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In the past decade, hundreds of long noncoding RNAs (lncRNAs) have been identified 
as significant players in diverse types of cancer; however, the functions and mechanisms 
of most lncRNAs in cancer remain unclear. Several computational methods have been 
developed to detect associations between cancer and lncRNAs, yet those approaches 
have limitations in both sensitivity and specificity. With the goal of improving the prediction 
accuracy for associations of lncRNA with cancer, we upgraded our previously developed 
cancer-related lncRNA classifier, CRlncRC, to generate CRlncRC2. CRlncRC2 is an 
eXtreme Gradient Boosting (XGBoost) machine learning framework, including Synthetic 
Minority Over-sampling Technique (SMOTE)-based over-sampling, along with Laplacian 
Score-based feature selection. Ten-fold cross-validation showed that the AUC value of 
CRlncRC2 for identification of cancer-related lncRNAs is much higher than previously 
reported by CRlncRC and others. Compared with CRlncRC, the number of features 
used by CRlncRC2 dropped from 85 to 51. Finally, we identified 439 cancer-related 
lncRNA candidates using CRlncRC2. To evaluate the accuracy of the predictions, we 
first consulted the cancer-related long non-coding RNA database Lnc2Cancer v2.0 
and relevant literature for supporting information, then conducted statistical analysis of 
somatic mutations, distance from cancer genes, and differential expression in tumor 
tissues, using various data sets. The results showed that our approach was highly 
reliable for identifying cancer-related lncRNA candidates. Notably, the highest ranked 
candidate, lncRNA AC074117.1, has not been reported previously; however, integrated 
multi-omics analyses demonstrate that it is the target of multiple cancer-related miRNAs 
and interacts with adjacent protein-coding genes, suggesting that it may act as a 
cancer-related competing endogenous RNA, which warrants further investigation. In 
conclusion, CRlncRC2 is an effective and accurate method for identification of cancer-
related lncRNAs, and has potential to contribute to the functional annotation of lncRNAs 
and guide cancer therapy.
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INTRODUCTION

Cancer is a leading cause of death worldwide (Siegel et al., 2018) 
and it is established that cancers are caused by genetic and 
epigenetic changes (Kanwal and Gupta, 2010; You and Jones, 
2012). Hence, high throughput technologies to characterize 
genes associated with cancer have applications with crucial 
implications for human health. Long non-coding RNAs 
(lncRNAs) account for the vast majority of non-coding RNAs 
longer than 200 nucleotides, and were previously considered 
“junk” RNA, due to their low coding potential; however, over 
recent decades, lncRNAs have been recognized as significant 
regulators of multiple major biological processes impacting 
development, differentiation, and metabolism (Bhan and 
Mandal, 2015). In cancer, lncRNAs act via multiple mechanisms, 
including regulation of chromatin topology in both cis and trans 
(chromatin remodeling, chromatin interactions), scaffolding 
of proteins and other RNAs, acting as protein and RNA decoys 
(competing endogenous RNA, ceRNA), regulating neighboring 
genes as natural antisense transcripts (NATs), and producing 
micropeptides (Aab et al., 2016; Ransohoff et al., 2018).

The aberrant expression of lncRNAs has been linked to typical 
cancer hallmarks, such as continuous proliferation, bypassing 
apoptosis, genomic instability, drug resistance, invasion, and 
metastasis (Renganathan and Felley-Bosco, 2017; Bhan et al., 
2017; Balas and Johnson, 2018; Wang et al., 2019). For example, 
the lncRNA growth arrest-specific transcript 5 (GAS5), which 
is down-regulated in almost all tumor tissues, can suppress 
the tumorigenesis of cervical cancer by downregulating miR-
196a and miR-205 (Yang et al., 2017), while LncRNA‐PVT1, 
which is up-regulated in non-small cell lung cancer (NSCLC), 
can improve tumor invasion and metastasis (Yang et al., 2014). 
Further, Hox transcript antisense intergenic RNA (HOTAIR), 
which contributes to epigenetic regulation of genes, plays an 
important role in various cellular pathways by interacting with 
Polycomb Repressive Complex 2 (PRC2) (Mercer and Mattick, 
2013). In addition, due to dynamic changes in their expression 
levels as cancer develops, some lncRNAs are regarded as potential 
biomarkers and therapeutic targets (Hanahan and Weinberg, 
2011; Bhan et al., 2017). The most prominent example of such 
a biomarker is prostate cancer antigen 3 (PCA3), a lncRNA 
expressed at high levels in prostate cancer (De Kok et al., 2002; 
Yarmishyn and Kurochkin, 2015). The detection of PCA3 in 
urine is a more specific marker for prostate cancer diagnosis 
than the commonly used factor, prostate specific antigen 
(PSA), and has been widely applied in the clinic (Hessels et al., 
2003; Tinzl et al., 2004). Another example is lncRNA TUC339, 
which is highly enriched in extracellular vesicles secreted by 
hepatocellular carcinoma cells, where it regulates the growth and 
adhesion of tumor cells (Kogure et al., 2013). These features of 
lncRNA prompted us to search for efficient methods to predict 
functional lncRNAs in cancer, to facilitate deeper understanding 

of malignancies and the potential application of lncRNAs as 
targets for cancer therapies and diagnostics.

Systematic understanding of the contributions of lncRNAs to 
cancer is challenging, partly due to the unpredictability of lncRNA 
functional elements, as well as their relatively low conservation, 
low expression levels, and diverse functional mechanisms. 
The functions of a single lncRNA, or several lncRNAs, can be 
determined using experimental methods; however, this approach 
is time consuming and costly. The successful implementation of 
machine learning systems for the study of genomics, proteomics, 
systems biology, and evolution, has been a great inspiration to 
the field of life sciences more generally (Larranaga et al., 2006). 
Using machine learning algorithms, we can determine the high 
dimensional characteristics of functional lncRNAs from an 
informatics perspective. To successfully apply machine learning 
to the identification of functional lncRNAs in cancer genomics, 
it is fundamental to first identify positive and negative sets. For 
this purpose, there are a number of repositories from which 
cancer-related lncRNAs can be conveniently obtained, including 
Lnc2Cancer v2.0, a manually curated database that provides 
comprehensive experimentally supported associations between 
lncRNAs and human cancer (Gao et al., 2019), and CRlncRNA, 
another manually curated database that uses stricter criteria 
to retain only data related to cancer hallmarks that have been 
experimentally confirmed (Wang et al., 2018). These databases 
can be exploited to develop machine learning models to predict 
and rank cancer-related lncRNAs. There has been relatively little 
research that has attempted to use machine learning methods to 
predict functional lncRNAs in cancer. For example, Zhao et al. 
(2015) presented the first naïve Bayes based machine learning 
method, and identified 707 cancer-related lncRNA candidates. In 
our previous work, we used a Random Forest based algorithm, 
CRlncRC, to classify cancer-related lncRNAs and other lncRNAs, 
through integration of 85 features (Zhang et al., 2018); however, 
compared with the computational prediction work reported 
for cancer-related protein-coding genes, the identification of 
cancer-related lncRNAs remains preliminary. The sensitivity and 
specificity of methods to predict cancer-related lncRNAs require 
further improvement.

In this study, we developed a new cancer-related lncRNA 
classifier, CRlncRC2. Compared with CRlncRC, CRlncRC2 uses 
the Laplacian score feature selection method to reduce training 
time and prevent over-fitting. In addition, unlike the naïve 
under-sampling method adopted by CRlncRC, we address the 
data imbalance problem, which is caused by the relatively small 
size of available positive sets of cancer-related lncRNAs, using 
the Synthetic Minority Over-sampling Technique (SMOTE) 
method, to balance imbalanced data, while aiming to retain 
all important information. Moreover, CRlncRC2 uses a more 
powerful machine learning model, extreme gradient boosting 
machine (XGBoost), to improve its predictive performance. 
Ten-fold cross-validation showed that the area under the 
receiver operating characteristic curve (AUC or area under 
ROC curve) score of CRlncRC2 is much higher than those 
of CRlncRC (0.86 vs. 0.82) and the method developed by 
Zhao et al. (0.90 vs. 0.79). Finally, 439 possible cancer-related 
lncRNAs were identified using CRlncRC2, of which 5 in the 

Abbreviations: AUC, area under the ROC curve; ceRNA, competing endogenous 
RNA; DT, decision tree; lncRNA, long non-coding RNA; ROC, Receiver operating 
characteristic; SVM, support vector machines; XGBoost, extreme gradient 
boosting machine
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top 20 were confirmed using the Lnc2Cancer v2.0 database. 
Further, statistical analyses show that the identified lncRNAs 
are closer to cancer protein genes, carry more mutations, and 
are more likely to be differentially expressed in tumor tissues 
than negative lncRNAs. In addition, survival analysis revealed 
a significant difference in overall survival between the low and 
high expression groups of the top 10 predictions. In particular, 
one lncRNA, AC074117.1 (ENSG00000234072), which was the 
top ranked of our predictions and has not been reported in the 
literature, is suggested as being highly likely to be associated with 
cancer in the lncRNA-related ceRNA network. In conclusion, 
CRlncRC2 exhibited good performance in both cross-validation 
and prediction evaluation. We believe our framework will be a 
useful tool for study of lncRNA–cancer associations.

MATERIALS AND METHODS

Our experiment followed the pipeline illustrated in Figure 1A, 
which consisted of four main steps: Data preparation, Feature 
engineering, Model training, and Prediction and validation. The 
detailed processes of feature selection and cross-validation are 
presented in Figures 1B, C.

Data Preparation
Cancer-related lncRNAs (positive set) and cancer unrelated 
lncRNAs (negative set) were downloaded from CRlncRC (https://
github.com/xuanblo/CRlncRC). The criteria for cancer-related 
lncRNA collection include either differentially expressed in 
cancer (as verified by Real-Time qRT-PCR), co-occurred with a 
significant relevant clinicopathological parameter (e.g., tumor 
differentiation, clinical stage, and survival time), or proven by 
functional experiments (e.g., colony formation assay, matrigel 
invasiveness assay, xenograft mouse model, and metastasis nude 
mouse model). As the category of cancer unrelated lncRNA is 
difficult to define, and for consistency with other classifiers, we 
located a large number of single-nucleotide polymorphisms 
(SNPs) associated with phenotypes derived from the NHGRI-EBI 
GWAS Catalog (Welter et al., 2014) in the sequences of lncRNAs, 
and only those lncRNAs which had no phenotype-related SNPs 
detected within its 10 kb up/down stream were selected as cancer 
non-related lncRNAs. Finally, we identified 158 positive lncRNAs 
(Data Sheet 1) and 4,533 negative lncRNAs (Data Sheet 2).

We downloaded lncRNA feature data from CRlncRC; 
CRlncRC retrieves 85 features and groups them into four 
categories: genomic features, expression features, epigenetic 
features, and network features. Feature category, name, 
source database, and description information are detailed in 
Data Sheet 3.

Feature Engineering
Features play an essential role in classification, and appropriate 
features can improve classification performance significantly. 
In cancer genomic research, the currently known cancer-
related lncRNA (positive) set are only available because they 
were identified by humans. It is possible that some samples in 

the negative set may be considered to belong to the positive set 
in the future. Hence, we employed Laplacian scoring (He et al., 
2005), which is designed to select features without labels, as a 
criterion to evaluate the correlations of each feature. The basic 
idea of Laplacian score is to evaluate the features according to 
their locality preserving power, which is from the Laplacian 
Eigenmaps (Chung, 1997) and Locality Preserving Projection 
(He and Niyogi, 2003).

In detail, we applied the scikit-feature (Li et al., 2017) to 
calculate Laplacian scores; the parameters for the affinity matrix 
used for the calculation are as follows: metric = euclidean, 
neighbor mode = knn, and k = 5. Calculated scores range from 
0 to 1, with smaller values indicating more important features. 
The distribution of calculated Laplacian scores is presented in 
Figure 2 and clearly shows that there are large margins in each 
category of features. In this case, we can determine the difference 
between the sorted Laplacian scores (asc) and use the first two 
differential values to set a threshold. Specifically, we set the 
margins in “Epigenetic” to the second and third largest differential 
values, because these appeared to be the inflection points. Hence, 
the features were split into three parts, and the features located 
in the lower part (i.e., those with scores indicating that the 
features are more important) retained immediately. Nevertheless 
it is not advisable to simply remove those features located in the 
other parts, as these also contain some information. Therefore, 
we merged the features according to the mean in each part and 
retained the merged features to preserve the information. For 
example, the middle scoring part of “Expression” contains two 
features, and we removed these two features, while retaining their 
mean value. The mean-merged feature obtained from the high 
scoring parts were also retained. Finally, generated training and 
validation sets by concatenating the processed category features. 
Changes in the feature number in each category are summarized 
in Table 1. After feature selection, we obtained 51 features, eight 
of which are synthetic. A “Bigtable”, containing 11194 lncRNAs 
from CRlncRC, with 85 features, is included in Data Sheet 4.

Model Training
The machine learning method, XGBoost (Chen and Guestrin, 
2016), was tuned to search for an optimal prediction solution. 
XGBoost is a type of gradient boosting decision tree method; its 
objective function is defined in equation (1).

 
( ) ( ˆ ) ( ),φ = +

= =∑ ∑loss i i
i

n

k
k

K
y y f

1 1
Ω

 
 (equation 1)

where loss is the training loss, Ω(f) is the complexity of the tree, 
and K is the number of trees in the model. This model can be 
optimized by minimizing this objective function. To this end, 
an additive training method was employed for training loss, and 
prediction at the additive tth training round could be quickly 
optimized using Taylor expansion. The greedy algorithm [31] 
was used to determine optimal tree complexity.

In our study, we used the dmlc XGBoost library (https://
xgboost.ai/) for implementation of the XGBoost model. To tune 
the hyper-parameters, we first adopted Bayesian optimization to 
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FIGURE 1 | Pipeline for the experiment. (A) Designment of experimental workflow. (B) Details of feature selection. (C) Details of 10-fold cross validation with 
over-sampling.
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search for potential hyper-parameters and then manually fine-
tuned those hyper-parameters to improve the performance of the 
model. The hyper-parameters for XGBoost primarily control the 
growth and the robustness of the model:

• Growth: n estimators, max depth, and learning rate
• Robustness: colsample bytree, subsample, and gamma

In addition, as our sample was unbalanced (the ratio of 
the minority positive class versus majority negative class was 
approximately 1/30), we adopted SMOTE (Nakamura et al., 2013) 
to re-sample our training set by Bayesian optimization, which 
reduces the impact of data imbalance. The final tuning result for 

this model is n estimator = 546, max depth = 10, learning rate = 
0.01, colsample bytree = 0.7, subsample = 0.826, and gamma = 
0.036.

Ten-fold cross validation was adopted to evaluate the model 
trained by parameters obtained using Bayesian optimization. The 
algorithm stratified shuffles the total samples into 10 folds, and 
begins an iteration: each time 9 folds are initially over-sampled, 
and then assigned for training. The single remaining fold is 
adopted as the pair for validation. Subsequently, the over-sampled 
training set was used to fit the model, while the validation set 
was utilized to evaluate the model’s performance. Note that the 
validation set in each iteration is not re-sampled and does not 
include any data used for training. Further, the models trained 

FIGURE 2 | Laplacian score distribution. Right, sorted scores (asc). Red dotted line and dashed line, assumed thresholds.

TABLE 1 | Changes in feature number for each type of feature.

Epigenetic Expression Genomic Network

Feature number before feature selection
LP* MP* UP* LP* MP* UP* LP* MP* UP* LP* MP* UP*
20 5 2 12 2 2 9 2 7 4 9 11
Feature number after feature selection
22 14 11 6

*LP, lower part of Laplacian Score; MP, middle part of Laplacian Score; UP, higher part of Laplacian Score.
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on each iteration are independent of one another. To rigorously 
evaluate the performance of our model, we measured the AUC 
scores using the abovementioned 10-fold cross-validation 
(Figure 1C).

Further, to rigorously evaluate the model’s performance, we 
measured the recall, precision, and F1 score, using the 10-fold 
cross-validation process described above.

The recall is the ratio of correctly predicted positive 
observations to all observations in a specific class, and was 
calculated using equation 3:

 
Recall FN= TP

TP
+ , (equation 2)

The precision is the ratio of correctly predicted positive 
observations to total predicted positive observations, and was 
calculated using equation 4:

 
Precision = TP FP

TP
+ ,  (equation 3)

The F1 Score is the weighted average of Precision and Recall, 
and was calculated using equation 5:

 
F score1 2= ∗ ∗

+
( )
( )

,Recall Precision
Recall Precision  (equation 4)

Prediction and Evaluation
To predict novel cancer-related lncRNAs, we used our pre-trained 
model to predict 7,253 unknown lncRNAs from TANRIC [33]. 
To evaluate the accuracy of our model, we used various methods 
to test the reliability of our predictions. First, predictions were 
searched against the Lnc2Cancer v2.0 database. Next, the 
Kolmogorov-Smirnov test was used to examine whether there 
were significant differences among the different sets (positive, 
negative, and predictive) in the distance to cancer protein-coding 
genes, mutation numbers, and numbers of samples differentially 
expressed between tumor and normal tissues. Mutation data 
and cancer protein-coding gene sets were download from 
COSMIC [34]. Tumor and normal tissue expression profiles were 
downloaded from TANRIC. Further, survival analysis for the top 
10 predictions was conducted using TANRIC.

RESULTS

Data Collection
We collected 158 highly trusted cancer-related lncRNAs from 
CRlncRC as our positive data set. All have been reported in 
the literature with the support of strict experimental validation 
and are involved with cancer hallmarks. lncRNAs (n = 4,553) in 
CRlncRC without phenotype-related SNPs within 10 kb up- or 
down-stream were used as our negative data set. In CRlncRC, 
we collected 85 features that could potentially facilitate the 

recognition of cancer-related lncRNAs and grouped them into 
four different categories (see Data Sheet 3 for details): Genomic 
features (such as GC content and sequence conservation score), 
Expression features (the expression profiles of lncRNAs in 16 
different tissue types), Epigenetic features (different types of 
epigenetic signals in different types of cell lines), and Network 
features (the interactions between lncRNAs and cancer-related 
protein-coding genes and miRNAs). After feature selection using 
Laplacian scores, we reduced the feature number from 85 to 51. 
Cumulative curves were plotted and showed that the distribution 
of the feature values between the positive and negative sets was 
significantly different (Kolmogorov-Smirnov test, p-value < 0.05) 
(Data Sheet 5). The number in each feature category before and 
after feature selection is shown in Table 1.

Performance Evaluation
The results of 10-fold cross-validation are presented in Figure 3. 
We drew 10 ROC curves, which had minimum and maximum 
AUC values of 0.73 and 0.93, respectively, and an average value 
of 0.86 ± 0.6. In addition to AUC values, additional evaluation 
indicators were used to assess our results, including precision, 
recall, and F1-Score (Table 2). The average precision, recall, and 
F1-Score values were 0.72, 0.62, and 0.65, respectively. Overall, 
these data demonstrate that CRlncRC2 is an efficient tool for 
identification of lncRNAs related with cancer, with high accuracy 
and stable performance.

Compared with other methods, CRlncRC2 has superior 
performance. Relative to CRlncRC, CRlncRC2 reduced features 
number from 85 to 51 and the mean AUC value reached 0.86, 
which is 0.04 higher than that achieved using CRlncRC (Figure 
4A). Further, we compared the prediction performance of 
CRlncRC2 with that of the method described by Zhao et al. 
(2015). To ensure a fair comparison, we retrained our CRlncRC2 
method using the dataset reported by Zhao et al. Compared with 
the method of Zhao et al., the resulting mean AUC value for 
CRlncRC2 was much higher (0.90 vs. 0.79) (Figure 4B).

To determine why CRlncRC2 performed better than CRlncRC, 
we analyzed the feature importance (XGBoost importance weight) 
in CRlncRC2 (Data Sheet 6). Compared with the features used 
in CRlncRC, it is clear that the epigenetic and expression feature 
numbers in CRlncRC2 were almost unchanged, while those of 
genomic features were reduced by half, while network features 
were decreased by two thirds (Figure 5A). Expression features 
were two among the top ten most important features in CRlncRC2, 
while they were not among the top ten in CRlncRC (Figure 5B). 
In addition, there are four types of features in the top 20 features 
of CRlncRC2, indicating that CRlncRC2 can make better use 
of different features (Figure 5C). Furthermore, as illustrated in 
Figures 5C, D, the proportions of epigenetic features among the 
first 20 and 50 features for CRlncRC2 were much larger than 
those for CRlncRC. Surprisingly, although genomic and network 
features accounted for a small proportion, the three synthetic 
genomic and network features (Gen_LevelTwo, Gen_LevelOne, 
and Net_LevelTwo) ranked the highest, indicating that synthetic 
features generated by combining low Laplacian score features 
may contribute substantially to the model (Figure 5E). Two 
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repeat features, short interspersed nuclear element (SINE) 
and long interspersed nuclear element (LINE) signals on gene 
bodies, ranked No. 4 and No. 5, followed by gene expression 
level in colon tissue (No. 6), prostate gland (No. 8), “H3k4me1” 
epigenetic modification signals within the Transcription Start 
Site upstream and downstream 5k (TSS5k) region in GM12878 
(No. 7), and “H3k4me3” epigenetic modification signals within 
lncRNA gene body/TSS1k region in H1hesc/GM12878 cell line 
(No. 9 and No. 10).

We further evaluated the effectiveness of our approach to 
dealing with the available imbalanced data. The SMOTE over-
sampling method was used to balance the imbalanced data, and 
it contributed to an increase of 0.01 in the AUC value, relative to 
non-SMOTE adjusted data (Figure 6A). In addition, to compare 
the performance of different machine learning algorithms, 
several models were compared using the non-SMOTE adjusted 
over-sampling data. ROC curve analysis showed that the 
XGBoost-based method performed better than Decision tree 
(DT) (0.85 vs. 0.60) and Support Vector Machine (SVM) (0.85 
vs. 0.74) -based approaches (Figure 6B). These results indicate 
that our new method facilitated superior performance relative 
to previous methods. XGBoost contributed substantially to the 
AUC values, while data over-sampling was also very important.

Statistical Analysis of Candidate Cancer-
Related lncRNA Candidates
We used the pre-trained model to predict novel candidate cancer-
related lncRNAs from 7,253 unknown lncRNAs, which were not 
in our training or testing sets. Finally, we predicted 439 cancer-
related lncRNA candidates (Data Sheet 7). First, we used the data 
from the newly updated database, Lnc2Cancer v2.0, to test our 

FIGURE 3 | ROC for 10-fold cross-validation.

TABLE 2 | Performance of 10-fold cross-validation.

Ten-fold 
cross-validation

Precision Recall F1-Score

macro avg fold 0 0.74 0.56 0.59
macro avg fold 1 0.90 0.66 0.72
macro avg fold 2 0.57 0.55 0.56
macro avg fold 3 0.77 0.62 0.67
macro avg fold 4 0.71 0.62 0.65
macro avg fold 5 0.78 0.71 0.74
macro avg fold 6 0.67 0.65 0.66
macro avg fold 7 0.74 0.65 0.68
macro avg fold 8 0.65 0.59 0.62
macro avg fold 9 0.70 0.60 0.63
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predictions, since we did not collect our positive dataset from 
this database. We studied the intersection of our predictions and 
their collections. Among our top 10, 20, and 50 predictions, 2, 5, 
8 lncRNAs, respectively, were also collected by Lnc2Cancer, and 
were functionally validated as cancer-related (Figure 7A). In total, 
47 candidate cancer-related lncRNAs were found in Lnc2Cancer 
(Data Sheet 7). According to the tag information provided in the 
Lnc2Cancer database, these lncRNAs can be classified into several 
categories: drug-resistant, methylation, circulating, transcription 
factor (TF), and variant (Data Sheet 8, Figure  A). Further, we 
selected the top 10 among these 47 cancer-related lncRNAs and 
evaluated their expression in cancers. Surprisingly, almost all 
lncRNAs exhibited inconsistent changes in expression in various 
tissues (Data Sheet 8, Figure B), confirming their functional 
diversity and reflecting the strong tissue specificity of lncRNAs. 
In addition, the 47 predicted lncRNAs had roles in numerous 
malignant tumors, including 17 involved in colorectal cancer, 
10 in gastric cancer, and 10 in hepatocellular carcinoma (Data 
Sheet 8, Figure C).

Using statistical methods and multigroup data, we further 
analyzed the reliability of our predictions. First, we hypothesized 
that the potential cancer-related lncRNAs were likely to have 
more somatic mutations in cancer genomes, since many previous 
studies have demonstrated that mutations in functional genes are 
a primary cause of carcinogenesis. To validate this assumption, 
we compared the number of somatic mutations (documented in 
COSMIC) between different lncRNA sets and a cancer-related 
protein-coding gene set (Figure 7B). The results showed that the 
cancer-related protein-coding gene set, as the positive control, 
contained far more somatic mutations than the cancer-unrelated 
lncRNA set (negative control, Kolmogorov-Smirnov test, 
p-value = 6.10e-33). The somatic mutation numbers in both the 
positive and predicted cancer-related lncRNA sets were between 
those of cancer-unrelated lncRNAs and cancer-related protein-
coding genes, with a significantly higher quantity than those in 
cancer-unrelated lncRNAs (Kolmogorov-Smirnov test, p-value 
2.35e-07 and 8.27e-06, respectively).

As a number of lncRNAs exert their function in cis, by influencing 
neighboring genes, we assumed that these potential cancer-related 
lncRNAs were likely closer to cancer-related protein-coding genes 
than cancer-unrelated lncRNAs. Therefore, we calculated the 
distances of different lncRNA sets to their closest cancer-related 
proteins, and compared them with the random background (i.e., 
the distance between cancer-related protein-coding genes and 
random positions in genome) (Figure 7C). We found that the 
distances between cancer-unrelated lncRNAs and cancer-related 
protein-coding genes were significantly larger than those between 
cancer-related lncRNAs and cancer-related protein-coding genes 
(Kolmogorov-Smirnov test, p-value = 4.1e-4). Similarly, the distance 
of predicted cancer-related lncRNAs from cancer-related protein-
coding genes was far shorter than that of cancer-unrelated lncRNAs 
(Kolmogorov-Smirnov test, p-value = 4.9e-06). Moreover, no 
significant difference in distance was detected between background 
and the cancer-unrelated lncRNA set, as expected.

Next, we examined whether the expression levels of cancer-
related lncRNAs differed from those of cancer-unrelated lncRNAs 
in cancer samples (Figure 7D). Using lncRNA expression data 
from the TANRIC database, we calculated the percentage of 
lncRNAs that were differentially expressed (absolute log2-fold 
change > 1) between cancer and paracancerous tissue sample 
pairs, to determine whether this differed among the lncRNA 
sets. We found that lncRNAs in the positive set had the highest 
percentage of differentially expressed genes (approximately 
40%), while the value for the negative set was only approximately 
20%. Among predicted cancer-related lncRNAs, > 35% of them 
showed differential expression. These results further support 
the association of our prediction products with cancer, and 
also reveal that simple dependence on differential expression to 
identify cancer-related lncRNAs is far from sufficient.

Case Study
Although functional identification of lncRNAs is very challenging, 
using bioinformatics analysis, database searches, and literature 

FIGURE 4 | Comparison of accuracy. (A) CRlncRC2 ROC generates an AUC value 0.04 higher than that achieved using CRlncRC. (B) CRlncRC2 ROC generates 
an AUC value 0.11 higher than that achieved using the method of Zhao et al.
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FIGURE 5 | Comparison of feature numbers in the four feature categories. (A) Comparison of total features in CRlncRC2 and CRlncRC. CRlncRC contains 85 
features, and after feature selection, 51 remained in CRlncRC2. (B) Comparison of the top 10 features in CRlncRC2 and CRlncRC. (C) Comparison of the top 20 
features in CRlncRC2 and CRlncRC. (D) Comparison of the top 50 features in CRlncRC2 and CRlncRC. (E) Bar plot of the top 10 features used in CRlncRC2.
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FIGURE 6 | Comparison of SMOTE and non-SMOTE, non-SMOTE XGBoost, and others. (A) The ROC generated using SMOTE XGBoost has AUC value 0.01 
higher than that achieved using non-SMOTE XGBoost. (B) The XGBoost-based ROC without SMOTE generated AUC values 0.11 and 0.25 higher than the SVM-
based and Decision Tree-based ROC curves, respectively.

FIGURE 7 | Validation of our predictions. (A) Bar plots of cancer-related lncRNA numbers confirmed by Lnc2Cancer in the top 10, top 20, and top 50.  
(B) Cumulative distribution of mutation number. (C) Cumulative distribution of the closest distance to cancer-related proteins. (D) Bar plot of the percentage of 
differentially expressed lncRNAs. 
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review, we can uncover evidence that our predictions represent 
lncRNAs with functions in cancer. For the top 10 candidate genes 
we used the TANRIC database to generate Kaplan-Meier survival 
curves for each cancer type. The results showed that there was a 
significant difference in the overall survival rate between low and 
high lncRNA expression groups for all genes in at least one tumor 
tissues (Figure 8A).

For example, survival analysis of the No. 1 lncRNA, 
AC074117.1, indicated significant differences in survival time 
between low and high expression groups in individuals with 
invasive breast carcinoma (BRCA) and kidney renal clear 
cell carcinoma (KIRC), with p-values of 1.5e-2 and 4.0e-5, 
respectively (Figure 8B, C). To study the regulatory function 
of AC074117.1, we downloaded data on cancer-related small 

FIGURE 8 | Characterization of lncRNA AC074117.1. (A) Survival statistics for the top 10 lncRNA predictions. (B) Survival analysis of AC07117.1 in BRCA.  
(C) Survival analysis of AC07117.1 in KIRC. (D) Sub-network of AC07117.1 and cancer-related miRNAs. (E) Gene structure, epigenetic features, conservation, and 
repeats of AC07117.1 in the UCSC genome browser.
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RNA molecules from The Human microRNA Disease Database 
(HMDD) (Huang et al., 2019), and the interaction network 
between lncRNAs and miRNAs from StarBase (Li et al., 2014). 
Subsequently, we constructed an interaction network between 
AC074117.1 and cancer-related microRNAs (Figure 8D). In 
addition, according to predictions using the LncRNA and Disease 
Database (version 2.0), AC074117.1 likely targets a gene cluster 
on chromosome 2, and is associated with a variety of cancers (Bao 
et al., 2019). Together, all these clues suggest that AC074117.1 
may be involved in cancer and act as a ceRNA. As shown in 
Figure 8E (data from the UCSC genome browser), AC074117.1 
is highly expressed in almost all tissues. Further, there is histone 
methylation signal in the AC074117.1 transcription start site. 
The H3K4Me3 and H3K27Ac signals in the first exon were high, 
while the H3K4Me1 signals were relatively weak. Moreover, high 
conservation signals (100 vertebrates basewise conservation 
scores generated using PlyloP) were found in its exon regions. 
Notably, there are a large number of repetitive elements in the 
whole body region of AC074117.1. These methylation signals and 
repeat elements may contribute to the mechanism by which this 
lncRNA is involved in cancer progression (Anwar et al., 2017; 
Di Ruocco et al., 2018; Solovyov et al., 2018). In conclusion, 
our predictions indicate that lncRNA AC074117.1 has a strong 
potential correlation with cancer.

In addition, recent literature reports support some of 
the predicted lncRNAs in the top 10 list; for example, the 
TRAF3IP2-AS1 lncRNA ranked second (No. 2) among our 
predictions and is a hub gene in a lncRNA-mediated ceRNA 
network that competes with the onco-lncRNAs, PVT1 and XIST, 
and could be a clinically relevant biomarker in glioblastoma (Zan 
and Li, 2019). TTC28-AS1 (No. 4) is an antisense RNA of TTC28 
which is associated with colorectal cancer (Pitkanen et al., 2014). 
Further, C1RL-AS1 (No. 10) has been linked to angiogenesis, as 
predicted in the ANGIOGENES database (Muller et al., 2016).

DISCUSSION

Accumulating reports demonstrate that lncRNAs have significant 
roles in human cancers. Using experimental methods to study the 
relationships between lncRNA and cancer is time consuming and 
costly. In contrast, computational methods enable integration of 
multi-omics data and provide additional information for data 
mining. In this study, we developed a new method, CRlncRC2, 
based on a powerful machine learning algorithm — XGBoost, 
Laplacian score feature selection, and SMOTE over-sampling, 
to predict associations of lncRNAs with cancer. Compared with 
CRlncRC, CRlncRC2 improves the performance while requires 
fewer features (see Table 3 for a detailed comparison). The results 

show that CRlncRC2 is much more sensitive and specific than 
the previous version (CRlncRC), primarily due to the selected 
algorithm model, as the results show huge differences between 
results generated using other methods and those from application 
of XGBoost. XGBoost has also been used in numerous other 
projects, achieving good results. For example, Zheng et al. 
developed a scalable, flexible approach, BiXGBoost, to reconstruct 
gene regulatory networks (GRNs), and tested it on DREAM4 and 
Escherichia coli datasets, demonstrating good performance of 
BiXGBoost in different scale networks (Zheng et al., 2018).

Machine learning algorithms have important roles in 
bioinformatics, where they facilitate the solution of problems, such 
as classification, clustering, regression, and prediction; however, 
the machine learning approach still faces a number of obstacles 
in predicting cancer-related lncRNAs. First, for biological data, 
frequently, only small positive sets are available, due to the difficulty 
of collecting information, such as patient data and experimental 
verification of functional genes, which greatly impedes the practical 
application of machine learning. Further, machine learning 
models require optimization for high performance, according to 
the specific data and situation. To address these problems, in this 
study, we selected the most stringent criteria to select the positive 
and negative sets, and used the latest histological information for 
feature extraction. We chose over-sampling in our new algorithm 
because it enables use of more information relative to under-
sampling, and the results confirmed that it can improve accuracy 
and specificity. Moreover, we merged features with high Laplacian 
scores and got eight synthesis features, which had a highest feature 
importance rank. Our findings suggest that high Laplacian score 
features still contain useful information and is not good practice to 
simply discard them.

LncRNAs have been applied in clinical practice as new 
biomarkers and prognostic indicators. Research on the relationships 
between lncRNAs and cancer is attractive and progressing very 
rapidly. Machine learning methods have the power to discover 
novel lncRNAs, including disease associated lncRNAs (Kang et al., 
2017; Bao et al., 2019). Efforts should continue to improve the ability 
of machine learning algorithms to predict cancer associations. 
Moreover, with increasing research into lncRNAs, greater quantities 
of relevant high-throughput data are becoming easier to obtain. 
The development of functional research into lncRNAs has revealed 
additional functional elements and mechanisms (Zhang et al., 2014; 
Brockdorff, 2018). Further, numerous new tools for evaluating the 
similarity of non-linear sequences, using k-mer content (Kirk et al., 
2018) and a new evolutionary classification perspective (Chen et 
al., 2016), have been developed, which can be used to extract new 
features, such as lncRNA conservation. These can facilitate better 
application of bioinformatics methods to predict cancer-related 
lncRNAs and assist in cancer diagnosis and treatment.

TABLE 3 | Comparison of CRlncRC and CRlncRC2.

Method Algorithm model Number of Features Feature selection Sampling strategy AUC

CRlncRC Random Forest 85 No Under-sampling 0.82
CRlncRC2 XGBoost 51 Yes Over-sampling 0.86
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CONCLUSIONS

In this study, we upgraded CRlncRC to CRlncRC2, using a 
powerful machine learning algorithm (XGBoost), Laplacian 
score feature selection, and an advanced over-sampling 
method (SMOTE). The results show that both XGBoost and 
SMOTE can help to improve model accuracy and specificity. 
After feature engineering, most of the expressed and 
methylated features are retained, indicating their importance 
for predicting lncRNAs with potential functions in cancer. 
Using much fewer features, CRlncRC2 has a mean AUC value 
0.04 higher than that of CRlncRC. In addition, our predicted 
top-ranking cancer-related lncRNA candidates are supported 
by Inc2Cancer v2.0, literature reports, and statistical data. In 
summary, CRlncRC2 is an effective and useful method for 
lncRNA-cancer association identification.
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