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Abstract: Polycystic ovary syndrome (PCOS), which affects 5–10% of women of reproductive age, is
associated with reproductive and metabolic disorders, such as chronic anovulation, infertility, insulin
resistance, and type 2 diabetes. However, the mechanism of PCOS is still unknown. Therefore, this
study used a letrozole-exposed mouse model in which mice were orally fed letrozole for 20 weeks to
investigate the effects of letrozole on the severity of reproductive and metabolic consequences and the
expression of cysteine–cysteine motif chemokine receptor 5 (CCR5) in letrozole-induced PCOS mice.
The letrozole-treated mice showed a disrupted estrous cycle and were arrested in the diestrus phase.
Letrozole treatment also increased plasma testosterone levels, decreased estradiol levels, and caused
multicystic follicle formation. Furthermore, histological analysis of the perigonadal white adipose
tissue (pgWAT) showed no significant difference in the size and number of adipocytes between the
letrozole-treated mice and the control group. Further, the letrozole-treated mice demonstrated glucose
intolerance and insulin resistance during oral glucose and insulin tolerance testing. Additionally,
the expression of CCR5 and cysteine-cysteine motif ligand 5 (CCL5) were significantly higher in
the pgWAT of the letrozole-treated mice compared with the control group. CCR5 and CCL5 were
also significantly correlated with the homeostasis model assessment of insulin resistance (HOMA-
IR). Finally, the mechanisms of insulin resistance in PCOS may be caused by an increase in serine
phosphorylation and a decrease in Akt phosphorylation.

Keywords: polycystic ovary syndrome; letrozole; CCR5; CCL5

1. Introduction

Polycystic ovary syndrome (PCOS) is a common endocrine metabolic disease that
affects 5–10% of women of reproductive age [1,2]; it is associated with chronic anovulation,
hyperandrogenism, and the development of multiple small subcapsular cystic follicles in
the ovary (shown by ultrasonography) [3,4]. Furthermore, reproductive abnormalities,
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obesity, insulin resistance with compensatory hyperinsulinemia, dyslipidemia, and an in-
creased risk of cardiovascular diseases and type 2 diabetes mellitus are frequently observed
in women with PCOS [4,5]. Therefore, it is crucial to realize the mechanisms of PCOS to
help decrease or treat PCOS complications. However, the etiology and pathogenesis of
PCOS have not been completely investigated because of limited human studies due to
ethical issues. Therefore, animal models are a valuable tool for the study of the pathogene-
sis, mechanisms, and long-term metabolism of PCOS, thereby identifying novel and more
effective therapeutic strategies [6,7].

So far, there is no consensus on the best experimental animal model for the study of
PCOS. According to [8], many methods have been used to induce a PCOS animal model,
including exposure to androgen [9,10], estrogen [11], genetic modification, constant light [7],
stress, and prenatal androgenization [12]. Androgen exposure is the most widely used
method of inducing a PCOS animal model because the hyper-production of androgen in
early life is thought to be the main cause of PCOS [10,13]. Excess androgen can also induce
metabolic abnormalities, such as impaired glucose tolerance, and significant reproductive
disturbances, including anovulation and ovarian cyst formation [13]. By injecting immature
rats with a daily dose of DHEA (dehydroepiandrosterone), an animal model is created that
exhibits an increased level of testosterone and is both anovulatory and acyclic, mimicking
the typical features of hyperandrogenism in PCOS [9,13]. However, DHEA was reported
to reduce body weight, serum glucose, and insulin and triglyceride levels in diet-induced
obese male rats. This is contrary to the increased body mass index, hyperglycemia, and
hyperinsulinemia seen in women with PCOS. Further, our previous study demonstrated
that the DHEA treatment did not show insulin resistance in female rats even though the
DHEA-treated rats had reproductive abnormalities that mimicked human PCOS symptoms.
Therefore, we suggest that the DHEA-treated rats are not good animal models for studying
metabolic abnormalities in PCOS [10]. Therefore, it is important to determine a better
animal model for PCOS instead of the DHEA-treated rats.

Cysteine–cysteine (C-C) chemokine receptor type 5 (CCR5) is the most-studied re-
ceptor for the chemokine CC motif ligands (CCL) 3, CCL4, and CCL5 [14]. CCR5 was
initially found as a co-receptor for the human immunodeficiency virus (HIV) infection of
macrophages [15]. Additionally, recent evidence has suggested that CCR5 is associated
with type 1 diabetes [16]. The CCR5 deletion polymorphism, CCR5delta32, is associated
with a reduced risk of cardiovascular disease; CCR5 antagonism and gene deletion reduce
atherosclerosis in animals [17]. Furthermore, CCR5 has been correlated with obesity, adi-
pose tissue inflammation, and insulin resistance in both animal and human studies [18,19],
and acute exercise may upregulate CCR5 expression in the skeletal muscles of patients
with PCOS [20]. A recent study also revealed that CCR5 is associated with the regeneration,
angiogenesis, and immune response of nerves from four to seven days after injury [21].
Further, the autosomal recessive deficiencies of CCR5 underlie resistance to HIV-1 [22].
Maraviroc, a CCR5 antagonist, reduces liver fibrosis and injury, chronic liver disease, and
tumor burden in mice fed a hepatocarcinogenic diet [23]. Another recent study demon-
strated that CCR5 expression in adipose tissue and peripheral blood mononuclear cells was
significantly higher in women with PCOS compared with women in the control group [24].
CCR5 was also upregulated in the THP-1 cells after chronic exposure to testosterone [24].
However, the relationship between CCR5 and PCOS is still inconclusive.

Recently, letrozole, a non-steroidal inhibitor of P450 aromatase, successfully induced
PCOS in rats, as shown in several studies [25–27]. Continuous administration of letrozole
at 200 µg/d starting before puberty induces reproductive abnormalities and metabolic dis-
turbances in female rats, mimicking the symptoms of women with PCOS [26]. In addition,
these rats exhibited increased body weight and inguinal fat accumulation, anovulation,
larger ovaries with follicular atresia and multiple cysts, endogenous hyperandrogenemia,
and lower estrogen levels [26]. Furthermore, letrozole-treated rats showed insulin resis-
tance and enlarged adipocytes in perirenal and visceral fat depots, increased circulating
levels of luteinizing hormone, decreased levels of follicle-stimulating hormone (FSH), and
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increased ovarian expression of Cyp17a1 mRNA [28]. These data indicated that letrozole-
treated rats might be good animal models for studying the mechanisms and pathogenesis
of PCOS.

Conclusively, this study used a letrozole-exposed mouse model in which mice were
orally fed letrozole for 20 weeks to investigate the effects of letrozole on the severity of
reproductive and metabolic consequences. In this model, CCR5 expression in letrozole-
induced PCOS mice may also be investigated.

2. Results
2.1. Abnormalities of the Estrous Cycle in the Letrozole-Treated Mice

After 4 weeks of orally consuming letrozole (35 mg letrozole/kg), the letrozole-treated
mice began exhibiting irregular estrous cycles, and their vaginal smears showed keratinized
squamous epithelial cells; leukocytes were the predominant cell type, indicating the diestrus
phase. The control mice (fed only commercial chow diet) showed normal estrous cycles
with vaginal cell morphology variations progressing from proestrus, estrus, metestrus, and
diestrus phases in 4–5 d (Figure 1A). This indicated that the cycle of the letrozole-treated
mice was disrupted and arrested in the diestrus phase (Figure 1B).
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Figure 1. The estrous cycle pattern in the control group (A) and the letrozole-treated mice (B). The
control mice showed a normal estrous cycle, whereas the estrous cycle of the letrozole-treated mice
was arrested in the diestrus phase. P—proestrus; E—estrus; M—metestrus; D—diestrus.

2.2. Plasma Sex Steroid Levels in the Letrozole-Treated Mice

Plasma testosterone levels significantly increased in the letrozole-treated mice com-
pared with the control mice (p < 0.01) (Figure 2A), indicating the presence of hyperandro-
genism. In contrast, plasma estradiol levels were significantly lower in the letrozole-treated
mice compared with the control mice (p < 0.05) (Figure 2B).

2.3. Ovarian Morphology and Weight in the Letrozole-Treated Mice

There were visible cysts on the surface of the ovaries in the letrozole-treated mice
after 20 weeks of oral feeding with letrozole (Figure 3A). Additionally, the weight of the
ovaries in the letrozole-treated mice was significantly higher than in the control mice
(p < 0.01) (Figure 3B). The control mice showed normal ovarian features during all stages of
ovarian follicle development and post-ovulatory corpus luteum (CL) formation (Figure 3C).
However, light microscopy showed an abnormal ovarian structure with an increased
number of large and small cystic follicles in the letrozole-treated mice. Furthermore, no CL
was observed in the ovaries of the letrozole-treated mice (Figure 3C).
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Figure 3. After 20 weeks of oral feeding with letrozole, the letrozole-treated mice showed some
visible cysts on the surface of the ovaries, as shown in (A). The ovarian weight in the letrozole-
treated mice is significantly higher than in control mice (B). The micromorphology of the ovaries
was observed following hematoxylin and eosin (H&E) staining (C). The magnification is 40× and
the scale bar = 250 µm. The ovary from a control mouse shows normal ovarian follicles (P—primary
follicles; S—secondary follicles; A—antral follicles) and CL. The ovary from a letrozole-treated mouse
shows cystic follicles (Cy) and the absence of the CL. ** p < 0.01, compared with the control mice.
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2.4. Body Weight in the Letrozole-Treated Mice

After 20 weeks of treatment, the letrozole-treated mice were significantly heavier than
the control mice (p < 0.01) (Figure 4A). The body weight gain was also higher in the letrozole-
treated mice compared with the control mice (p < 0.01) (Figure 4B). However, the food
intake (kcal) did not show a statistically significant difference between the letrozole-treated
mice and the control mice (Figure 4C).
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2.5. Adiposity in the Letrozole-Treated Mice

Histological analysis of the perigonadal white adipose tissue (pgWAT) showed no
significant alteration in the number of adipocytes under H&E staining (Figure 5A,B).
Further measurement of the size of the adipocytes using virtual microscope software
showed that there was a trending increase in adipocyte size between the letrozole-treated
and the control mice, but there was no statistically significant difference (B).
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Figure 5. A histological image of the perigonadal white adipose tissue (pgWAT) is shown using H&E
staining. Magnification = 400×. The virtual image of the adipose section (A) and the quantified result
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2.6. Plasma Lipid Profiles

Plasma triglyceride and total cholesterol levels were significantly higher in the letrozole-
treated mice compared with the control mice (p < 0.01) (Figure 6A,B).

Int. J. Mol. Sci. 2022, 22, x FOR PEER REVIEW 7 of 15 
 

 

 
Figure 6. Plasma triglyceride (A) and total cholesterol (B) levels were significantly higher in the 
letrozole-treated mice. The results are expressed as the mean ± SD. ** p < 0.01, compared with the 
control mice. 

2.7. Glucose Homeostasis and Insulin Sensitivity Test 
After 8 weeks of treatment with letrozole, the fasting plasma insulin levels were sig-

nificantly higher in the letrozole-treated mice compared with the control mice; however, 
there was no significant alteration in the fasting glucose levels. After 16 weeks of oral 
letrozole feeding, there was no significant difference in the fasting insulin levels between 
the two groups, but the fasting glucose levels were significantly higher in the letrozole-
treated mice than in the control mice (Figure 7A). Furthermore, the HOMA-IR scores were 
significantly higher in the letrozole-treated mice after 8 and 16 weeks of treatment with 
letrozole. HOMA-𝛽 scores showed a decreasing trend in the letrozole-treated mice after 
16 weeks of oral feeding with letrozole compared with the control mice but did not show 
statistical significance (p < 0.1) (Figure 7B). 

 

 
Figure 7. Comparing levels in fasting insulin, fasting glucose (A), HOMA-IR, and HOMA-β (B) lev-
els from the letrozole-treated mice and the control groups at 8 and 16 weeks of oral feeding with 

Figure 6. Plasma triglyceride (A) and total cholesterol (B) levels were significantly higher in the
letrozole-treated mice. The results are expressed as the mean ± SD. ** p < 0.01, compared with the
control mice.

2.7. Glucose Homeostasis and Insulin Sensitivity Test

After 8 weeks of treatment with letrozole, the fasting plasma insulin levels were
significantly higher in the letrozole-treated mice compared with the control mice; however,
there was no significant alteration in the fasting glucose levels. After 16 weeks of oral
letrozole feeding, there was no significant difference in the fasting insulin levels between
the two groups, but the fasting glucose levels were significantly higher in the letrozole-
treated mice than in the control mice (Figure 7A). Furthermore, the HOMA-IR scores were
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significantly higher in the letrozole-treated mice after 8 and 16 weeks of treatment with
letrozole. HOMA-β scores showed a decreasing trend in the letrozole-treated mice after
16 weeks of oral feeding with letrozole compared with the control mice but did not show
statistical significance (p < 0.1) (Figure 7B).
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Figure 7. Comparing levels in fasting insulin, fasting glucose (A), HOMA-IR, and HOMA-β (B) levels
from the letrozole-treated mice and the control groups at 8 and 16 weeks of oral feeding with letrozole.
After 8 weeks of treatment with letrozole, the fasting plasma insulin levels were significantly higher
in the letrozole-treated mice compared with the control mice. The HOMA-IR scores were significantly
higher in the letrozole-treated mice after 8 and 16 weeks of treatment with letrozole. The results
are expressed as the mean ± SD. # p < 0.1; * p < 0.05; ** p < 0.01, compared with the control mice.
n.s.: not significant.

In the oral glucose tolerance test, the plasma glucose and insulin levels were signif-
icantly higher at 60 and 120 min in the letrozole-treated mice (Figure 8A). Furthermore,
using the ∆AUC calculation, the letrozole-treated mice showed significantly higher levels
than the control mice (p < 0.01) (Figure 8B).

2.8. CCR5 and CCL5 Expression in the Letrozole-Treated Mice

CCR5 and CCL5 expression in multiple organs or tissues of the letrozole-treated mice
were assessed to understand the role of CCR5 in PCOS pathogenesis. Additionally, CCR5
and CCL5 expression in the pgWAT was significantly higher in the letrozole-treated mice
compared with the control mice. However, CCR5 expression in the liver and skeletal
muscles was significantly lower in the letrozole-treated mice than in the control mice
(Figure 9A,B). CCL5 expression in the ovaries and the pgWAT of the letrozole-treated mice
was significantly higher than in the control group, but no difference in expression was
found in the liver and skeletal muscles.
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Figure 8. The oral glucose tolerance test (OGTT) was performed on the control and the letrozole-
treated mice. The curves of plasma glucose (A) after glucose administration are shown. Using the
∆AUC calculation, the letrozole-treated mice showed significantly higher levels than the control
mice (B). The results are expressed as the mean ± SD. * p < 0.05; ** p < 0.01, compared with the
control mice.
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Figure 9. CCR5 (A) and CCL5 (B) expression in the ovary, liver, muscle, and perigonadal white
adipose tissue (pgWAT) in the letrozole-treated and the control mice. The results are expressed as the
mean ± SD. n.s.: not significant; # p < 0.1; * p < 0.05; ** p < 0.01, compared with the control mice.

2.9. Insulin Signal Transduction Pathway in Letrozole-Treated Mice

After 20 weeks of treatment with letrozole, a Western blotting analysis of the pgWAT
was performed to investigate the mechanisms of insulin resistance in the insulin signal
transduction pathways of the letrozole-treated mice (Figure 10A). Western blotting showed
that Akt phosphorylation was significantly decreased (p < 0.01) (Figure 10B), and IRS-1-
Ser307 phosphorylation was significantly increased (p < 0.05) (Figure 10C) in the letrozole-
treated mice, but there was no significant difference in IRS-1-Tyr941 phosphorylation
(Figure 10D).

2.10. CCR5 and CCL5 Correlation with Parameters

CCR5 is significantly positively correlated with testosterone (r2: 0.634; p = 0.005),
body weight (r2: 0.735; p = 0.001), fasting insulin (r2: 0.476; p = 0.03), and HOMA-IR
(r2: 0.473; p = 0.03) but not significantly correlated with fasting glucose (r2:0.136; p = 0.06).
CCL5 did not correlate with testosterone, but significantly correlated with body weight
(r2: 0.824; p = 0.0003), fasting glucose (r2:0.70; p = 0.002), fasting insulin (r2:0.477; p = 0.02),
and HOMA-IR (r2: 0.664; p = 0.004) after 8 weeks of oral letrozole feeding.
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tion in the pgWAT. Results are expressed as the mean ± SD. n.s.: not significant; * p < 0.05; ** p < 0.01,
compared with the control mice.

3. Discussion

PCOS is characterized by multicystic ovaries, amenorrhea, glucose intolerance, insulin
resistance, and cardiovascular disease [4]. The letrozole-treated mice showed significantly
higher testosterone levels and lower estradiol levels compared with the control mice.
Additionally, the letrozole-treated mice were more likely to develop glucose and insulin
resistance, especially after OGTT. We successfully induced the animal model of PCOS-IR
using the continuous oral feeding of letrozole for 20 weeks, similar to other studies using
the continuous-release pellet implantation of letrozole. Furthermore, the letrozole-treated
mice showed PCOS-like reproductive and metabolic phenotypes compared with the control
group. Therefore, this model is suitable to be used as an animal model to investigate the
mechanisms of insulin resistance in PCOS.

The body weight of the letrozole-treated mice was significantly increased compared to
that of the control mice. Further, the body weight gain was also significantly increased in
the letrozole mice even though their food intake was not significantly different compared
with the control mice. Further investigation also found that the adipocytes number did not
significantly differ between the letrozole-treated and the control mice. There was a trend
of increase in adipocyte size between the letrozole-treated and the control mice, but the
difference was not significant. These results indicate that letrozole and testosterone may
induce abnormal adipose tissue distribution without changes in the adipocyte number
and size. This is why obesity is more prevalent in women with PCOS than in the general
population, and alterations in adiposity may be a risk factor for metabolic PCOS disorders.
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The mechanism of insulin resistance in PCOS is still unclear. Several studies have demon-
strated that PCOS manifests a post-binding defect in insulin signaling in the adipocytes and a
decreased activity of PI3-kinase during muscle biopsies using euglycemic hyperinsulinemic
clamps [29–31]. Human studies evaluating skeletal muscle and adipose tissue demon-
strated that decreased tyrosine phosphorylation and increased serine phosphorylation on
the insulin receptor substrates (IRS) 1/2 might be a mechanism of insulin resistance in
PCOS [29,32]. In this study, we found similar results showing that IRS-1-Ser307 phosphory-
lation was significantly increased in the letrozole-treated mice even though IRS-1-Tyr941
phosphorylation did not show a significant difference when compared with the control
mice. This animal study further proved that the post-binding defect in the insulin signaling
in IRS-1/2 might be the primary mechanism of IR in PCOS.

CCR5 is a protein found on the surface of leukocytes and is also a chemokine recep-
tor [14]. CCR5 is associated with type 2 diabetes, obesity, and insulin resistance in animal
studies [16]. Our study also showed that CCR5 and CCL5 expression is significantly higher
in the pgWAT of the letrozole-treated mice compared with the control group. Further,
CCR5 is significantly associated with fasting insulin and HOMA-IR levels. A previous
study by Kitade et al. [33] reported that CCR5 was upregulated in the WAT of genetically
(ob/ob) and high-fat diet (HFD)-induced obese (DIO) mice, and the CCR5-/- mice were
protected from insulin resistance, indicating that CCR5 may play a role in insulin resistance.
A recent study also found that CCR5 knockout significantly attenuated the glucose area
under curve of OGTT and HOMA-IR in HFD-induced rats [34]. However, we could not
provide any experimental evidence to establish the direct link between CCR5 and CCL5
and HOMA-IR in the letrozole-induced PCOS mice. This is a limitation of this study. A
further study has been performed to investigate the mechanisms and relationship between
CCR5 and CCL5 and insulin resistance. In addition, previous studies have presented that
hyperandrogenism is an important factor in PCOS mechanisms. This study demonstrated
that CCR5 is significantly associated with testosterone and body weight, indicating that
CCR5 is associated with PCOS pathogenesis.

The role of CCL5 in the mechanism and pathogenesis of insulin resistance is still
unknown. Shen et al. reported that CCL5 is involved in the development and matura-
tion of ovarian follicles [35]. Furthermore, the elevation of CCL5 expression attenuated
preantral follicle growth, survival, and estradiol secretion [35]. Further, CCL5 promoted
follicular granulosa cell apoptosis and the inhibition of the PI3K/Akt pathway. Our study
demonstrated that CCL5 expression in the ovaries and the pgWAT of the letrozole-treated
mice is significantly higher than in the control group. Additionally, the expression of Akt
was significantly decreased (p < 0.01) in the letrozole-treated mice, consistent with Shen’s
study. This result indicated that CCL5 might be involved in the pathogenesis of insulin
resistance in PCOS through the inhibition of Akt phosphorylation.

Recent guidelines recommended that an insulin-sensitizer be used as the main drug
to improve insulin resistance and fertility in PCOS patients if the first-line treatment of
lifestyle change with weight loss and physical activity fails. Metformin is the most common
insulin-sensitizer used to improve the reproductive and metabolic abnormality in women
with PCOS. Inositols and myo-inositols are other insulin-sensitizers that were found to
have important effects on ovulation and metabolism in the treatment of PCOS [36,37]).

Conclusively, oral feeding of letrozole successfully induces PCOS-like animal mod-
els that exhibit reproductive and metabolic disturbances, mimicking the typical features
of PCOS. CCR5 and CCL5 expressions were significantly higher in the pgWAT of the
letrozole-treated mice compared with the control group. Furthermore, CCR5 and CCL5
were associated with the mechanisms of insulin resistance in PCOS through increased
serine phosphorylation and inhibition of Akt phosphorylation.
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4. Materials and Methods
4.1. Animal

Six-week-old C57BL/6 (wild-type) mice were purchased from the National Laboratory
Animal Center, Taipei, Taiwan, and housed with four mice in one cage at a temperature
of 20–22 ◦C. The mice were kept in a light-controlled room on an alternate 12 h light/12 h
dark cycle (lights on, 0800). The mice were fed with a commercial chow diet (LabDiet 5001)
and tap water ad libitum.

4.2. Study Procedure

After one week of acclimatization, the mice were randomly divided into two groups
(n = 10 each). The control animals were fed with a laboratory rodent diet (protein, 28.507%;
carbohydrate, 57.996%; and fat, 13.496) for 20 weeks. The letrozole-treated mice were fed
with 37.5 mg per kg letrozole (Femara, Novartis Pharma AG, Basel, Switzerland), dissolved
in a laboratory rodent diet for an equivalent time. Body weights were measured weekly
from 21 d to the end of the experiment. At the end of the experiment, the mice in both
groups were sacrificed by decapitation. The whole-body fat distributions of both groups of
mice were determined. The procedure of the experiments is Figure 11.

Int. J. Mol. Sci. 2022, 22, x FOR PEER REVIEW 13 of 15 
 

 

slides were photographed under a microscope and then scanned and analyzed using Im-
ageScope virtual microscopy software (Aperio Technologies, Vista, CA, USA) [38] to 
measure the size of adipocytes and ovarian cysts. In addition, two researchers counted the 
number of follicles in the ovarian sections to ensure accuracy. 

 
Figure 11. The procedure of the experiments. 

4.11. Statistical Analysis 
The experiments were repeated at least four times. The results are expressed as 

means ± SD. Statistical significance was assessed using a one-way analysis of variance or 
the Student’s t-test. Correlations between CCR5, CCL5, and the parameters were per-
formed using the Pearson correlation test. A p-value less than 0.05 was considered to be 
statistically significant. The analysis was conducted using Statistical Package for the Social 
Sciences v.26 (IBM Corp., Armonk, NY, USA). 

Author Contributions: Conceptualization, methodology, investigation, formal analysis, writing—
original draft, K.-M.S. and C.-C.J.; laboratory performance, P.-S.L. and L.-K.C.; methodology, inves-
tigation, and analysis, K.-M.S., C.-W.C., P.-H.W. and C.-C.J.; investigation, K.-H.C., C.-H.H. and J.-
L.H.; conceptualization, resources, writing—review and editing, K.-M.S. and C.-C.J. All authors 
have read and agreed to the published version of the manuscript. 

Funding: Taipei Veterans General Hospital (grant no. V109C-193) and the “Yin Yen-Liang Founda-
tion Development and Construction Plan,” College of Medicine, National Yang Ming Chiao Tung 
University, Taipei, Taiwan. 

Institutional Review Board Statement: The study protocols were approved by the Institutional An-
imal Care and Use Committee (IACUC), National Yang-Ming Chiao Tung University, No. 1081204. 

Data Availability Statement: The data supporting the reported results of this study are included in 
the article.  

Conflicts of Interest: The authors declare no conflict of interest. 

References 
1. Asuncion, M.; Calvo, R.M.; San Millan, J.L.; Sancho, J.; Avila, S.; Escobar-Morreale, H.F. A prospective study of the prevalence 

of the polycystic ovary syndrome in unselected Caucasian women from Spain. J. Clin. Endocrinol. Metab. 2000, 85, 2434–2438. 
https://doi.org/10.1210/jcem.85.7.6682. 

2. Diamanti-Kandarakis, E.; Kouli, C.R.; Bergiele, A.T.; Filandra, F.A.; Tsianateli, T.C.; Spina, G.G.; Zapanti, E.D.; Bartzis, M.I. A 
survey of the polycystic ovary syndrome in the Greek island of Lesbos: Hormonal and metabolic profile. J. Clin. Endocrinol. 
Metab. 1999, 84, 4006–4011. https://doi.org/10.1210/jcem.84.11.6148. 

3. Dunaif, A. Insulin resistance and the polycystic ovary syndrome: Mechanism and implications for pathogenesis. Endocr. Rev. 
1997, 18, 774–800. https://doi.org/10.1210/edrv.18.6.0318. 

4. Franks, S. Polycystic ovary syndrome. N. Engl. J. Med. 1995, 333, 853–861. https://doi.org/10.1056/NEJM199509283331307. 
5. Azziz, R.; Carmina, E.; Chen, Z.; Dunaif, A.; Laven, J.S.; Legro, R.S.; Lizneva, D.; Natterson-Horowtiz, B.; Teede, H.J.; Yildiz, 

B.O. Polycystic ovary syndrome. Nat. Rev. Dis. Primers 2016, 2, 16057. https://doi.org/10.1038/nrdp.2016.57. 
6. Pradillo, J.M.; Hernandez-Jimenez, M.; Fernandez-Valle, M.E.; Medina, V.; Ortuno, J.E.; Allan, S.M.; Proctor, S.D.; Garcia-Segura, 

J.M.; Ledesma-Carbayo, M.J.; Santos, A.; et al. Influence of metabolic syndrome on post-stroke outcome, angiogenesis and 

Figure 11. The procedure of the experiments.

4.3. Vaginal Smear

After oral feeding of letrozole for 4 weeks, the estrous cycle stages for both groups of
mice were determined using microscopic analysis of the predominant cell type in daily
vaginal smears for 10 d. Four estrous cycle stages were determined using the main cell
types identified in the vaginal smears: proestrus, round nucleated epithelial cells; estrus,
cornified squamous epithelial cells; metestrus, cornified squamous epithelial cells and
leukocytes; and diestrus, nucleated epithelial cells and leukocytes.

4.4. Blood Sampling and Biochemical Analysis

Blood sampling was conducted after overnight fasting. Blood samples for glucose
and insulin measurements were collected by tail bleeding using a 1.5 mL heparin-coated
polyethylene microcentrifuge tube on ice. In addition, trunk blood was collected from
each mouse after decapitation. Plasma was separated by centrifugation and stored at
−20 ◦C until assay. Plasma glucose was measured using a glucose analyzer (Model 23A,
Yellow Springs Instrument Company, Yellow Springs, OH, USA), and plasma insulin was
determined using a commercial ELISA kit (Mercodia AB, Uppsala, Sweden). Triglyceride
and total cholesterol levels were measured using an enzymatic calorimetric kit (Diagnostic
Systems GmbH, Holzheim, Germany). Testosterone and 17β-estradiol were measured
using commercial ELISA kits (Cayman Chemical Company, Ann Arbor, MI, USA).

4.5. Oral Glucose Tolerance Test (OGTT)

After overnight fasting, zero-minute blood samples were taken from each mouse,
and the mice were immediately given a glucose solution (concentration: 0.1 g/0.1 mL;
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0.2 mL/100 g body weight) by gavage, and four more blood samples were collected at
30, 60, 90, and 120 min. Plasma insulin and glucose concentrations were determined as
previously described [10]. Additionally, the area under curve (AUC) of glucose against time
was calculated. The homeostasis model assessment of insulin resistance (HOMA-IR) was
calculated as fasting insulin (mIU/L) × fasting glucose (mmol/L)/22.5. Finally, HOMA-β
was determined as 20× fasting insulin (mIU/L)/fasting glucose (mmol/L) − 3.5.

4.6. Insulin Tolerance Test (ITT)

For ITT, the mice were subjected to overnight fasting and then IP injected with
0.75 U/kg of regular human insulin (Novo Nordisk, Clayton, NC, USA) without anes-
thesia. Then blood samples were collected before and after 15, 30, 60, 90, and 120 min
insulin injections [19]. Whole-blood glucose levels were determined using a OneTouch
glucose analyzer (LifeScan Inc., Milpitas, CA, USA).

4.7. Western Blotting

Tissues were lysed with a lysis buffer (0.5% Nonidet P-40, 1% Triton X-100, 10 mM
Tris-base, 150 mm NaCl, 10% glycerol, 1 mM EDTA, 1 mM EGTA, and 1 mM phenylmethyl-
sulfonylfluoride), and tissue lysates were made by sonication in the lysis buffer. Samples
were resolved on 7.5% SDS-PAGE gels, and the contents of the gels were transferred onto
polyvinylidene difluoride (PVDF) membranes. The membranes were pre-blotted in a
skimmed milk buffer and immunoblotted with phosphorylated-IRβ and IRβ primary anti-
bodies followed by secondary antibodies. In addition, horseradish peroxidase-conjugated
secondary antibodies were used in conjunction with a chemiluminescence reagent.

4.8. RNA Extraction

Ovarian and periovarian adipose tissues were lysed, and the total RNA was extracted
using a Tri Reagent Kit (Applied Biosystem, Waltham, MA, USA). The RNA concentration
was determined by ultraviolet light absorption at 260 nm, and the integrity of the extracted
total RNA was examined using 1% agarose gel electrophoresis. Finally, the RNA samples
were incubated with RNase-free DNase I at 37 ◦C for 30 min, and then at 100 ◦C for 10 min
to inactivate the DNase I.

4.9. RT-PCR Analysis of mRNA Levels

After digestion with DNase I, 2 µg of total RNA from each RNA sample was reverse-
transcribed at 37 ◦C for 2 h using random primers and an RT reverse-transcriptase (Thermo
Fisher, Inc. Waltham, MA, USA) to obtain the cDNA product. Two microliters of the cDNA
product were reacted in a total volume of 50 µL PCR reaction solution and incubated at
the following conditions: 1 cycle of 95 ◦C for 5 min; 35 cycles of 95 ◦C for 1 min, 55 ◦C for
1 min, and 72 ◦C for 1 min; and a final 20-min extension period at 72 ◦C. The probe was
obtained from Thermo Fisher (Thermo Fisher, Inc., Waltham, MA, USA); the primers used
were GAPDH (Mm99999915_g1), CCR5 (Mm01963251_s1), and CCL5 (Mm01302427_m1).
Ten microliters of each studied gene and β-actin PCR products amplified from the same
RT template solution were combined and electrophoresed on a 2% agarose gel and stained
with ethidium bromide. Finally, the relative levels of mRNA expression to β-actin were
detected under ultraviolet light and quantified.

4.10. Histological Analysis

Ovarian and perigonadal white adipose tissues were fixed with 4% paraformaldehyde,
and the 5 µm-thick paraffin-embedded tissues were stained with H&E solution. The slides
were photographed under a microscope and then scanned and analyzed using ImageScope
virtual microscopy software (Aperio Technologies, Vista, CA, USA) [38] to measure the
size of adipocytes and ovarian cysts. In addition, two researchers counted the number of
follicles in the ovarian sections to ensure accuracy.
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4.11. Statistical Analysis

The experiments were repeated at least four times. The results are expressed as
means ± SD. Statistical significance was assessed using a one-way analysis of variance or
the Student’s t-test. Correlations between CCR5, CCL5, and the parameters were performed
using the Pearson correlation test. A p-value less than 0.05 was considered to be statistically
significant. The analysis was conducted using Statistical Package for the Social Sciences
v.26 (IBM Corp., Armonk, NY, USA).
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