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Abstract

Background: Minimal residual disease detection in the bone marrow is usually performed in patients with acute
myeloid leukemia undergoing one course of induction chemotherapy. To optimize the chemotherapy strategies,
more practical and sensitive markers are needed to monitor the early treatment response during induction. For
instance, peripheral blood (PB) blast clearance rate may be considered as such a monitoring marker.

Methods: PB blasts were monitored through multiparameter flow cytometry (MFC). Absolute counts were
determined before treatment (D0) and at specified time points of induction chemotherapy (D3, D5, D7, and D9). The
cut-off value of D5 peripheral blast clearance rate (D5-PBCR) was defined through receiver operating characteristic
(ROC) analysis. Prognostic effects were compared among different patient groups according to D5-PBCR cut-off
value.

Results: D5-PBCR cut-off value was determined as 99.55%. Prognostic analysis showed that patients with
D5-PBCR ≥99.55% more likely achieved complete remission (94.6% vs. 56.1%, P < 0.001) and maintained a
relapse-free status than other patients (80.56% vs. 57.14%, P = 0.027). Survival analysis revealed that relapse-free
survival (RFS) and overall survival (OS) were longer in patients with D5-PBCR ≥99.55% than in other patients
(two-year OS: 71.0% vs. 38.7%, P = 0.011; two-year RFS: 69.4% vs. 30.7%, P = 0.026). In cytogenetic-molecular
intermediate-risk group, a subgroup with worse outcome could be distinguished on the basis of D5-PBCR
(<99.55%; OS: P = 0.033, RFS: P = 0.086).

Conclusions: An effective evaluation method of early treatment response was established by monitoring PB
blasts through MFC. D5-PBCR cut-off value (99.55%) can be a reliable reference to predict treatment response and
outcome in early stages of chemotherapy. The proposed marker may be used in induction regimen modification
and help optimize cytogenetic-molecular prognostic risk stratification.
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Background
Acute myeloid leukemia (AML) is a group of clinically
and genetically heterogeneous diseases [1,2]. Despite treat-
ment advancements in acute promyelocytic leukemia
(M3), current treatment of AML is based on chemother-
apy. Standard induction chemotherapy consists of anthra-
cycline and cytarabine (3 + 7 regimen) can achieve the
complete remission (CR) rate of approximately 75%, but
outcome is uncertain because of the variability of individ-
ual genetic profile and drug sensitivity [3,4]. Intense
chemotherapy or allogeneic hematopoietic cell transplant-
ation (allo-HSCT) can benefit patients who are refractory
or tend to relapse [5]. Early and easy monitoring of min-
imal residual disease (MRD) reflects treatment response
in time and becomes an essential reference for patients
with AML to optimize chemotherapy.
Multiparameter flow cytometry (MFC) has been used as

a standard technique to track MRD in leukemia patients
in the past decades [6]. In patients with acute lympho-
blastic leukemia (ALL), the threshold of 0.01% of the bone
marrow (BM) MRD is considered as the boundary of
relapse predict index [7,8]. In AML, ambiguous threshold
is approximately 0.1% and accuracy is approximately 10
times lower than that in ALL [9]. Moreover, BM MRD sta-
tus in AML cannot be considered as an independent prog-
nostic predictor, even though this status is considered as
such in ALL [8].
Either in ALL or AML patients, the time point of BM

MRD measurement is usually after CR, which may be
late to determine early treatment response. Patients also
hesitate to undergo frequent BM aspirations. Thus, per-
ipheral blood (PB) blast clearance in early stage of
chemotherapy has been extensively investigated. In ALL,
encouraging results have been reported; for instance, the
complete clearance of PB blasts within the first week of
treatment may be related to CR achievement [10,11]. In
patients with AML, the PB blast clearance rate (PBCR)
is closely correlated with treatment response and sur-
vival, but sampling time point and cut-off value vary
[12-16].
In this study, we assessed the prognostic value of

PBCR during induction in a cohort of 96 newly diag-
nosed AML patients. An earlier, easier, and more accur-
ate technique than current systems has been established
to distinguish high-risk patients and to enable a prompt
improvement of induction chemotherapy.

Results
Patient characteristics
From June 2011 to August 2014, 96 newly diagnosed de
novo AML (non-M3) were included in the study. Patient
characteristics are summarized in Table 1. Median age
was 44.5 years (14–74). Median WBC counts and circu-
lating blasts were 13.3 × 109/L (range, 1.32 × 109/L to
249.90 × 109/L) and 3730.7/μL (range, 11.32/μL to 246,000/
μL), respectively. The median percentage of BM blasts
was 65% (14.5% to 98%).
Leukemia-associated aberrant immunophenotypes

(LAIPs) were identified in 72 (75%) patients with four
main types: 63 cases with cross-lineage antigen expression,
6 cases with asynchronous antigen expression, 13 cases
with antigen dim/strong expression, and 8 cases with anti-
gen expression missing. The details of LAIP distribution
were listed in Additional file 1: Table S1.
Among the 58 cases with normal or unavailable karyo-

type, NRAS mutations were found in 4 cases (7.14%),
NPM1 in 12 (21.43%), FLT3-ITD in 6 (10.71%), FLT3-TKD
in 2 (3.51), DNMT3A in 12 (20.69%), CEBPA biallelic in
16 (28.07%), MLL-PTD in 4 (7.02%), and MLL-fusion
gene was found in 2 (3.51%) patients. According to the
cytogenetic-molecular prognostic risk classification, 23,
53, and 20 patients were classified into favorable, inter-
mediate, and unfavorable groups, respectively.
CR was achieved in 69.79% (67/96) of patients after

one course of induction, and LAIPs could be detected in
77.61% (52/67) at diagnosis. After induction, 29 patients
(55.77%) remained MRD positive (≥0.1%) by MFC. Total
relapse rate was 32.5% (26/80).

Relationship between treatment response and PB blast
reduction ratio
A rapid reduction in PB blasts was observed in the CR
group vs. in the non-complete remission (NCR) group,
with PB blast reduction ratios (PBRRs) of 1.09 ± 0.62 vs.
0.70 ± 0.53, 2.49 ± 0.92 vs. 1.70 ± 0.70, 3.41 ± 1.02 vs.
2.49 ± 0.95, and 3.92 ± 1.28 vs. 2.91 ± 1.13 on days 3
(D3), 5 (D5), 7 (D7), and 9 (D9), respectively (D3: P = 0.005,
D5: P < 0.0001, D7: P < 0.0001, and D9: P < 0.0001;
Table 2).
In 52 patients who were under LAIP surveillance after

CR, no significant differences in PBRRs were observed
between MRD-positive and negative groups (Table 2).
Significantly higher PBRRs were observed in non-relapse
vs. relapse group, with 2.59 ± 0.93 vs. 2.00 ± 0.68, 3.57 ±
0.98 vs. 2.83 ± 0.78, and 4.16 ± 1.19 vs. 3.15 ± 1.02 on
D5, D7, and D9, respectively (D5: P = 0.005, D7: P =
0.001, D9: P = 0.0005). In patients who experienced re-
lapse within 6 months (early relapse), significant differ-
ences in PBRRs on D5, D7, and D9 were also observed
(D5: 2.52 ± 0.89 vs. 1.91 ± 0.80, P = 0.017; D7: 3.48 ± 0.97
vs. 2.76 ± 0.81, P = 0.008; D9: 4.02 ± 1.19 vs. 3.14 ± 1.10,
P = 0.009; Table 2).

Determination of D5-PBCR cut-off value
The PBRR of D5 showed the highest significant difference
between early CR and NCR groups. The difference in
PBRRs related to the relapse status also showed that D5

was the first time point to appear with a definite



Table 1 Clinical characteristics of all patients and stratified by D5 peripheral blast clearance rate (D5-PBCR)

Characteristics All patients (n = 96)a D5-PBCR ≥99.55% (n = 37) D5-PBCR <99.55% (n = 57) P value

Age, y, median (range) 44.5 (14–74) 44 (15–67) 45 (14–74) 0.467

Gender (no.) 0.996

Male 61 24 37

Female 35 13 20

WBC count (×109/L), median (range) 13.3 (1.32–249.90) 26.99 (3.2–120.9) 9.20 (1.32–249.90) 0.160

Hemoglobin (g/L), median (range) 85.0 (34.90–136.00) 89.5 (55.0–136.0) 82.0 (34.9–125.0) 0.051

Platelet (×109/L), median (range) 38.0 (3.00–455.00) 38.5 (6.0–179.0) 36.0 (3.0–221.0) 0.975

Blasts in bone marrow (%), median (range) 65.0 (14.50–98.00) 71.0 (21.5–96) 60.1 (14.5–98.0) 0.038

Blasts in peripheral blood (/μL), median (range) 3730.7 (11.32–246,000) 4961.7 (479.9–124,900) 3730.7 (11.32–246,000) 0.035

FAB subtypes (no.) 0.229

M1 2 1 1

M2 24 5 18

M4 43 19 24

M4Eo 2 2 0

M5 19 7 11

M6 1 1 0

NA 5 2 3

Cytogenetic-molecular risk group (no.) 0.045

Favorable 23 12 11 0.148

Intermediate 53 22 30 0.515

Unfavorable 20 3 16 0.019

LAIP (no.) -

Cross-lineage antigen expression 63 29 34

Asynchronous antigen expression 6 0 6

Antigen dim/strong expression 13 6 6

Antigen expression missing 8 4 3

CR (%) 67 (69.79) 35 (94.6) 32 (56.1) <0.001

MRD (+) (%)b 29 (55.77) 14 (50) 15 (62.5) 0.366

Relapse (%) 26 (32.50) 7 (19.44) 18 (42.86) 0.027

NA not available, CR achieved complete remission after one course of induction therapy, LAIP leukemia-associated aberrant immunophenotype, FAB French-American-British,
MRDminimal residual disease. aTwo patients lacking in the peripheral blast absolute counts data of day 5 could not be further stratified into different groups according
to D5-PBCR; bMRD (+): In 67 patients achieved CR, LAIPs were detectable in 52 cases.
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prognostic value. Receiver operating characteristic (ROC)
analysis was performed to evaluate the predictive power of
PBRR on patients’ complete remission. The area under the
curve (AUC) of D5 was 0.746, which was larger than that
of D7 (0.736) and D9 (0.719),and hence showed more stat-
istical significance. Thus, D5 was chosen as the time point
to determine D5 peripheral blast clearance rate (PBCR)
cut-off value.
The day 5 PB blast reduction ratio (D5-PBRR) of 2.35

was selected as the optimal cut-off, according to the
maximum sum of the sensitivity and specificity with
52.2% and 92.6% on the ROC curve, respectively (Figure 1).
A logarithmic value of 2.35 of PBRR is equal to the
clearance rate of 99.55% initial peripheral blasts; thus,
D5-PBCR was determined as 99.55%.

Prognostic impact of D5-PBCR
As shown in the three rightmost columns of Table 1,
patients were divided into two groups according to the
D5-PBCR cut-off value. The two groups’ clinical charac-
teristics, including age, gender, French-American-British
(FAB) subtype, and initial WBC, were comparable. Pa-
tients with higher D5-PBCR (≥99.55%) presented higher
percentage of BM blasts (71.0% vs. 60.1%, P = 0.038),
and higher PB blast counts (4961.7/μL vs. 3730.7/μL,
P = 0.035) at diagnosis.



Table 2 Correlation of PB blast reduction ratio (PBRR) with treatment response

PB blast reduction ratio (Log10) ( ± SD)

Day 3 Day 5 Day 7 Day 9

CR (n = 67) 1.09 ± 0.62 2.49 ± 0.92 3.41 ± 1.02 3.92 ± 1.28

NCR (n = 29) 0.70 ± 0.53 1.70 ± 0.70 2.49 ± 0.95 2.91 ± 1.13

P value 0.005 <0.0001 <0.0001 <0.0001

MRD (+) n = 23) 1.05 ± 0.60 2.43 ± 1.05 3.19 ± 1.11 3.62 ± 1.41

MRD (−) (n = 29) 1.25 ± 0.64 2.69 ± 0.78 3.19 ± 1.11 4.15 ± 1.13

P value 0.266 0.334 0.162 0.157

Relapse (+) (n = 25) 0.85 ± 0.45 2.00 ± 0.68 2.83 ± 0.78 3.15 ± 1.02

Relapse (−) (n = 54) 1.12 ± 0.67 2.59 ± 0.93 3.57 ± 0.98 4.16 ± 1.19

P value 0.066 0.005 0.001 0.0005

Early relapsea (+) (n = 16) 0.80 ± 0.45 1.91 ± 0.80 2.76 ± 0.81 3.14 ± 1.10

Early relapsea (−) (n = 63) 1.10 ± 0.65 2.52 ± 0.89 3.48 ± 0.97 4.02 ± 1.19

P value 0.094 0.017 0.008 0.009

CR achieved complete remission after one course of induction therapy, NCR not achieved complete remission, MRD minimal residual disease. aEarly relapse: hematologic
relapse within 6 months.
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Patients with higher D5-PBCR (≥99.55%) were more
likely to achieve CR (94.6% vs. 56.1%, P < 0.001) and
exhibit less relapse rate (19.44% vs. 42.86%, P = 0.027).
However, post-induction BM MRD showed no significant
difference between the two D5-PBCR groups (MRD posi-
tive: 50% vs. 62.5%, P = 0.366).
In molecular studies, a trend of more NRAS (14.8%

vs. 0%, P = 0.051), CEBPA biallelic mutations (37.0%
Figure 1 Receiver operating characteristic (ROC) curve of D5-PBRR
on patients’ remission. Area under the curve (AUC) was 0.746. A
cut-off value of 2.35 that maximized the sum of sensitivity and
specificity of 52.2% and 92.6%, respectively, was selected.
vs. 20.7%, P = 0.142), and less MLL-PTD mutations
(3.7% vs. 10.3%, P = 0.612) were observed in the D5-
PBCR ≥99.55% group (Additional file 2: Table S2).
The distribution of the cytogenetic-molecular risk

classification showed that more unfavorable cases were
classified into the lower D5-PBCR (<99.55%) group
(16/19, P = 0.019). In the intermediate risk group,
although the distribution was similar, patients with low
D5-PBCR showed significant adverse survival [esti-
mated two-year overall survival (OS): 25.6% vs. 76.4%,
P = 0.033; estimated two-year relapse-free survival
(RFS): 23.9% vs. 71.5%, P = 0.086] (Figure 2A and B),
even close to that of the unfavorable-risk group (Additional
file 3: Figures S1A and S1B). In the favorable-risk group,
no differences were observed in distribution or survival
analysis.
Further analysis of the whole cohort showed that higher

D5-PBCR (≥99.55%) was associated with significantly lon-
ger OS and RFS (estimated two-year OS: 71.0% vs. 38.7%,
P = 0.011; estimated two-year RFS: 69.4% vs. 30.7%,
P = 0.026; Figure 3A and B).

Discussion
Based on clinical characteristics, cytogenetic and molecu-
lar markers, more precise prognostic stratification has
been established in AML and diagnosis and treatment
individualization has become feasible [3]. The establish-
ment of an effective monitoring method is essential for
the evaluation of the early response and the adjustment of
treatment regimens and the improvement of the prognosis
as well.
MRD detection by flow cytometry has been applied to

identify subclinical levels of leukemia cells and evaluate



Figure 2 Survival analysis of patients in the cytogenetic-molecular intermediate-risk group. (A) OS of patients subdivided into high (≥99.55%)
and low (<99.55%) D5-PBCR groups, P = 0.033. (B) RFS of patients subdivided into high (≥99.55%) and low (<99.55%) D5-PBCR groups, P = 0.086.

Yu et al. Journal of Hematology & Oncology  (2015) 8:48 Page 5 of 9
treatment more precisely than conventional morphology;
as such, this technique has been considered ideal for
chemosensitivity assessment [6,17-21]. In ALL, MRD
level (<0.01%) and cytogenetic-molecular markers are
both considered as independent outcome predictors [8].
MRD-based clinical approaches in children and adult
ALL have yielded excellent results, which confirmed that
MRD can be effective in risk stratification and treatment
intervention [22-25].
In AML, MRD monitoring also plays an important

role in the evaluation of treatment effect. Retrospective
studies have demonstrated a high prognostic value of
post-induction MRD level in AML. Terwijn et al. [26]
Figure 3 Survival analysis of whole cohort patients. (A) OS of patients sub
P = 0.011. (B) RFS of patients subdivided into high (≥99.55%) and low (<99
and Freeman et al. [27] defined 0.1% as the MRD cut-off
value; in both studies, MRD is correlated with RFS but not
with OS. However, Inaba et al. [28] reported that MRD
has a limited value in childhood AML if measured by
MFC. Thus far, the threshold of MRD related to prognosis
of AML remains controversial. MRD cannot be consid-
ered as an independent prognostic predictor in AML, in
contrast to ALL [26,27,29].
Either in ALL or AML, the time points of BM-MRD

monitoring are not earlier than 2 weeks after the induc-
tion begins. Although prognostic correlation is excellent,
the time at which correlation is determined may be too
late for early intervention of induction regimen. Thus,
divided into high (≥99.55%) and low (<99.55%) D5-PBCR groups,
.55%) D5-PBCR groups, P = 0.026.
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studies have evaluated peripheral blast clearance in the
first week of induction.
In patients with ALL, practical values of PB blast

assessment have been reported. Gajjar et al. [10] found
that the persistence of circulating blasts after 1 week of
therapy is significantly related to the worse event-free
survival in childhood ALL. Atsushi et al. [11] also pre-
sented the same conclusion in patients with ALL treated
with prednisolone monotherapy. Studies related to AML
have also shown that a rapid decrease in peripheral
leukemic burden determined through either morphology
or flow cytometry [12,15] is correlated with CR and long-
term survival [14,16].
In this study, we monitored the early treatment response

of 96 AML patients by detecting PB blasts through flow
cytometry. The PBRR at all checkpoints (D3–D9) showed
high prognostic value of CR (D3: P = 0.005, D5: P <
0.0001, D7: P < 0.0001, D9: P < 0.0001). Starting from D5,
PBRR was significantly related to the total relapse rates
(D5: P = 0.005, D7: P = 0.001, D9: P = 0.0005) and early re-
lapse rates (D5: P = 0.017, D7: P = 0.008, D9: P = 0.009).
This finding is consistent with that in published studies in
which D5 is also determined as the median time of PB
blast clearance [12-16]. The ROC analysis identified D5-
PBCR of 99.55% initial blasts as the cut-off value. Patients
with high D5-PBCR (≥99.55%) showed greater CR rates
and less relapse rates (P < 0.001, P = 0.027) and were asso-
ciated with significantly longer OS and RFS (P = 0.011,
P = 0.026).
Our D5-PBCR cut-off value might help optimize

current cytogenetic-molecular prognostic risk stratifica-
tion. In our cohort, 84.21% (16/19) of unfavorable-risk pa-
tients were classified into low D5-PBCR group (<99.55%).
In the intermediate-risk groups, D5-PBCR could further
distinguish the subgroup of patients with relatively poorer
prognosis, the two-year estimated OS and RFS rate were
significantly worse in patients with D5-PBCR <99.55%
(P = 0.033, P = 0.086), which were close to that of the
unfavorable-risk group. This might facilitate further
treatment regimen adjustments. The intermediate-risk
patients with low D5-PBCR may be recommended for
strengthening induction and consolidation therapy or
receiving allo-HSCT.
D5 of induction is a valuable time point of early

treatment response monitoring. This time point is ap-
propriate to strengthen induction therapy. Augmented
induction using dose-escalated regimens or three-drug
combination has benefited patients [30-32]. Holowiecki
et al. [31] also suggested that the addition of cladribine
to the standard induction regimen can improve the
outcome of patients with AML, particularly in the
unfavorable-risk group. Thus, early risk evaluation by
D5-PBCR provides the basis of individualized induction
therapy.
The applicability of MRD by MFC is approximately
60% to 88% in patients with AML [6,17]. In patients
with no LAIPs, BM MRD evaluation is unlikely perfor-
med through MFC assessment. In this case, D5-PBCR is
considered as a new effective evaluation method. Almost
all patients with AML suffer from circulating blasts at
diagnosis, which enables PB blast monitoring a com-
paratively universal way. In our study, LAIP coverage
was approximately 75% (72/96). Of the 24 patients with
no LAIPs, 23 showed available data of D5-PBCR. The
CR rate was 100% (7/7) in the high D5-PBCR group
compared with 50% (8/16) in the low D5-PBCR group
(P = 0.052); this result suggested that high D5-PBCR may
help predict the CR status of patients without LAIPs.
However, for the few AML patients with very low per-

centage or even absent of PB blasts at diagnosis, BM
MRD detection plays a more important role.

Conclusions
An effective evaluation method of early treatment response
was established by monitoring PB blasts through MFC.
D5-PBCR cut-off value might help distinguish high-risk
patients in the first week of induction; thus, prognostic pre-
dictive ability of current risk stratification can be improved
and induction regimen modification can be performed.
To further establish practical and precise clinical guid-

ance, more patients need to be accumulated and multi-
center confirmation is required.

Methods
Patients and treatment protocols
A total of 96 patients with de novo AML (non-M3) were
enrolled in this study from June 2011 to August 2014 in
the Shanghai Institute of Hematology. The diagnosis and
classification of the AML subtypes were established ac-
cording to FAB [33] and WHO 2008 criteria [34]. The
Ethics Committee of Ruijin hospital approved this study.
All patients provided informed consent according to the
Declaration of Helsinki.
All patients received standard first-line chemotherapy.

The induction regimen consisted of idarubicin (8 to 10
mg/m2/d, D1–D3) or daunorubicin (45 to 60 mg/m2/d,
D1–D3) and cytarabine (100 mg/m2/d, D1–D7). After CR
was achieved, consolidation therapy was administered
according to the patients’ cytogenetic-molecular risk
stratification. Patients in favorable- and intermediate-
risk group received HiDAC-based consolidation (2 g/m2,
every 12 h, D1-D3), whereas patients in the unfavorable-
risk group were recommended for allograft transplant-
ation (n = 14) [30,35,36].

Cytogenetic and molecular analysis
Cytogenetic data was available in 88 of 96 cases. The chro-
mosomes were R-banded and/or G-banded in unstimulated
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BM cells after 24 h of culture. The karyotype was ana-
lyzed according to the International System for Human
Cytogenetic Nomenclature (2009) [37].
Molecular studies were performed in 94 cases. Muta-

tions of several genes, including NPM1, NRAS, FLT3-ITD,
FLT3-TKD, DNMT3A, CEBPA, MLL-PTD, C-KIT, were
detected through RT-PCR and sequencing. MLL-related
fusion genes, namely, MLL-AF9, MLL-AF10, MLL-AF6,
MLL-ELL, MLL-ENL, and MLL-AF17, were assessed
through multiplex RT-PCR [36].
The cytogenetic-molecular risk groups were classified

as follows: favorable group comprised t (8; 21), t (16; 16)
or inv (16), and normal cytogenetics with NPM1 mutation
in the absence of FLT3-ITD, DNMT3A, and MLL-PTD
mutations. Unfavorable group comprised 5/5q−,−7/7q−,
inv (3)/t (3; 3), t (6; 9), complex karyotype (≥3 clonal
chromosomal abnormalities), and normal cytogenetics
with FLT3-ITD. The intermediate group consisted of other
patients [35].

Identification of LAIPs
Fresh BM or PB samples were processed according to
the standard operating procedure of our institution
[7]. The assays were performed using a 10-color flow
cytometer (NAVIOS, Beckman Coulter, Brea, California,
USA). Data were analyzed with KALUZA software
(Beckman Coulter, Brea, California, USA). LAIPs were
classified at diagnosis with different surface antigens
(CD34, CD38, CD117, HLA-DR, CD13, CD33, CD14,
CD15, CD64, CD2, CD4, CD7, CD11b, CD19, and CD56).
The information on monoclonal antibody combination is
shown in Additional file 4: Table S3.
More than 2.5 × 105 events from PB samples and 1 × 106

events from BM samples were required for flow cytome-
try detection to ensure sensitivity and accuracy. For BM
samples, a cut-off value of 0.1% was determined as
MRD positive.

Calculation of PBRR and PBCR
PB samples of right before treatment (D0) and on the
3rd, 5th, 7th, 9th days (D3, 5, 7, 9) of the induction
chemotherapy were collected. The absolute counts of
blasts in PB were calculated using flow count fluorospheres
(Beckman Coulter, Brea, California, USA). For patients
with LAIPs, blasts with the specific immunophenotype
were counted. For patients with no LAIPs, PB blasts
were determined with surface antigens (including CD34+,
CD117+, CD33+, CD13+, HLA-DR+, and CD45dim) as-
sociated with myeloid lineage cells. Patients whose PB
blast percentage was higher than 0.5% at D0 were included
in this study. PBRR was defined as the logarithmic ratio to
the absolute counts of D0 [Log10 (D0/Dx)] [38]. PBCR was
defined as the percentage of absolute count reduction:
[(D0 − Dx)/ D0 × 100%].
Statistical analysis
PBCRs were compared through independent-sample t-
test. An ROC analysis was performed to evaluate the
predictive efficiency of PBRR on patients’ CR. Statistical
significance was considered when AUC was >0.6; the cut-
off value was selected according to the maximum sum of
sensitivity and specificity [39]. Chi-square test was perfor-
med to compare CR and relapse rates. OS was defined
as the time of diagnosis to death or allo-HSCT or the last
follow-up. RFS was defined as the time at which CR was
achieved until relapse occurred and was also defined on
the basis of whether a patient died or remained alive when
CR was achieved at the last follow-up (censored). OS and
RFS were estimated by using Kaplan-Meier method and
compared by conducting log-rank test. The last follow-up
was performed in December 2014, and the median follow-
up time was 11 (0.4–41) months. Two-sided P < 0.05
was considered statistically significant. Statistical ana-
lyses were evaluated using SPSS 22.0 software (IBM,
Armonk, NY, USA).

Additional files

Additional file 1: Table S1. LAIP characteristics of patients. LAIPs were
identified in 72 patients with four main types: 63 cases with cross-lineage
antigen expression, 6 cases with asynchronous antigen expression, 13
cases with antigen dim/strong expression, and 8 cases with antigen
expression missing.

Additional file 2: Table S2. Gene mutation profile of cytogenetic-normal
AML patients stratified by D5-PBCR. Mutations of several genes, including
NRAS, NPM1, FLT3-ITD, FLT3-TKD, DNMT3A, CEBPA, MLL-PTD, C-KIT, and MLL-
related fusion genes were detected in 58 cytogenetic-normal AML patients ,57
showed available data of D5-PBCR. A trend of more NRAS (14.8% vs. 0%,
P = 0.051), CEBPA biallelic mutations (37.0% vs. 20.7%, P = 0.142), and
less MLL-PTD mutations (3x.7% vs. 10.3%, P = 0.612) was observed in
the D5-PBCR ≥ 99.55% group.

Additional file 3: Figure S1. Survival analysis of patients with
cytogenetic-molecular risk stratification. (A) OS of patients subdivided into
favorable-risk group, intermediate-risk group with high D5-PBCR
(≥99.55%), intermediate-risk group with low D5-PBCR (<99.55%), and
unfavorable-risk group, P < 0.001. (B) RFS of patients subdivided into
favorable-risk group, intermediate-risk group with high D5-PBCR
(≥99.55%), intermediate-risk group with low D5-PBCR (<99.55%), and
unfavorable-risk group, P = 0.010.

Additional file 4: Table S3. The mAbs combinations utilized for MRD
and PB blast assessment. The monoclonal antibody combination utilized
for MRD and PB blast assessment included seven fixed mAbs (CD34, HLA-DR,
CD13, CD33, CD117, CD10, and CD45) and eight alternative mAbs (CD2, CD4,
CD7, CD19, CD56, CD11b, CD64, and CD14).
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