality control. The tests 
themselves are of little value in cases of low platelet counts. The assay-based monitoring 
of direct oral anticoagulant (DOAC) effectiveness is also in its infancy. The utilization and 
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Figure 3. The analysis of platelet function requires four cups for Modified Thromboelastography with Platelet Mapping
(TEG-PM®). In Cup 1 is a baseline kaolin TEG® which describes control parameters. In Cups 2–4, heparin is added to
neutralize thrombin which allows for isolation of platelet function in the presence of a pure fibrin clot. Reptilase and Factor
XIIIa are added to Cups 2-4 to enhance fibrinogen and fibrin formation. Therefore, the additions of ADP in Cup 3 and AA
in Cup 4 allow selective and respective activation of isolated ADP and AA receptors which then create an isolated pure
fibrinogen/fibrin-platelet clot [109,121].

MEA is affected by platelet transfusion and COX inhibitor treatment. In TBI, MEA has
demonstrated platelet dysfunction in patients with and without COX inhibition treatment.
For those on platelet inhibitors—a common subset of TBI patients—MEA generally shows
low values initially and increases within 48–72 h [39,122,123]. However, compared with
antiplatelet agents, later studies of platelet transfusions showed no significant difference in
outcome [124,125]. Hence, the substantial heterogeneity in results regarding the efficacy
of platelet transfusion for TBI with and without preinjury antiplatelet therapy remains an
area of fertile research and controversy [126].

In addition, other non-viscoelastic assays have been added as adjuncts to assist in the
determination of the adequacy of platelet function for these patients. These electrochemical
and biochemical tests, including PFA-100 and VerifyNow Aspirin/P2Y12 assays, have been
adapted from the cardiology and neurological population of patients whose blood required
determination of platelet inhibition following administration of antiplatelet agents. These
tests have demonstrated heterogeneous results when used to gauge platelet dysfunction fol-
lowing TBI for patients with or without preinjury antiplatelet medications [2,63,72,74,120].
Notably, these assays have several shortcomings, including limited availability and meth-
ods that have not been subject to large-scale quality control. The tests themselves are
of little value in cases of low platelet counts. The assay-based monitoring of direct oral
anticoagulant (DOAC) effectiveness is also in its infancy. The utilization and application of
whole blood POC assays are still not universally practiced in trauma [127].
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Figure 4. The TEG® PlateletMapping assay is composed of four tests, starting with a standard kaolin TEG® (black line;
corresponds to Cup 1 of Figure 3) that depicts maximally activated platelets and full clot strength potential (MAthrombin).
The clot strength of pure fibrin (red line; corresponds to Cup 2 in Figure 3) is isolated after blockage of all thrombin
in the second test. Platelets are then activated in the third and fourth tests through either their ADP or AA recep-
tors, and clot strength of platelets activated at either receptor (blue line; corresponds to Cups 3 & 4 in Figure 3) is
evaluated by the proximity of the stimulated platelet as a percentage of MAthrombin [128]. The platelet inhibition in re-
sponse to the agonist is calculated from platelet aggregation: [(MAADP − MAfibrin)/(MAthrombin − MAfibrin) × 100] and
% inhibition = (100 − %aggregation) [109].

4. Utilizing VETs for the Diagnosis and Treatment of TBI

There are three main areas in which TEG® has been used to analyze TBI, representing
the stages of clinical evaluation assisted by VETs: diagnosis of CTBI, management of CTBI,
and prognosis of TBI [4,23,129–132].

4.1. VETs to Diagnose, Treat, and Prognosticate CTBI
4.1.1. Diagnosis of CTBI

TEG® and TEG-PM® reportedly assist in diagnosis and differentiation between co-
agulopathies of TBI and non-TBI patients. TEG® and ROTEM® parameter have been
found to add sensitivity to the diagnosis of CTBI with abnormalities of all parameters
reported [5,37,53,60,86,100,110,133–139].

4.1.2. Treatment of CTBI

TEG® and TEG-PM® can be used to guide the diagnosis and treatment of patients with
CTBI [53,61,62,64,129,140–143]. These TEG-guided therapies enable physicians to quickly
deliver focused therapies, accurately correcting coagulopathy while potentially conserving
blood products. Still, there are heterogeneous and conflicting results regarding whether
application of VETs like TEG® correlate with improved patient outcomes and reduced mor-
tality [1,39,40,84,86,123,129,140,141,144–146]. Several studies exhibit improved survival
when using a TEG-based resuscitation strategy compared to a CCA-guided treatment (PT,
aPTT, fibrinogen, and D-dimer) [56,139,147].

For example, a TEG-based resuscitation strategy was shown to improve survival in
a pragmatic randomized controlled trial as compared to one based on CCAs; however,
subgroup analysis on TBI patients did not demonstrate reduced mortality. It should be
noted that the TBI subgroup was not specified a priori nor sufficiently powered for this
outcome [129]. In addition, the iTACTIC study indicated possible improvement and sur-
vival in the subgroup of injured multiple trauma patients with TBI whose resuscitation
was guided by ROTEM® with specific emphasis on FIBTEM-guided resuscitation using
soluble fibrinogen concentrate [140]. Improved clot quality with decreased neurosurgi-
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cal reintervention and decreased incidence of progressive hemorrhagic injury PHI has
been noted with ROTEM® [45]. Delayed clot formation without associated fibrinolytic
abnormalities is a singular manifestation of the unique hemostatic derangement of severe
isolated TBI. Activated coagulation time (ACT) when prolonged, and coupled with low
fibrinogen levels, suggest that early coagulation factor replacement may be more critical
than empiric antifibrinolytic therapy. It is clear the mechanisms that precipitate coagu-
lopathy in TBI differ from those mechanisms in multisystem trauma and warrant further
investigation [60].

J. Clin. Med. 2021, 10, x FOR PEER REVIEW 8 of 23 
 

 

was guided by ROTEM® with specific emphasis on FIBTEM-guided resuscitation using 
soluble fibrinogen concentrate [140]. Improved clot quality with decreased neurosurgical 
reintervention and decreased incidence of progressive hemorrhagic injury PHI has been 
noted with ROTEM® [45]. Delayed clot formation without associated fibrinolytic abnor-
malities is a singular manifestation of the unique hemostatic derangement of severe iso-
lated TBI. Activated coagulation time (ACT) when prolonged, and coupled with low fi-
brinogen levels, suggest that early coagulation factor replacement may be more critical 
than empiric antifibrinolytic therapy. It is clear the mechanisms that precipitate coag-
ulopathy in TBI differ from those mechanisms in multisystem trauma and warrant further 
investigation [60]. 

 
Figure 5. The Multiplate® multiple electrode impedance aggregometer measures platelet function in diluted anticoagu-
lated whole blood. Each plate uses two sensors containing a pair of silver-coated copper wire electrodes. Over a set dura-
tion of time, aggregation of activated platelets on the surface of the electrodes causes a measurable change in impedance, 
measured in aggregation units (AU, where 8AU ≈ 1Ω) and area under the AU curve [148]. 

It has also been suggested that POC testing with platelet function analysis be used to 
manage TBI patients who need extracorporeal membrane oxygenation [149]. 

4.1.3. Prediction of Morbidity and Mortality in CTBI 
TEG® and TEG-PM® assays can predict a range of clinical outcomes in patients with 

CTBI, including bleeding complications, mortality, and neurosurgical intervention 
[1,3,56,72,84,86,139,144,145,150–153]. However, Rapid TEG® parameters have been asso-
ciated with the increased odds of hematoma expansion in patients with TBI and SAH 
[153]. 

Several studies have demonstrated that TBI patients are significantly more hyperco-
agulable at presentation, likely due to increased platelet aggregation. Moreover, initial 
hypercoaguability determined by TEG® in TBI patients was associated with prolonged 
ICU stays, longer overall hospital admissions, and increased mortality 
[3,5,53,56,64,110,135–137]. TBI patients with initial hypocoagulopathic TEG® values 
(longer reaction times, flat alpha angles, thin MAs) highly correlate with mortality in iso-
lated TBI [86]. 

 Standard TEG® assays conducted at admission and after 6 h of hospitalization on TBI 
patients have been able to identify patients who will experience worse clinical outcomes. 
TEG® monitors the rate of clot breakdown in addition to clot formation: an increased rate 
of fibrinolysis and abnormal clot formation identifies those patients who may require a 
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whole blood. Each plate uses two sensors containing a pair of silver-coated copper wire electrodes. Over a set duration of
time, aggregation of activated platelets on the surface of the electrodes causes a measurable change in impedance, measured
in aggregation units (AU, where 8AU ≈ 1 Ω) and area under the AU curve [148].

It has also been suggested that POC testing with platelet function analysis be used to
manage TBI patients who need extracorporeal membrane oxygenation [149].

4.1.3. Prediction of Morbidity and Mortality in CTBI

TEG® and TEG-PM® assays can predict a range of clinical outcomes in patients
with CTBI, including bleeding complications, mortality, and neurosurgical
intervention [1,3,56,72,84,86,139,144,145,150–153]. However, Rapid TEG® parameters have
been associated with the increased odds of hematoma expansion in patients with TBI and
SAH [153].

Several studies have demonstrated that TBI patients are significantly more hypercoag-
ulable at presentation, likely due to increased platelet aggregation. Moreover, initial hyper-
coaguability determined by TEG® in TBI patients was associated with prolonged ICU stays,
longer overall hospital admissions, and increased mortality [3,5,53,56,64,110,135–137]. TBI
patients with initial hypocoagulopathic TEG® values (longer reaction times, flat alpha
angles, thin MAs) highly correlate with mortality in isolated TBI [86].

Standard TEG® assays conducted at admission and after 6 h of hospitalization on TBI
patients have been able to identify patients who will experience worse clinical outcomes.
TEG® monitors the rate of clot breakdown in addition to clot formation: an increased rate
of fibrinolysis and abnormal clot formation identifies those patients who may require a
neurosurgical procedure or have a greater risk of worse mortality [152]. In addition, prog-
nosis and progression of intracranial bleeding are dependent on coagulopathy identified
by admission TEG® parameters but not CCAs [3,40,82,86,139,154].

4.2. Basic TEG®/ROTEM® Parameters Triggering BCT and HAT

Prolongation of reaction time (R) in TEG® or clotting time (CT) in ROTEM® indicates a
coagulation factor deficiency and warrants fresh frozen plasma (FFP) and/or prothrombin
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complex concentrate administration [47,155]. A prolonged clot formation/kinetics (K)
in TEG® or clot formation time (CFT) in ROTEM® and a low A-angle reflect a fibrino-
gen or fibrin production deficiency, warrants cryoprecipitate or fibrinogen concentrate
administration. A low maximum amplitude (MA) in TEG® or maximum clot formation
(MCF) in ROTEM® depicts decreased clot formation and warrants platelet repletion. An
increase in lysis at 30 min (LY30) in TEG® or a decrease in lysis index at 30 min (LI30)
suggests fibrinolysis and is treated with an antifibrinolytic agent [43,44,105–107,155–158].
Currently, thresholds for platelet administration to patients with TBI are in a state of
evolution [23,40,52,61,63,64].

4.3. Guiding Blood Products with VETs in TBI

Recommended thresholds have been proposed regarding VETs for guiding the admin-
istration of blood components and hemostatic therapy for hemorrhaging trauma patients
without TBI [46,47,63,80,159,160]. A preliminary study by Furay et al. suggested im-
proved survival in TBI patients with VET-guided BCT resuscitation [61]. For example, as
mentioned above, the 2021 ITACTIC study suggests that survival of TBI patients may be
improved with the use of VET-guided treatment algorithms [140]. For patients with TBI,
whether isolated or associated with multiple trauma, increased survival rates could be a
product of individually-tailored and prompt administration of blood products, which, as
we have demonstrated, can be appropriately guided by VETs [129]. An analysis in the
Prehospital Air Medical Plasma (PAMPer) trial upheld this conclusion, finding that a sub-
group of TBI patients exhibited increased survival with the administration of pre-hospital
plasma guided by the TEG® [161,162]. Reductions in cerebral inflammation, intracerebral
bleeding, and cerebral ischemia are attained using a targeted management approach, thus
potentially contributing to the documented improvement in survival [140].

4.3.1. VET-Guided FFP, Fibrinogen Concentrate, and Cryoprecipitate in TBI

The use of FFP in patients with moderate and severe TBI is under investigation [163–165].
Both empirical infusion of FFP in severe-TBI patients and use of FFP in patients with TBI
and moderate coagulopathy (with or without pRBCs) have been associated with poor
functional outcomes [125]. However, there are survival benefits with early FFP administra-
tion in patients with multifocal intracerebral hemorrhage (ICH) [163] or with ratio-based
blood-product transfusion in patients suffering from TBI when guided by the TEG® and
ROTEM® [129,140,165].

A plasma-based coagulation resuscitation strategy also suggests that such administra-
tion should be avoided in patients without substantial bleeding [46]. Instead, in such cases,
it has been found that therapy guided by TEG® using PCC and fibrinogen concentrate for
treatment is more advantageous than FFP use [6,23,44,140,166]. Fibrinogen concentrates
are efficient and should be used primarily for those patients with bleeding complications.
If unavailable, FFP or cryoprecipitate may be used instead. Replenishment of fibrinogen
can be guided by ROTEM® MCF values [167].

Fibrinogen is defined as the substrate for clot formation, playing a key role in hemosta-
sis through conversion to fibrin, undergoes crosslinking, and interacts with platelets [168].
TBI causes coagulation factor consumption to significantly increase; in tandem, this causes
consumption of fibrinogen. Fibrinogen concentrations thereafter do not recover beyond
normal amounts until at least 2–3 days after the initial TBI [169]. Significantly reduced
fibrinogen concentrations in the initial phase following an injury not linked to TBI have
also been observed to be associated with high rates of mortality [170]. Due to this linkage,
concentrations should remain within 1.5–2 g/L through the utilization of either cryoprecip-
itate or fibrinogen concentrates [46]. Late-stage TBI can also cause plasma concentrations
of fibrinogen to increase. This increase in fibrinogen—which is an acute phase reactant
and a marker of post-resuscitative inflammation—is a late compensatory reaction to the
previously hypocoagulopathic state for patients with severe TBI, which is similar to the
increase in fibrinogen found in any patient in the period of recovery following successful
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resuscitation after hemorrhage [171]. This increase in plasma fibrinogen as a marker of
inflammation correlates with an increase in cerebrovascular permeability and a resultant
injury to the penumbra that ultimately serves as a gateway to further inflammation [171].

As a result of the above-mentioned studies, the most recent European guidelines
recommend utilization of VETs to guide FFP, fibrinogen concentrate, and cryoprecipitate
for TBI [47].

4.3.2. VET-Guided Diagnosis and Treatment of Platelet Dysfunction in TBI

Platelets’ function consists of adhesion, activation, and aggregation which initiate the
action of coagulation factors to reach hemostasis. TF initiates coagulation and platelets
contribute to enhance the reaction by providing a negatively charged surface which allows
adhesion, activation, and aggregation. Their enhancement of coagulation with tissue
damage and TF release as a trigger, therefore plays an important role in the pathophysiology
of TBI.

TBI affects both platelet number and function [40]. Low platelet count (<100,000/mm3)
has been shown to be an independent predictor of mortality in TBI patients [172]. However,
as has been described above in the section on pathophysiology, platelet dysfunction at
the ADP and AA receptors (as measured by the TEG-PM®) reflects the severity of TBI
even with patients with normal platelet counts. In addition, ROTEM® using the MEA and
the VerifyNow P2Y12 to quantify platelet dysfunction in TBI has demonstrated similar
dysfunction at the AA and ADP receptors as well as the ristocetin, PAR1, and collagen
platelet receptors in patients with TBI [1,53,56,60,65,83–87]. Furthermore, the TEG-PM®

showed elevated ADP inhibition, which is further linked with increased mortality, when
measured directly after an isolated blunt TBI [144]. The TEG-PM® was also successful at
reporting elevated ADP inhibition with increasing injury severity. This correlation between
the severity of injury and the level of inhibition of the predominate ADP receptor has been
defined as the “dose-response curve” describing the relationship between the level of injury
dose and the response to that injury as determined by ADP inhibition response [52,64]. As
a result, it has been noted that TBI patients with severe (greater than 60%) ADP inhibition
had increased mortality compared to other TBI patients with less ADP inhibition [151].
In parallel, TBI patients who suffered from a bleeding event had a higher AA inhibition
compared to other TBI patients [84]. A weak correlation was established between TEG-PM’s
AA inhibition measure and ICH progression when there was no significant correlation for
other platelet assays such as Multiplate aggregometry and VerifyNow™ [72].

It is still unclear whether the presence of ADP inhibition in this patient population is a
prognostic indicator or a therapeutic target [61].

Trauma-induced platelet dysfunction can be corrected using TEG-PM® to guide the
treatment plan. A TEG-PM® based algorithm has been found to significantly decrease
the number of platelet transfusions needed for older TBI patients who are on anti-platelet
medications [4,82]. Patients with platelet dysfunction on admission suffering from severe
TBI have also been studied [1,53,61,83,84,86,87]. Using a protocol, platelet dysfunction was
demonstrated by an ADP-inhibition of greater than 60%. These patients received one unit
of apheresis platelets and exhibited decreased mortality compared to patients who were
not given these platelets. Furthermore, the use of TEG-PM® was able to limit the total
overall administration of blood products efficiently [61,86]. TBI-associated platelet trans-
fusion remains controversial. Moderate thrombocytopenia outcomes were not improved
by post TBI platelet concentrate transfusions [125]. Additionally, platelet transfusions
performed on patients undergoing antiplatelet therapy at the time of a mild TBI occurrence
failed to improve outcomes, but evidence may link this with thrombotic complications.
Currently, retrospective registry studies have failed to show that patients undergoing
antiplatelet preinjury would benefit from routine platelet transfusions after sustaining
traumatic ICH [49,124].

Despite significant literature that demonstrates platelet dysfunction associated with
TBI for patients with and without preinjury and antiplatelet use, there is little consensus
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regarding the indication for the administration of platelets for those patients. Observational
and retrospective studies have shown some benefit when platelet transfusion is guided by
TEG-PM® and ROTEM® with MEA, PFA, or VerifyNow P2Y12. This remains an area of
significant research since the administration of platelets in these patients is now determined
locally by institutional preferences with variable use of TEG-PM® and ROTEM® with
adjunctive PFAs [23,39,58,74,173–175].

In addition, the increased use of anticoagulants and antiplatelet agents in patients
with TBI has led to widespread and institution-dependent platelet transfusion with such
injuries [23,40,52,61,63,64]. There are many side effects that can occur with platelet transfu-
sion which makes this practice controversial, such as sepsis, transfusion-related acute lung
injury, blood group type incompatibility reactions, arrhythmia, stroke, and death [176,177].
Hence, in patients who suffer from TBI and are taking antiplatelet medication, the ad-
vantages and disadvantages of platelet transfusion need to be carefully considered before
platelet transfusions are administered.

A plethora of assays has demonstrated that aspirin causes a decrease in platelet ag-
gregation. The Aspirin Response Test is used to show the impact of aspirin on platelet
function and has determined that 64% of TBI patients on aspirin who have been admin-
istered platelets have a reversal of platelet inhibition [74]. However, the adverse effects
of transfusing platelets may outweigh the benefits of the physiological response. When
assessing mortality in patients with TBI who received a platelet transfusion versus those
who did not receive a platelet transfusion, there was no significant difference in mortality
between the two groups. In addition, increased mortality was observed when patients on
pre-injury antiplatelets were given platelets for TBI related coagulopathy. As severity of
injury increased, the transfusion rate of platelets increased as well [178]. No significance
was found between platelet transfusion and need for surgical intervention, rate of neu-
rologic decline, progression of injury based on GCS, cardiac events, respiratory events
or imaging [179]. A multi-institutional observational study found that aspirin-related
platelet inhibition was significantly decreased with platelet transfusion. However, platelet
transfusions did not impact mortality of these TBI patients [142]. Platelet transfusion
may seem to be an intuitive therapy for platelet dysfunction, but for TBI patients on an-
tiplatelet agents, it is not effective at improving outcomes [146]. The large PATCH trial
recently has demonstrated increased mortality in patients on antiplatelet agents who had
TBI. This study hypothesized that whatever benefit accrued from the administration of
platelets in patients on antiplatelet agents with TBI were counteracted by the effect of
a local hypercoagulable state at the microvasculature in the penumbra of injured brain
tissue. For this reason, and for the smaller studies that demonstrate the benefit of VET
guided platelet transfusion in patients with TBI and platelet dysfunction, there is increased
interest in not only the use of VET to guide platelets in patients with TBI and preinjury
antiplatelet agents, but also in using desmopressin to enhance platelet function in these
patients [23,52,58,61,126,144,173–175,180]. DDAVP has been shown to stabilize platelet
dysfunction in neurosurgical patients and those with spontaneous ICH with abnormal
platelet activity who were previously on aspirin. Because of the heterogeneous reports
regarding the incidence of platelet dysfunction in isolated TBI for patients with and without
prior antiplatelet agents, further research is clearly indicated regarding the incidence of
platelet dysfunction in this population and whether replenishment of platelets and/or
desmopressin is of therapeutic benefit [62,82,173,181,182].

Other studies have compared the use of desmopressin to platelet transfusion in
patients with severe TBI. Both treatments were found to improve ADP inhibition similarly
while displaying no differences in mortality. However, treatment with platelets did exhibit
TEG® parameters (α, G, MA) that were corrected to a greater degree, and a greater increase
in clot strength [62,83]. Platelet transfusion has also been shown to improve AA inhibition
specifically in patients with blunt TBI who were taking antiplatelet agents prior to injury.
However, no improvement in mortality was seen with this treatment [142,152].
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The above-mentioned studies concerning the use of VETs with and without adjunctive
platelet function tests demonstrate heterogeneous results, which has resulted in institu-
tional preferences for guiding platelet transfusion for patients with TBI (Table 1).

Table 1. Studies using modified VETs or VETs with adjunctive platelet function analyses in TBI. AA, arachidonic acid; ADP,
adenosine diphosphate; AIShead, abbreviated injury severity score, head; DDAVP, desmopressin; GCS, Glasgow Coma Scale;
INR, international normalized ratio; ISS, injury severity score; MEA, multiple electrode aggregometry; ROTEM, rotational
thromboelastometry; TBI, traumatic brain injury; TEG-PM, thromboelastography with platelet mapping; TRAP, thrombin
receptor activating peptides; VET, viscoelastic test.

Reference Study Design (VET Used) No. of Patients Conclusions

Nekdulov et al., 2007 [84] Prospective Observational
(TEG-PM)

20 isolated TBI
(GCS < 8,

AIS-non-head ≤ 3)

TBI patients had 78% AA
inhibition compared to 27% AA
inhibition for healthy controls.

The 8/20 TBI patients that bled
had a significantly greater AA
inhibition than nonbleeders.

Solomon et al., 2011 [65] Retrospective Observational
(ROTEM, MEA) 163 polytrauma

Mortality was correlated with
low platelet aggregation by

ADPtest, TRAPtest, and
ROTEM platelet component

contribution.

Wohlauer et al., 2012 [83] Retrospective Observational
(TEG-PM) 10 polytrauma TBI

Patients with TBI had a median
ADP inhibition of 89.4% and

median AA inhibition of 40.1%
despite normal platelet counts

and INR.

Davis et al., 2013 [1] Retrospective Observational
(TEG-PM)

50 isolated TBI
(AIShead ≥ 3,

AIS-non-head < 2)

The median ADP inhibition was
>91.7% for nonsurvivors vs.

48.2% for survivors; however,
this difference was not
statistically significant.

Castellino et al., 2014 [53] Retrospective Observational
(TEG-PM)

70 isolated TBI
(AIShead ≥ 3,

AIS-non-head < 2)

The median ADP receptor
inhibition of all TBI patients

was 64.5% vs. 15.5% in controls.
For GCS ≤ 8, the median ADP
inhibition was 93.1% vs. 56.5%

for those with GCS > 8. The
median AA inhibition of all TBI
patients was 25.6% vs. 2.2% in

healthy controls.

Daley et al., 2017 [151] Retrospective Observational
(TEG-PM)

90 isolated and
polytrauma TBI

(AIShead ≥ 3)

Patients with ADP inhibition on
TEG-PM had a higher

in-hospital mortality rate (8% vs.
32%). After controlling for age,
gender, hypotension, GCS, ISS,
and preinjury antiplatelet use,

ADP inhibition > 60%
demonstrated a significant odds

ratio for mortality. AA
inhibition > 60% was not found

to be significant.

Furay et al., 2018 [61] Retrospective Case-Control
(TEG-PM)

35 isolated and polytrauma
blunt TBI (AIShead ≥ 3)

Patients who received TEG-PM
guided goal-directed platelet

transfusion for ADP inhibition
> 60% had a significantly lower

mortality compared to those
who received no platelet

transfusions (9% vs. 35%).
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Table 1. Cont.

Reference Study Design (VET Used) No. of Patients Conclusions

Guillotte et al., 2018 [64] Retrospective Observational
(TEG-PM) 153 TBI

ADP inhibition was greater in
moderate/severe TBI compared
to mild TBI. ADP inhibition was
not found to be associated with
mortality or intracerebral lesion

expansion. There was no
significant difference in the
reduction of ADP inhibition

with platelet transfusion
compared to patients who did

not receive platelet transfusion.

Kay et al., 2019 [144] Retrospective Observational
(TEG-PM)

119 isolated TBI
(AIShead ≥ 3,

AIS-non-head < 2)

The median ADP inhibition was
18.4 points higher in severe TBI
(AIShead = 4 or 5) compared to

moderate TBI (AIShead = 3).
Increased degree of ADP

inhibition was also associated
with increased odds of
in-hospital mortality.

Furay et al., 2020 [62] Retrospective Observational
(TEG-PM)

57 isolated and polytrauma
blunt TBI with ICH

(AIShead ≥ 3)

There was no difference in
post-treatment ADP inhibition

levels whether DDAVP alone or
platelets alone were

administered, guided by
TEG-PM ADP inhibition > 60%
as threshold for therapy. There
was no significant difference in
all-cause mortality between the

two treatment groups.

4.4. Preinjury Antithrombotic Use

Since the TEG® and ROTEM® have been mostly used for patients with multiple
trauma who need immediate BCT and HAT, there has been sparse literature for VET in
TBI for a small group of patients who are on anticoagulants such as warfarin and DOACs.
While it is well known that TEG® and ROTEM® do not measure warfarin or DOACs
hemostatic activity, the existing literature is limited to a few studies of modified VETs that
allow for analysis but are not used clinically.

Increased incidence of patients with comorbidity is observed as the TBI demographic
switches to an older age [122,183]. Modern treatment of coronary artery and chronic cere-
brovascular disease indicates a need for these patients to take antiplatelet or anticoagulant
drugs; both of which are associated with increased bleeding and, ultimately, worsened TBI
outcomes [122,184–189]. Meta-analysis on 49 patients supplementing warfarin at the occur-
rence of TBI shows that the risk of poor outcome is double that of those not supplementing
warfarin. However, similar demographic analysis on patients supplementing antiplatelet
therapy did not indicate a clear increase in risk to those not undergoing antiplatelet ther-
apy [184,188,189]. Additional retrospective evidence reiterates this observation [186], yet
other studies argue that antiplatelet therapy supplementation preinjury, especially in an
older demographic, could result in nearly a twofold increase in the occurrence of traumatic
ICH even after minor TBI, when compared with patients not supplementing antiplatelet
therapy at the time of the injury [185,190,191]. Preinjury warfarin or clopidogrel are inde-
pendent factors from the severity of TBI for prediction of disease progression, ICH, and
worse prognosis [36,124,185,192,193]. Currently, the risks that patients supplementing
newer, target-specific DOACs endure in the face of TBI is unknown [194]. Though these
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treatments are known to lower the risk of spontaneous non-traumatic ICH, the validity of
their use in TBI has been inadequately quantified. Retrospective study results [194–196]
provided the earliest evidence for less operative interventions and decreased mortality in
patients with blunt traumatic ICH associated with preinjury supplementation of DOACs
rather than warfarin. Other common drugs such as selective serotonin reuptake inhibitors
might also influence hemostasis [197]; however, their effect on TBI outcomes remains
inadequately studied.

When comparing the blood product usage in anti-coagulated trauma patients with
and without TEG-guided administration, blood product use was significantly lower when
utilizing a TEG-guided approach; this is statistically independent from the mortality rates
in both groups as they were extremely comparable [141]. In other words, a TEG-guided
approach to reversing anticoagulation in TBI patients may improve the efficiency of blood
product usage without harmfully affecting mortality [141]. Cartridge-based modified
TEG® with anti-Xa and direct thrombin inhibitor channels can provide DOAC levels within
minutes [127]. Likewise, very recent ClotPro specific DOAC channels have been used to
also determine levels of DOACs at the bedside in a comparatively short time. However,
clinical research is still in its infancy for these tests. Although, it would be quite useful to
know for patients with TBI, the patient’s hemostatic competence of those on DOACs [198].
The use of PCC to reverse anti-Vitamin K oral antagonists in emergencies is a well-defined
practice [47]. Bleeding complications seen with vitamin-K antagonists can be reduced
through the use of DOAC-specific reversal agents. Beginning in 2015, Idarucizumab
became available as a target reversal agent for dabigatran, a thrombin inhibitor [196].
Additionally, the reversal agent for factor Xa-inhibitors, andexanet alfa, has been recently
introduced [72]. As mentioned above, to date there are few studies evaluating the new
reversal agents with VETs [198].

5. Conclusions

In this review, we provide a detailed description of the literature regarding the utility
of VETs in the diagnosis and treatment of CTBI. The management of CTBI patients is
complicated by the scarcity of clinical data regarding the underlying pathophysiology and
standard treatment strategies for CTBI [23,48,199,200].

Analysis of the benefits of VET-guided management of TBI and CTBI is in its infancy,
yet it is important to acknowledge that significant gaps in knowledge persist. Similar gaps
existed regarding the value of VETs to guide CT and HAT during trauma and hemorrhagic
resuscitation of trauma and non-trauma situations, with a gradual affirmation of the utility
of VETs in these situations, which has taken decades [42,201–206]. The degree of lesions
in brain tissue and consequential hemostatic impairment contributes to the heterogeneity
and complexity of a TBI injury, thus making it difficult to compare patients diagnosed with
TBI. The inconsistent results produced in some studies documented in this review can, in
part, be explained by this heterogeneity of TBI and of the methodology of defining CTBI.
Thus, future studies ought to consider the heterogeneity of TBI and CTBI patients in their
analyses. The pathophysiologic evolution of CTBI changes rapidly; therefore, collection
and analysis of blood sampling must be quick and efficient. The most optimal time to
do this for TBI and CTBI patients is promptly at emergency room admission. Finally,
hemostatic interventions guided by TEG-PM®, like administration of desmopressin and
transfusion of platelet concentrate, to treat TBI-related platelet dysfunction and CTBI have
not been subjected to rigorous analysis. The use of these strategies to treat patients with
CTBI presents an interesting future in the history of VET-guided resuscitation for patients
with CTBI.
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Abbreviations

A10EX EXTEM A10
A10FIB FIBTEM A10
AA Arachidonic acid
ACT Activated coagulation time
ADP Adenosine diphosphate
AIS Abbreviated injury severity score
AU Aggregation units
BBB Blood-brain barrier
CCA Common coagulation assay
CFT Clot formation time (ROTEM parameter)
CT Clotting time (ROTEM parameter)
CTBI Coagulopathy of traumatic brain injury
DDAVP Desmopressin
DOAC Direct oral anticoagulant
FFP Fresh frozen plasma
GCS Glasgow Coma Scale
ICH Intracerebral hemorrhage
INR International normalized ratio
ISS Injury severity score
K Clot formation time (TEG parameter)
LI30 Lysis index at 30 min (ROTEM parameter)
LY30 Lysis at 30 min (TEG parameter)
MA Maximum amplitude (TEG parameter)
MCF Maximum clot firmness (ROTEM parameter)
MEA Multiple electrode aggregometry
ML Maximum lysis
PAMPer Prehospital Air Medical Plasma trial
PAR-1 Protease Activated Receptor-1
PFA Platelet Function Analyzer
POC Point of care
pRBCs Packed red blood cells
PT Prothrombin time
PTT Partial thromboplastin time
R Reaction time (TEG parameter)
ROTEM Rotational thromboelastometry
TBI Traumatic brain injury
TEG Thromboelastography
TEG-PM Thrombelastography PlateletMapping
TF Tissue factor
TRAP Thrombin receptor activating peptides
VET Viscoelastic test
vWF von Willebrand factor
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