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Podocalyxin (PODXL), a cell surface sialomucin expressed in diverse types of normal and
malignant cells, mediates cellular adhesion to extracellular matrix and cell-to-cell
interaction. A previous study reported the expression of PODXL protein on monocytes
undergoing macrophage differentiation, yet the expression of this molecule in other
antigen presenting cells (APCs) and its function in the immune system still remain
undetermined. In this study, we report that PODXL is expressed in human monocyte-
derived immature dendritic cells at both the mRNA and protein levels. Following dendritric
cells maturation using pro-inflammatory stimuli, PODXL expression level decreased
substantially. Furthermore, we found that PODXL expression is positively regulated by
IL-4 through MEK/ERK and JAK3/STAT6 signaling pathways. Our results revealed a
polarized distribution of PODXL during the interaction of APCs with CD4+ T cells, partially
colocalizing with F-actin. Notably, PODXL overexpression in APCs promoted their
interaction with CD4+ T cells and CD8+ T cells and decreased the expression of MHC-
I, MHC-II, and the costimulatory molecule CD86. In addition, PODXL reduced the
translocation of CD4+ T-cell centrosome toward the APC-contact site. These findings
suggest a regulatory role for PODXL expressed by APCs in immune responses, thus
representing a potential target for therapeutic blockade in infection and cancer.

Keywords: podocalyxin, dendritic cells, T cells, cell interaction, centrosome polarization, antigen presenting cells,
immune synapse, immune system
Abbreviations: 7-AAD, 7-aminoactinomycin D; APC, antigen presenting cell; BSA, bovine serum albumin; CMTMR, [(4-
choromethyl)-benzoyl) amino]-tetramethylrhodamine; DC, dendritic cell; ERM, ezrin/radixin/moesin; GAPDH,
glyceraldehyde-3-phophate dehydrogenase; GFP, green fluorescent protein; GM-CSF, granulocyte-macrophage colony-
stimulating factor; JAK3/STAT6, Janus kinase 3/signal transducer and activator of transcription 6; ICAM-1, intercellular
adhesion molecule-1; LFA-1, lymphocyte function-associated antigen-1; LPS, lipopolysaccharide; MEK/ERK, mitogen-
activated protein kinase kinase/extracellular signal-regulated kinase; MFI, median fluorescence intensity; MHC, major
histocompatibility complex; PBMC, peripheral blood mononuclear cells; PGE2, prostaglandin E2; PODXL, podocalyxin;
SEA, staphylococcal enterotoxin A; TCR, T cell receptor; TNFa, tumor necrosis factor a.
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INTRODUCTION

Professional antigen presenting cells (APCs), including dendritic
cells (DCs), macrophages and B cells, are immune cells with the
ability to capture, process and present antigens to T cells (1). Among
them, DCs are considered the most efficient APCs (1). In contrast to
macrophages and B cells, DCs possess the capacity to initiate
primary immune responses by activating naïve T cells, effectively
linking innate and adaptive immune responses required for
protective immunity against infection and cancer (2, 3). DCs also
induce and maintain central and peripheral tolerance through
inhibition of T cell activation, generation of regulatory T cells,
and induction of T-cell anergy or deletion to limit uncontrolled
immune responses (4, 5). The tolerogenic capability of DCs relies on
their maturation state, the presence of anti-inflammatory molecules
and the type of microbial stimuli (6). The induction of immunity or
tolerance depends on the balance between activating and inhibitory
processes (7). Therefore, the identification of molecules that elicit
immunomodulatory effects may provide new therapeutic strategies
to treat infectious and malignant diseases (7, 8).

Immature DCs patrol peripheral tissues in search of
pathogens and foreign antigens (9). They express pattern
recognition receptors (PRRs) such as Toll-like receptors (TLR),
nucleotide oligomerization domain (NOD)-like receptors
(NLRs) and C-type lectin receptors for the detection of
bacterial and viral components (10, 11). The exposure to
microbes or antigens or the stimulation with inflammatory
cytokines induces DCs maturation, a process characterized by
the reduction in the endocytic activity, production of cytokines
and up-regulation of surface major histocompatibility complex
(MHC), co-stimulatory surface molecules, adhesion molecules as
well as chemokine receptors (12–14). During their maturation,
antigen loaded DCs migrate to lymph nodes where they interact
with naïve T cells and initiate the adaptive immune response
(15). The recognition of antigenic peptides presented in the
context of MHC molecules by T cell receptor (TCR) displayed
on T cells leads to the redistribution of cell surface receptors,
adhesion molecules, and signaling proteins along with the
reorganization of F-actin and microtubule cytoskeleton at the
contact site, forming a structure known as immune synapse (16–
18). This process is accompanied by the dynamic reorientation of
centrosome, the major microtubule-organizing center, in T cells
to the immune synapse, allowing the directional secretion of
cytokines that mediate T-cell effector functions (19, 20).

Podocalyxin (PODXL), a cell surface protein belonging to the
CD34 family of sialomucins and initially detected on renal
podocytes, has been observed in endothelial cells, mesothelial
cells, megakaryocytes and neuronal cells, hematopoietic stem cells
as well as in a variety of tumor cell types, including blasts presenting
a monocytic phenotype from patients with acute myeloid leukemia
and acute lymphoblastic leukemia (21–28). In hematopoietic cells,
PODXL is highly expressed by primitive erythroid precursors and
early embryonic hematopoietic progenitors and its expression level
gradually declines during ontogeny (26). After birth, PODXL
expression only remains in a subpopulation of hematopoietic
progenitor cells found in the bone marrow (26). In myeloid
progenitors, PODXL expression is up-regulated upon stimulation
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with granulocyte colony-stimulating factor (G-CSF) (29). In mature
leukocyte populations, including lymphocytes, monocytes, and
granulocytes, PODXL expression has only been found at mRNA
level and the attempt to detect PODXL protein expression in these
leukocytic populations has yielded negative results (30). A previous
study reported the expression of PODXL protein on the surface of
monocytes undergoing macrophage differentiation in response to
macrophage colony-stimulating factor (M-CSF) (31), although its
function in these cells is currently unknown. PODXL interacts with
actin through the cytoskeletal organizer ezrin, allowing it to regulate
cell morphology, polarity, adhesion and migration (32, 33). Both
anti-adhesive and adhesive properties have been attributed to
PODXL. The high negative charge of PODXL conferred by the
sialylated O-glycans provides an anti-adhesive force that maintains
opened the filtration slits in glomerular podocytes (22). In contrast,
PODXL expressed on the surface of high endothelial venule cells
supports the tethering and rolling of circulating lymphocytes via
interaction with L-selectin (34). PODXL also contributes to
neuronal development and formation of synapses in central
nervous and neuromuscular systems (25).

Recently, we demonstrated that PODXL expressed in MCF-7
breast cancer cells localizes to the immune synapse formed upon
contact with NK cells and acts as an immunomodulatory molecule
(35). Moreover, we detected increased expression of PODXL in
breast cancer cells in response to IL-4 (35), a cytokine routinely used
in combination with granulocyte-macrophage colony-stimulating
factor (GM-CSF) to differentiate blood derived monocytes into DCs
in vitro (36). However, whether PODXL is expressed by DCs and its
function in the immune system still remain unaddressed. In the
present study, we have determined the expression of PODXL in
human DCs and studied the role of this protein in APC-T cell
interaction. The results revealed that PODXL is expressed in
monocyte-derived immature DCs, but its level markedly
diminishes upon maturation. Furthermore, PODXL promotes
APC-T cell interaction and modulates CD4+ T-cell centrosome
repositioning to the contact site. Our results point to a role for
PODXL expressed by APCs in the regulation of immune responses.
MATERIALS AND METHODS

Cell Lines and Primary Cells
Peripheral blood mononuclear cells (PBMCs) were isolated by
density gradient centrifugation over Lymphoprep (Alere
Technologies AS). Monocytes were isolated from PBMCs by
negative selection using the Dynabeads® untouched human
monocytes kit (Invitrogen) according to the manufacturer´s
instructions. More than 95% of the purified cells were
monocytes as confirmed by flow cytometry on the basis of
CD14 expression. For the generation of immature monocyte-
derived DCs, monocytes were cultured in complete RPMI 1640
medium (Lonza) supplemented with 10% heat-inactivated fetal
bovine serum (FBS, Hyclone), 100 U/ml penicillin, 100 U/ml
streptomycin (Lonza) or in AIMV serum-free (Gibco), both
containing 400 U/ml recombinant human IL-4 (rhIL-4) and
800 U/ml recombinant human GM-CSF (rhGM-CSF)
May 2022 | Volume 13 | Article 835527
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(Peprotech) for 5 or 6 days at 37°C in a 5% CO2 atmosphere. Half
of the culture medium was removed and replaced with fresh
medium containing 400 U/ml rhIL-4 and 800 U/ml rhGM-CSF
on day 3. For the induction of maturation, immature monocyte-
derived DCs were incubated with 100 ng/ml lipopolysaccharides
(LPS) from Escherichia coli 055:B5 (Sigma-Aldrich) or a
maturation cocktail containing 20 ng/ml tumor necrosis alpha
(TNFa, Miltenyi Biotec), 20 ng/ml IL-1b (Miltenyi Biotec), 20
ng/ml IL-6 (Miltenyi Biotec) and 1mM prostaglandin E2 (PGE2,
Sigma-Aldrich) for 48 h. CD4+ T and CD8+ T cells were
separated from PBMCs by negative immunomagnetic selection
using Dynabeads® untouched Human CD4+ T cells kit
(Invitrogen) and Dynabeads® untouched Human CD8+ T cells
kit, respectively.

THP-1 (acute monocytic leukemia), K562 (chronic
myelogenous leukemia), HL-60 (acute promyelocytic
leukemia), KG1 (acute myelogenous leukemia), Raji (Burkitt
lymphoma), and Jurkat (acute T cell leukemia) human cell
lines were obtained from American Type Culture Collection
(ATCC). Cells were cultured in RPMI 1640 (THP-1, Raji, Jurkat)
or IMDM (K562, KG-1, and HL-60) media supplemented with
10% (THP-1, K562, Raji, Jurkat) or 20% (KG-1 and HL-60) heat-
inactivated FBS, 100 U/ml penicillin, and 100 U/ml streptomycin
under 5% CO2 at 37°C. For THP-1 cell culture, 50 mM 2-
mercaptoethanol was added to the medium.

Generation of Stable Transfected Cells
Raji cells were transfected with human PODXL coding sequence
subcloned into pEGFP-N1 expression vector (a gift from Dr. R.
Parrilla, CIB-CSIC) or with pEGFP-N1 empty vector as a
negative control using Lipofectamine 2000 (Thermo Fisher
Scientific) as previously described (37). Transfected cells were
routinely grown in RPMI 1640 complete medium supplemented
with 400 mg/ml geneticin (Sigma-Aldrich).

Immunoblotting
Cells were washed twice with PBS and lysed in ice-cold lysis
buffer containing 1% Igepal, 1% Triton X-100, 20 mM Tris HCl
HCl, pH 7.4, 140 mM NaCl, 1 mM EDTA, complete protease
inhibitor cocktail (Sigma-Aldrich), 1mM phenylmethylsulfonyl
fluoride, 10 mM sodium fluoride, 1 mM sodium orthovanadate,
and 1 mM sodium pyrophosphate for 30 min on ice. Cell debris
was removed by centrifugation at 13,000 g for 15 min at 4°C and
the supernatants were collected and stored at -80°C. Protein
concentration of supernatants was determined using Pierce™

BCA Protein Assay Kit (ThermoScientific) and POLARstar
Omega microplate reader (BMG Labtech). Equal amounts of
total protein (5-50 mg/lane) were resolved on 4%-12% SDS-
PAGE gel and transferred onto iBlot pre-made polyvinylidene
difluoride membranes using iBlot Dry Blotting System (Life
Technologies). After blocking with 1% bovine serum albumin
(BSA) in Tris-buffered saline solution with 0.1% Tween 20 (TBS-
T), membranes were incubated overnight at 4°C with an anti-
PODXL monoclonal antibody (Santa Cruz Biotechnology, cat.n°
sc-23904) at 1:200 dilution in blocking solution, followed by a
secondary goat anti-mouse IgG (H+L)-HRP-conjugated
antibody (Bio-Rad, cat.n° 172-1011) at 1:3,000 dilution in TBS-
Frontiers in Immunology | www.frontiersin.org 3
T buffer containing 5% non-fat dry milk for 1 h. Immunoreactive
proteins were detected by using enhanced chemiluminescence
SuperSignal ™ West Femto or Pierce™ ECL Western Blotting
Substrate (Thermo Sientific) in a G:BOX iChemi XR (Syngene)
or ChemiDoc XRS imaging system (Bio-Rad). Equal loading of
protein samples was verified with anti-GADPH (Ambion) or
anti-b-actin (Sigma) antibodies. Quantification of protein
expression was performed using Fiji software (ImageJ, https://
imagej.net/software/fiji/).

Real-Time PCR
RNAwas extracted from 5x105 cells using the RNeasy Plus Micro
Kit from Qiagen according to the manufacturer’s instructions.
The concentration and quality of the extracted RNA was assessed
using a NanoDrop spectrophotometer (ThermoScientific). The
purified RNA was stored at -80°C. Human PODXL mRNA levels
were estimated by a two-step qRT-PCR using a customized
TaqMan Gene Expression Assay kit (Applied Biosystems)
following the manufacturer’s instructions. The human
housekeeping gene HuPO (Pre-Developed TaqMan Assay
Reagents, Applied Biosystems) was used as the endogenous
control and all qRT-PCR reactions were performed in
triplicate. qRT-PCR experiments were conducted on an
Applied Biosystems 7900 HT Fast Real-Time PCR System, and
the Relative Quantitation (Comparative CT) method was used to
estimate the relative changes in gene expression using the RQ
Manager v.1.2 analysis software (Applied Biosystems).

Flow Cytometry
For flow cytometric analysis of PODXL expression, cells were
resuspended in labelling solution (PBS supplemented with 0.1%
BSA and 0.01% NaN3) and incubated with 20 mg/ml human IgG
for 15 min at room temperature to block nonspecific Fc
interactions. Then, cells were stained with a mouse anti-human
PODXL monoclonal antibody (R&D Systems, cat.n° MAB1658)
for 30 min at 4°C followed by a secondary PE-conjugated anti-
mouse IgG secondary antibody (R&D Systems) for 20 min at
room temperature or with a biotinylated goat anti-human
PODXL antibody (R&D Systems, cat.n° BAF1658) for 30 min
at 4°C followed by PE-conjugated streptavidin (Biolegend) for 20
min at room temperature, as indicated in figure captions.
Isotype-matched control antibodies were used to evaluate
nonspecific binding. Dead cells were stained with 7-amino-
actinomycin D (7-AAD staining, BD Pharmingen). For some
experiments, FITC-CD209 (BD Biosciences, cat.n° 551264) and
CD14-APCH7 (BD Biosciences, cat.n° 641394) monoclonal
antibodies were used to discriminate monocytes and DCs.
Other monoclonal antibodies used included CD54-APC (cat.n°
353111), CD80-APC (cat.n° 305219), CD86-APC (cat.n°
305411), APC-HLA-A,B,C (cat.n° 311409), APC-HLA-DR,DP,
DQ (cat.n° 361713) and CD40-PE (cat.n° 334307) from
Biolegend, CD14-PE (cat.n° 555398), CD11b-APC (cat.n°
333143) and CD11c-APC (cat .n° 333144) from BD
Biosciences, and CD36-FITC (cat.n° 36F2-100T) from
Immunostep. Cells were then fixed with 1% formaldehyde,
washed and resuspended in 700 ml PBS. Finally, stained cells
were acquired on a Cytomics FC500 (Beckman Coulter) or a
May 2022 | Volume 13 | Article 835527
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MACSQuant Analyzer 10 (Miltenyi). A minimum of 5.000
events per sample were acquired. Data analyses were
performed with CXP (Beckman Coulter) or MACSQuantify
(Miltenyi) analysis software. Dead cells were discriminated
based upon 7-AAD. Data are expressed as median fluorescence
intensity (MFI) corrected for nonspecific staining using
fluorescence minus one and isotype controls.
Conjugate Assay
Raji cells overexpressing PODXL or Raji control cells were incubated
in the presence or absence of 2 mg/ml of the superantigen
staphylococcal enterotoxin A from Staphylococcus aureus (SEA,
Sigma-Aldrich) for 20 min at 37°C and resuspended at 1.5 x106

cells/ml in complete RPMI 1640 medium. SEA was used to crosslink
MHC class II (MHC-II) expressed on APCs to TCR expressed on T
cells. Isolated CD4+ T cells or Jurkat T cells were labelled with
CellTracker™ Orange CMTMR Dye (Invitrogen) at a final
concentration of 20 mM or 5 mM, respectively, following
manufacturer´s instructions, and resuspended at 1.5 x106 cell/ml in
complete RPMI 1640medium. Afterwards, equal volumes (150 ml) of
Raji cells and T cells were mixed, briefly centrifuged to favor cell
contact, and incubated at 37°C for the indicated times. Cells were
then briefly vortexed to disrupt non-specific aggregates and fixed
with 1% formaldehyde for 1 h at room temperature. Twenty
thousand events per sample were acquired and analyzed by flow
cytometry. The percentage of Raji cell-T cell conjugation was
calculated as the number of double-positive (GFP+CMTMR+)
events divided by the total number of GFP+ cells (total Raji cells).
In blocking experiments, both Raji and Jurkat cells were separately
preincubated with 10 mg/mL anti-human CD18 antibody TS1/18
(Biolegend, cat.n° 302111) for 15 min at 37°C prior to mixing the
cells and the antibody was present during the APC-T cell incubation.

For the simultaneous detection of both Raji-CD4+ T cell and
Raji-CD8+ T cell conjugates, Raji-PODXL or Raji-Ctrl cells were
mixed with PBMCs at 1:1 ratio and incubated for 30 min at 37°C.
Thereafter, CD4+ T cells and CD8+ T cells were labeled with anti-
CD4-APCH7 (BD Biosciences, cat.n° 641398) and anti-CD8-PE
monoclonal antibodies (BD Biosciences, cat.n° 345773),
respectively, in labelling solution for 20 min at 4°C. Cells were
finally fixed with formaldehyde 1% in PBS for 1 h and analyzed by
flow cytometry. The percentage of Raji cells-T cells conjugates was
determined as the number of double-positive (GFP+APCH7+ for
the detection of Raji-CD4+ T cell conjugates and GFP+PE+ for the
detection of Raji-CD8+ T cell conjugates) events divided by the
number of GFP+ cells (total Raji cells). For the conjugation assay
using isolated CD4+ T and CD8+ T cells, Raji-PODXL or Raji-Ctrl
cells were mixed with isolated CD4+ T and CD8+ T cells at 1:1 ratio
and incubated for 30 min at 37°C. Then, CD4+ T cells and CD8+ T
cells were labeled with anti-CD4-APCH7 (BD Biosciences, cat.n°
641398) and anti-CD8-APCH7 (BD Biosciences, cat.n° 641400),
respectively, in labelling solution for 15 min at 4°C and proceed as
described above.

Fluorescence Microscopy
Immature DCs resuspended in Hank´s solution containing 1%
BSA or immature DC conjugated with CD4+ T cells in complete
Frontiers in Immunology | www.frontiersin.org 4
RPMI 1640 medium were deposited onto a slide by
centrifugation at 500 rpm for 3 min using a cytospin
centrifuge. Next, cells were fixed with 3.7% paraformaldehyde
in PBS for 15 min at room temperature and permeabilized with
0.2% saponin in PBS for 10 min at room temperature.
Afterwards, Fc receptors were blocked using 20 mg/ml human
IgG (Sigma-Aldrich) for 1 h at room temperature and cells were
incubated with 15 mg/ml goat anti-human PODXL polyclonal
antibody (R&D Systems, cat.n° AF1658) or polyclonal goat IgG
antibody (R&D Systems,cat.nº AB-108-C) as control in PBS-BSA
0.1% at 4°C overnight. Finally, cells were incubated with Cy2-
conjugated donkey anti-goat IgG (H+L) preadsorbed polyclonal
antibody (Abcam, cat.n° ab6948) at 1:250 dilution in PBS-BSA
0.1% for 1 h at room temperature, stained with Alexa fluor 555-
conjugated phalloidin (Invitrogen) at 1:60 dilution in PBS-BSA
0.1% for 20 min at 37°C for F-actin detection, followed by
Hoechst 33342 for nuclei staining, and mounted in
PermaFluor™ Aqueous Mounting Medium (ThermoScientific).
In experiments involving immature DCs alone, cells on slides
were incubated for 30 min at 37°C in a humidified atmosphere at
5% CO2 in RPMI 1640 medium containing 1% FBS prior to
fixation step to allow cell migration.

For experiments involving Raji-T cell conjugates, cells were
deposited onto coverslips coated with poly D-lysine (Sigma-
Aldrich), fix with 3.7% paraformaldehyde in PBS for 15 min at
room temperature and permeabilized with 0.5% Triton X-100 in
PBS for 5 min at room temperature. Then, cells were incubated
with Alexa fluor 555-conjugated phalloidin and Hoechst 33342
as described above.

For centrosome detection in Raji-T cell conjugates, cells on poly
D-lysine coated coverslips were fixed with methanol at -20°C for 10
min and permeabilized with 0.1% Triton X-100 in PBS containing
0.1% FBS for 30 min at room temperature. Afterwards, cells were
incubated with anti-g-tubulin monoclonal antibody (Biolegend,
cat.n° 629201) at 1:500 dilution in PBS-BSA 0.1% at 4°C
overnight, followed by Alexa fluor 647-conjugated goat anti-
mouse IgG in PBS-BSA 0.1% for 1 h at room temperature, and
Hoechst 33342.

To determine the positioning of PODXL in Raji cells
contacting with T cells, images were acquired in a Zeiss Axio
Observer.Z1 microscope equipped with a Plan-Apochromat 20x
(0.8) objective, motorized stage, HXP mercury lamp for
fluorescence excitation, halogen lamp for DIC imaging, and an
Axiocam 503 monochrome digital camera. Zeiss-supplied Zen
software controlled illumination, optic filters, stage, Z-
positioning for stacks generation and image acquisition.
Wavelengths (in nm) of filter sets for GFP fluorescence
imaging were, excitation: BP450-490, dichroic: 495 and
emission: BP500-550; for Alexa Fluor-555 were, excitation:
BP538-562, dichroic: 570 and emission: BP570-640, and for
Hoechst 33342 were, excitation: BP335-383, dichroic: 395 and
emission: BP420-470. Light was collected in a 1936 x 1460 pixels
camera chip at 14 bit/pixel achieving a final resolution of 0.45
µm/pixel. In each field of view, first a DIC and individual
fluorescence images of the three fluorophores were captured.
The position of PODXL in conjugates comprising one Raji cell
and one CD4+ T cell was scored as 1 when redistributed close to
May 2022 | Volume 13 | Article 835527
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the contact area, 2 and 3 when located at the intermediate zone,
and 4 when presented distally. When PODXL was found in more
than one quadrant, the total intensity of GFP of each quadrant
was measured using Fiji software (Image J), and the quadrant
with the highest fluorescence intensity of GFP determined
PODXL-GFP polarization score.

Confocal image-stacks were scanned in a Zeiss LSM 880
Airyscan microscope using 405 (Hoechst), 488 (GFP and Cy2),
514 (Alexa fluor 555), and 633 (Alexa fluor 647) nm laser lines
as needed. Optics consisted on a Plan-Apochromat 63x (1.4)
objective and its respective main dichroic beam splitters (MBS-
405, MBS-488, MBS-458/514, MBS-458/561, MBS-488/561/
633). Fluorescence was collected through independent
channels with 1 Airy unit adjusted pinhole aperture and
emission windows of 425-480 nm, 495-560 nm, 545-695 nm
and 640-750 nm. An additional channel was enabled for
transmitted light-generating DIC images. Optical sections
were 2.5x zoomed areas of 0.35 microns Z-steps digitized at
16-bit, achieving a final resolution of 0.05 microns/pixel. Zen
software assisted in laser, dichroic, emission window, image
size and z-step selection.

Image stacks were inspected to identify Podocalyxin-GFP
overlapping with a cell-to-cell contact and these single planes in
each stack were selected for further analysis with Fiji software. Pixels
including the cell-to-cell contact were delineated with a polygonal
Region-of-Interest (ROI). ROIs were cropped from the optical
sections of Alexa 555 red emission and GFP green emission. Pairs
of cropped images including the cell-to-cell contact were used for
the colocalization analysis provided by the Pearson’s coefficient
calculation included in the JACoP plugin (https://imagej.net/
plugins/jacop).

Statistical Analysis
The statistical analyses and graphs were performed using
GraphPad Prism 8.0 software. For the analysis of parametric
data, paired/unpaired t-test was used when comparing 2 groups,
and one/two-way ANOVA was used when comparing more than
2 groups. For the comparison of nonparametric data groups,
Wilcoxon test was used for 2 groups and Krustal-Wallis test was
used for 3 or more groups. Results are presented as means ± SD.
P-values lower than 0.05 are considered significant and
represented with the following symbols: *p<0.05, **p<0.01,
***p<0.001 and ****p<0.0001.
RESULTS

PODXL Is Expressed by Human Immature
Monocyte-Derived DCs
We recently detected upregulated expression of PODXL in
breast cancer cells exposed to IL-4 (35). Given that IL-4, in
combination with GM-CSF, is routinely used to differentiate
blood monocyte into immature DCs in vitro (36), we asked
whether immature monocyte-derived DCs express PODXL.
Hence, we examined the expression of PODXL in whole
lysate from human monocyte-derived DCs by Western-blot
Frontiers in Immunology | www.frontiersin.org 5
using a specific anti-human PODXL monoclonal antibody. The
results showed a complete absence of PODXL expression in
human monocytes as well as in CD4+ T cells. On the contrary, a
strong band of approximately 160 kDa corresponding to
PODXL was detectable in immature DC derived from
monocytes incubated with IL-4 and GM-CSF (Figure 1A).
We next aimed to determine the expression of PODXL on
the surface of immature DCs by flow cytometry. In support of
the results obtained by Western blot, flow cytometry analysis
revealed the expression of PODXL on monocyte-derived
immature DCs (CD14- CD209+ cells) and the complete
absence of this protein on monocytes (CD14+ CD209- cells)
(Figure 1B). The expression of PODXL in immature DCs was
also confirmed by confocal fluorescence microscopy in cells
displaying both rounded and elongated morphologies
(Figure 1C). These results indicate that the differentiation of
monocytes into immature DCs induces total and cell surface
expression of PODXL.

As the myeloid cell line K562 has been reported to express
PODXL (30), we determined its presence in a variety of
myelomonocytic cell lines. Western blot analysis revealed
higher level of PODXL expression in THP-1 cells compared to
K562 cells, whereas KG1 and HL-60 cells were negative for
PODXL expression (Figure 1D). Correspondingly, by flow
cytometry analysis, we detected moderate level of PODXL on
the surface of THP-1 and K562 and lack of expression on KG-1
and HL60 cells (Figure 1E).

In agreement with the results obtained at protein level, qRT-
PCR analysis showed that PODXL mRNA was nearly
undetectable in monocytes, T cells and NK cells compared to
THP-1 cells (Figure 1F). In contrast, immature DCs
differentiated from monocytes expressed high level of PODXL
mRNA, indicating that PODXL expression is transcriptionally
upregulated in these cells (Figure 1F). Interestingly, PODXL
mRNA level decayed after the induction of DC maturation with
LPS, a TLR4 agonist broadly used to induce DC maturation in
vitro. Regarding myeloid cell lines, the levels of PODXL mRNA
were notably lower in K562 and KG-1 cells and undetectable in
HL-60 cells compared to those observed in THP-1 cells
(Figure 1F). The presence of PODXL protein in K562 cells
and its absence in KG1 cells, despite expressing equally low
levels of PODXL mRNA expression, indicate a post-
transcriptional regulation of PODXL expression in these
cell lines.

PODXL Is Downregulated in Mature DCs
In order to evaluate the effect of maturation stimuli on PODXL
expression at protein level, monocyte-derived immature DCs
from six donors were incubated for 2 days in the presence of LPS.
Total cell lysates were subjected to Western blot analysis for the
detection of PODXL, using GAPDH as control. For all donors
analyzed, PODXL expression level was markedly upregulated
after DC differentiation from monocytes, as shown above, and
exhibits donor-to-donor heterogeneity. However, upon LPS-
maturating stimulus, PODXL expression was notably
downregulated, although at different degrees among donors
(Figure 2A). In agreement with these results, surface
May 2022 | Volume 13 | Article 835527
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expression of PODXL on DCs was greatly decreased in response
to LPS in almost all the donors analyzed (Figure 2B). To figure
out whether this reduction in PODXL expression was exclusively
induced by LPS, we tested PODXL expression on DCs using
different maturation stimuli. When DCs were stimulated with
the standard maturation cocktail consisting of TNF-a, IL-1b and
IL-6 cytokines and prostaglandin E2, the surface expression of
PODXL was strikingly diminished (Figure 2C). These data
indicate that PODXL expression in DCs is negatively regulated
by diverse maturation-inducing stimuli.
Frontiers in Immunology | www.frontiersin.org 6
PODXL Expression in Myeloid Cells Is
Positively Regulated by IL-4 Through
MEK/ERK and JAK3/STAT6
Signaling Pathways
To get insight into the molecular mechanism underlying cytokine-
induced PODXL expression in myeloid cells, we used THP-1 cell
line as a model for studying DC and macrophage differentiation, as
previously described (38, 39). The expression of DC markers in
THP-1 cells stimulated with IL-4 and GM-CSF and of macrophage
markers in cells treated with PMA to model macrophage
A B
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C

FIGURE 1 | PODXL is expressed in human monocyte-derived immature DCs. (A) Determination of PODXL expression in total lysates from human monocytes and
monocyte-derived immature DCs from two donors and CD4+ T cells from one donor by Western blot analysis using a specific mouse anti-human PODXL monoclonal
antibody. GAPDH was used as loading control. The blot shown is representative of two independent experiments. (B) Flow cytometry gating and overlay histograms
depicting the surface expression of PODXL on monocytes (CD14+ CD209-) and immature DCs (CD14- CD209+) detected by flow cytometry using a biotinylated goat anti-
human PODXL antibody (red line) or an isotype control (grey line) followed by PE-conjugated streptavidin from one representative donor. The graph shows PODXL surface
expression (DMFI= PODXL MFI - isotype control MFI) on monocytes and immature DCs from three donors. *p < 0.05, paired t test. (C) Expression of PODXL in monocyte-
derived immature DCs by fluorescence microscopy. Monocyte-derived immature DCs were deposited onto glass slides using a cytospin and incubated in complete culture
medium for 30 min. Cell were stained with a goat anti-PODXL polyclonal antibody followed by an anti-goat Cy2-labelled secondary antibody (green). Images were acquired
with a 63x objective using a confocal fluorescence microscope and are representative of ten rounded and twelve elongated immature DCs photographed from three
independent experiments. Example shows maximal intensity z-projections of confocal fluorescence sections. DIC, differential interference contrast. Scale bar corresponds to
5mm. (D) Determination of PODXL expression in cell lysates from different myelomonocytic cell lines by Western blot analysis using a specific anti-PODXL monoclonal
antibody. GAPDH was used as loading control. The blot shown is representative of two independent experiments. (E) Overlay histograms showing the surface expression of
PODXL on four different myeloid cell lines determined by flow cytometry using a biotinylated goat anti-human PODXL antibody (red line) or an isotype control (grey line)
followed by PE-conjugated streptavidin from one representative experiment. Graph shows mean ± SD of PODXL surface expression (DMFI= PODXL MFI - isotype control
MFI) from four independent experiments. ***p < 0.001, ****p < 0.0001, one-way ANOVA. (F) Analysis of PODXL mRNA level by RT-PCR in four myelomonocytic cell lines
and in T cells, NK cells, monocytes, monocyte-derived immature and mature DCs. Results are depicted relative to THP-1 cells. *p < 0.05, Krustal-Wallis test.
May 2022 | Volume 13 | Article 835527

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Amo et al. Podocalyxin in Antigen Presenting Cells
differentiation was checked by flow cytometry (Supplementary
Figure S1). Furthermore, the morphological characteristics of
DCs and macrophages in these cells were examined using light
microscopy (Supplementary Figure S1). First, we analyzed whether
PODXL could be up-regulated in THP-1 cell line in response to IL-4
and GM-CSF by Western blot. The results revealed that these
cytokines equally increased the expression of PODXL, although no
additive effect was detected in response to the combination of both
cytokines (Figure 3A). When THP-1 cells were stimulated with
PMA, Western blot revealed a band corresponding to PODXL with
a molecular weight lower than that observed in THP-1 cells
stimulated with IL-4 and GM-CSF, suggesting a differential
expression of PODXL glycoforms in macrophages and DCs
(Figure 3B). Flow cytometry analysis showed that PODXL
expression augmented on THP-1 cell surface in response to the
combination of IL-4 and GM-CSF and, to a significantly greater
extent, by PMA stimulation (Figure 3C).

Binding of IL-4 to its receptor activates the Janus kinase 3
(JAK3)/signal transducer and activator of transcription (STAT) 6
pathway and MEK/ERK pathway, triggering the transcription of
IL-4-inducible genes (40, 41). To examine whether these
Frontiers in Immunology | www.frontiersin.org 7
signaling pathways are involved in IL-4-induced PODXL
expression in myeloid cells, we stimulated THP-1 cells with IL-
4 in the presence of increasing concentrations of specific
inhibitors of MEK/ERK (PD98059) and JAK3/STAT6
(PF956980) pathways, and the expression of PODXL was
detected by Western blot. The results showed that treatment of
THP-1 cells with PD098059 markedly decreased IL-4-mediated
as well as basal expression of PODXL in a dose-dependent
manner (Figure 3D). IL-4-induced PODXL expression was
also dose-dependently reduced following PF956980 treatment
(Figure 3E). These results indicate that IL-4 induces PODXL
expression in THP-1 myeloid cells through MEK/ERK and
JAK3/STAT6 signaling pathways.

PODXL Expressed by APCs Enhances
APC-T Cell Interaction
Given that PODXL has previously been reported to promote
intercellular adhesion (34), we sought to determine whether
PODXL expressed by APCs participates in APC-T cell
interact ion. To address this poss ibi l i ty , Raj i ce l l s
overexpressing PODXL-GFP (Raji-PODXL) or Raji control
A

B C

FIGURE 2 | PODXL expression on monocyte-derived DCs is downregulated upon maturation stimuli. (A) Determination of PODXL expression in monocytes, monocyte-
derived immature and mature DCs in total cell lysates from six donors by Western blot using a specific mouse anti-human PODXL monoclonal antibody. Monocytes were
incubated with IL-4 and GM-CSF for 5 days to obtained immature DCs, followed by incubation with LPS for 2 days to induce DC maturation. GAPDH was used as
loading control. The bar graph represents the mean ± SD of PODXL levels relative to GAPDH from the six donors of three independent experiments. *p < 0.05, ***p <
0.001, RM one-way ANOVA. (B) Expression levels of PODXL on the surface of immature and mature DCs from 15 healthy donors using a mouse anti-human PODXL
monoclonal antibody followed by PE-conjugated anti-mouse IgG secondary antibody determined by flow cytometry. Graph shows PODXL surface expression (DMFI=
PODXL MFI - isotype control MFI). ***p < 0.001, Wilcoxon matched-pairs signed rank test. (C) Mature DCs were obtained by incubating immature DCs with LPS or the
maturation cocktail consisting of TNFa, IL-1, IL-6 and PGE2, and PODXL expression levels determined by flow cytometry as in (B). Overlay histograms show surface
expression of PODXL (red line) and isotype control (grey line) from one representative donor. The graph represents PODXL expression relative to immature DCs from
three donors in three independent experiments. **p < 0.01, ***p < 0.001, one-way ANOVA.
May 2022 | Volume 13 | Article 835527

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Amo et al. Podocalyxin in Antigen Presenting Cells
(Raji-Ctrl) cells were preincubated with or without SEA
superantigen and mixed with isolated CD4+ T cells labelled
with the red dye CMTMR at a ratio of 1:1 (Figure 4A). After
incubation for different periods of time, cells were analyzed by
flow cytometry to quantify double-positive events corresponding
to Raji-CD4+ T cell conjugates. The results showed that Raji-
PODXL cells formed significantly more conjugates than Raji-Ctrl
cells in a time dependent manner, reaching the highest level at 60
min of incubation, both in the presence and in the absence of
SEA (Figure 4A). However, SEA-induced conjugate formation
was slightly lower in Raji-PODXL cells compared to Raji-Ctrl
cells at 30 min of incubation (Supplementary Figure 2). These
data indicate that PODXL increases antigen-independent but
reduces SEA-induced Raji-CD4+ T cell interaction.

To further explore whether the enhanced effect of PODXL on
Raji-CD4+ T cell conjugate formation also applies to Raji-CD8+
Frontiers in Immunology | www.frontiersin.org 8
T cell conjugates, we next incubated Raji-PODXL cells or Raji-
Ctrl cells with total PBMCs, which contains both CD4+ T and
CD8+ T cells. As expected, flow cytometry analysis revealed that
Raji-PODXL cells formed more conjugates with CD4+ T cells,
compared with Raji-Ctrl cells. Nevertheless, we observed no
differences between Raji-PODXL and Raji-Ctrl cells in
conjugate formation with CD8+ T cells (Supplementary
Figure 3). To exclude a potential competition between CD4+ T
cells and CD8+ T cells for their interaction with Raji-PODXL
cells that could abrogate PODXL-induced Raji-PODXL-CD8+ T
cell conjugate formation, we performed the above experiment
using isolated CD4+ T and CD8+ T cells. The data showed that
Raji-PODXL cells formed more conjugates with both isolated
CD4+ T cells and, to a lesser extent, CD8+ T cells than Raji-Ctrl
cells Figure 4B). We also detected an increased conjugate
formation with Raji-PODXL cells compared to Raji-Ctrl cells
A B
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C

FIGURE 3 | PODXL expression is positively regulated by IL-4 through MEK/ERK and JAK3/STAT6 signaling pathways in myeloid cells. THP-1 cells were stimulated
with IL-4 (400 U/ml) and GM-CSF (800 U/ml) cytokines (A) for 96 h or with PMA (100 ng/ml) (B) for 48 h followed by a resting period of 48 (h) Afterwards, total cell
lysates were subjected to Western blotting using a specific monoclonal antibody against PODXL. Actin was used as loading control. Bar graphs represent the mean
± SD of PODXL levels relative to those of unstimulated cells of four independent experiments. *p < 0.05, **p < 0.01, one-way ANOVA. (C) PODXL surface expression
was analyzed by flow cytometry using a biotinylated goat anti-human PODXL antibody followed by PE-conjugated streptavidin. Overlay histograms show surface
expression of PODXL (red line) and isotype control (grey line) from one representative donor. Graph shows PODXL surface expression (DMFI= PODXL MFI - isotype
control MFI) of four independent experiments. **p < 0.01, ***p < 0.001, one-way ANOVA. (D, E) Effect of signaling pathway inhibitors on IL-4-induced PODXL
expression in THP-1 cells. Cells were incubated with 400 U/ml IL-4 in the presence of increasing concentration of MEK/ERK signaling pathway inhibitor (PD98059)
(D) or JAK3 signaling pathway inhibitor (PF956980) (E) for 96 (h) Then, cell lysates were subjected to Western blot analysis with a monoclonal anti-PODXL antibody.
Actin was used as loading control. Bar graphs represent the mean ± SD of PODXL levels relative to those of unstimulated and untreated cells of three (D) or four
(E) independent experiments. A representative blot is shown below each graph. *p < 0.05, **p < 0.01, ***p < 0.001, one-way ANOVA.
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when Jurkat cells were used as CD4+ T cells (Figure 4C). Hence,
these data indicates that PODXL enhances both APC-CD4+ T
cells and APC-CD8+ T cell interactions.

PODXL Reduces CD86, MHC-I and MHC-II
Expression in APCs
The binding of integrin lymphocyte function antigen-1 (LFA-1)
expressed on T cells to ICAM-1 (CD54) displayed on APCs is
crucial for stabilizing the APC-T cell interaction during immune
synapse assembly (42, 43). To establish whether LFA-1 mediates
PODXL-induced APC-CD4+ T cell adhesion, Raji-PODXL or
Raji control cells and Jurkat cells were pretreated with a blocking
antibody against LFA-1 or an isotype control and then incubated
together for 30 min in the presence of the antibody. The results
showed a decreased formation of Raji-Ctrl-CD4+ T cell
conjugates but not significant reduction in the number of Raji-
PODXL-CD4+ T cell conjugates after treatment with the anti-
LFA-1 antibody (Figure 5A). These findings suggest that
PODXL-induced APC-T cell interaction is independent on
LFA-1.

We next asked whether PODXL could regulate the expression
of CD54 and other molecules expressed in APCs that participate
in APC-T cell conjugate stabilization. The determination of
Frontiers in Immunology | www.frontiersin.org 9
CD54 expression on Raji-PODXL and Raji-Ctrl cells by flow
cytometry yielded similar values (Figure 5B). Among the
analyzed molecules, the results revealed similar levels of CD80
and significantly lower expression of CD86, MHC-I and MHC-II
in Raji cells overexpressing PODXL compared to Raji-Ctrl cells
(Figure 5B). These data indicate that PODXL reduces the
expression of CD86, MHC-I and MHC-II on the surface of
Raji cells.

PODXL Polarizes Toward the APC-CD4+

T Cell Contact Site
We previously reported that PODXL overexpressed in MCF-7
breast cancer cell line accumulates at the interface formed with
NK cells (35). To explore whether PODXL expressed in APCs is
recruited toward the contact area formed with CD4+ T cells, Raji
cells overexpressing PODXL-GFP were incubated with CD4+ T
cells for 60 min. Then, the position of PODXL was determined
microscopically in conjugates comprising one Raji cell and one
CD4+ T cell, and scored as 1 when redistributed close to the
contact area, 2 and 3 when located at the intermediate zone, and
4 when presented distally (Figure 6A). The results showed that
PODXL localized proximal to the interface in approximately 50%
of the conjugates, doubling the percentage expected for a random
A
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FIGURE 4 | PODXL expressed in APCs enhances both APC-CD4+ T cell and APC-CD8+ T cell interactions. (A) Raji cells overexpressing PODXL (red) or Raji-Ctrl
cells (blue) were pulsed or not with SEA. Afterwards, CD4+ T cells isolated from PBMCs and pre-labelled with CMTMR were mixed with Raji-PODXL or Raji-Ctrl at a
ratio of 1:1 and incubated for different time points at 37°C. The formation of conjugates between Raji cells (GFP+) and CD4+ T cells (CMTMR+) was detected as
CMTMR+ and GFP+ events by flow cytometry. A representative density plot out of seven independent experiments is shown. Graph shows mean ± SD of the
percentage of conjugates (CMTMR+GFP+) from the total Raji cells (GFP+) of four independent experiments. *p < 0.05, **p < 0.01, ***p <0.001, ****p < 0.0001, two-
way ANOVA. (B) Raji-PODXL or Raji-Ctrl cells were mixed with isolated CD4+ T and CD8+ T at a ratio of 1:1 and incubated for 30 min. CD4+ and CD8+ T cells were
detected using anti-CD4-APCH7 and anti-CD8-APCH7 monoclonal antibodies by flow cytometry. The percentage of Raji-CD4+ T cell (GFP+APCH7+) or Raji-CD8+ T
cell (GFP+APCH7+) out of the total Raji cells was determined. Bar graph represents the mean ± SD of five independent experiments. *p < 0.05, RM one-way
ANOVA. (C) Raji-PODXL or Raji-Ctrl cells were mixed with CMTMR-labeled Jurkat cells at a ratio of 1:1 and incubated at different time points. The percentage of
Raji-Jurkat cell conjugates was determined by flow cytometry as in (A). Bar graph represents the mean ± SD of five independent experiments. **p < 0.01, two-way
ANOVA.
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distribution of the protein (Figure 6A). On the contrary, PODXL
redistributed to 2 or 3 intermediate positions in 18% and 16% of
the conjugates, respectively, and to a distal position only in 13%
of the cases (Figure 6A). Then, we aimed to determine the
location of PODXL in human immature monocyte-derived DCs
conjugated with CD4+ T cell by immunostaining with a specific
antibody against human PODXL and confocal microscopy
analysis. The results showed that PODXL localizes at the DC-
CD4+ T cell contact site (Figure 6B). Altogether, these results
demonstrate that PODXL expressed in APC cells polarize at the
contact zone formed with CD4+ T cells.

When an APC encounters a T cell, F-actin redistributes to the
APC-T cell interface forming a highly dynamic structure known
as immune synapse (16, 17). Given that PODXL binds to F-actin
in various cell types, we next asked whether PODXL colocalizes
with F-actin at the APC-T cell contact zone. Using Raji cells
overexpressing PODXL-GFP, we observed that PODXL partially
colocalized with the actin cytoskeleton at the contact area formed
between Raji cells and CD4+ T cells (Figure 6C).

PODXL Expressed by APCs Alters the
Translocation of CD4+ T Cell Centrosome
Toward the Contact Site
Upon APC and CD4+ T cell conjugate formation, T cell
centrosome polarizes toward the contact side, allowing the
reorientation of the T cell secretory organelles toward the APC
and the directional secretion of cytokines to favor T cell effector
functions (19, 20). To evaluate the effect of PODXL expressed by
APCs in the translocation of CD4+ T cells to the contact site,
Raji-PODXL cells and Raji-Ctrl cells were incubated with CD4+

T cells for 30 min and 60 min. Cells were then immunostained
with g-tubulin to visualize the centrosome by confocal
microscopy and the distance of CD4+ T cell centrosomes to
Frontiers in Immunology | www.frontiersin.org 10
APC contact site was analyzed (Figure 7A). At 30 min of
incubation, there were no differences in CD4+ T cell
centrosome distance to the interface of conjugates formed with
Raji-PODXL compared to Raji-Ctrl cells (Figure 7B). However,
at 60 min, the centrosome distance to the contact site in CD4+ T
cells interacting with Raji-PODXL cells was significantly higher
than that observed in CD4+ T cells contacting with Raji-Ctrl cells
(Figure 7B). Correspondingly, the percentage of Raji-PODXL-
CD4+ T cell conjugates with centrosome located at a distance
lower than 1 mmwas lower than that observed in Raji-Ctrl-CD4+

T cell conjugates at 60 min of incubation (Figure 7B). These
findings point to a role of PODXL in regulating centrosome
polarization in CD4+ T cell upon interaction with APCs.
DISCUSSION

In this work, we identify PODXL as a protein expressed by
human monocyte-derived immature DCs that undergoes
downregulation in response to inflammatory stimuli. To our
knowledge, this is the first study reporting the expression of
PODXL in DCs. Our results showed that the decrease of PODXL
expression in DCs occurred in response to various molecules
broadly used for DC maturation in vitro, such as LPS and a
cocktail containing TNFa, IL-1b, IL-6 and PGE2 (44, 45). LPS is
a major inflammatory component of gram-negative bacteria that
binds to TLR4 and triggers the release of proinflammatory
cytokines, the upregulation of costimulatory molecules, and the
activation of antigen presentation on APCs, inducing both innate
and adaptive immune responses (44). On the other hand, the
cocktail containing TNFa, IL-1b, IL-6 and PGE2 has been
described to induce Th1-polarized immune responses (46).
These observations suggest that PODXL could exert
A B

FIGURE 5 | PODXL decreases the expression of CD86, MHC-I and MHC-II in APCs. (A) Raji-PODXL, Raji-Ctrl cells and CMTMR-labeled Jurkat cells were preincubated
separately with a blocking anti-LFA-1 monoclonal antibody for 15 min. Afterwards, Raji-PODXL and Raji-Ctrl were mixed with CMTMR-labeled Jurkat cells at a ratio of 1:1
and incubated for 30 min. The percentage of Raji-Jurkat cell conjugates was determined by flow cytometry as in (Figure 4A). Bar graph represents the mean ± SD of
nine independent experiments. *p < 0.05, ****p < 0.0001, one-way ANOVA. (B) Raji cells overexpressing PODXL and Raji Ctrl cells were analyzed by flow cytometry for
surface expression of CD54, CD80, CD86, MHC-I and MHC-II. Overlay histograms represent the surface expression of the indicated marker in Raji-PODXL cells (red line),
Raji-Ctrl cells (blue line) and the isotype control (grey line). Graphs show mean ± SD of surface expression (DMFI= Marker MFI - isotype control MFI) from six (CD54,
CD80, CD86, MHC-I) or five (MHC-II) independent experiments. *p < 0.05, **p < 0.01, paired t test. 0.0001, ns, not statistically significant; one-way ANOVA.
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tolerogenic or anti-inflammatory effects in immature DCs, so
that its downregulation in response to inflammatory stimuli
would favor an effective immune response. Moreover, our data
revealed highly heterogeneous levels of PODXL expression in
immature monocyte-derived DCs as well as a varied degree of
PODXL downregulation in mature DCs among donors. The
heterogeneity of PODXL expression levels in immature DCs
might be explained by genetic or epigenetic variations in PODXL
gene between donors. In line with this suggestion,
polymorphisms in the promoter region of DC-SIGN have been
shown to influence the expression level of this gene in immature
DCs (47). Part of the variability in PODXL expression could also
depend on basal inflammatory state, age or gender of individuals,
since these variables influence the transcriptional profile of DCs
(48). Our results further demonstrates that PODXL expressed on
Frontiers in Immunology | www.frontiersin.org 11
APCs perturbs CD4+ T cell centrosome translocation to the
contact site, a process required for proper T-cell effector function
(19). These findings suggest that the capacity of DCs to
downregulate the level of PODXL expression in response to
inflammatory stimuli might modulate the strength of the
immune response.

The extracellular domain of PODXL displays extensive N-
and O-glycosylation and sialylation, including alpha 2,6-
sialylation (28, 49). Immature monocyte-derived and
tolerogenic DCs has been demonstrated to present high level
of alpha 2,6-sialic acid-containing glycoproteins, which decreases
upon DC maturation (50), an expression pattern comparable to
that observed for PODXL in our study. Previous studies have
attributed a role for sialoglycoproteins expressed by DCs in the
modulation of immune responses (50, 51). Alpha 2,6-sialic acid-
A

B

C

FIGURE 6 | PODXL expressed in APCs localizes to the T-cell contact side and partially colocalizes with actin. (A) Raji cells overexpressing PODXL-GFP and pulsed with
SEA were incubated with CD4+ T cells at a ratio of 1:2 for 30 min. Images of conjugates comprising one Raji cell and one CD4+ T cell were obtained using confocal
fluorescence microscopy with a 63x objective and are representative of three independent experiments. The example shows maximal intensity z-projections of confocal
fluorescence sections. The position of PODXL in Raji-CD4+ T cell conjugates was determined using images obtained with a fluorescence microscope and a 20x objective
and scored as 1 when located in the quadrant close to the contact area, 2 and 3 when located at the intermediate quadrants, and 4 when present at the distal quadrant.
Bar graph represents the percentage of conjugates with PODXL in each indicated position from three independent experiments and a total of 426 Raji-CD4+ T cell
conjugates. The results are shown as mean ± SD. ****p < 0.0001, one-way ANOVA. (B) Immature DC were incubated with CD4+ T cells for 30 min and conjugates were
analyzed with a 63x objective using a confocal fluorescence microscope. Cells were stained with a goat polyclonal anti-PODXL antibody followed by an anti-goat Cy2-
labelled secondary antibody (green), and Hoechst 33342 for nuclei staining (blue). Images show a representative immature DC-CD4+ T cell conjugate of 15 conjugates
photographed from three independent experiments. Example shows maximal intensity z-projections of confocal fluorescence sections. (C) Raji cells overexpressing
PODXL-GFP (green) and pulsed with SEA were incubated with CD4+ T cells and stained for actin with Alexa 555-phalloidin (red) and for nuclei with Hoechst 33342 (blue).
A confocal single z-section from a representative conjugate is depicted. An enlarged image of the region corresponding to the cell-to-cell contact zone is shown.
Histogram depicts intensity profiles of PODXL (green) and actin (red) obtained using ImageJ-Fiji software, along an ideal line (white dashed line on the left image) crossing
the contact zone of a representative conjugate. Bar graph represent the Pearson´s correlation coefficient of PODXL and actin colocalization at cell-to-cell contact site in
Raji-PODXL cells conjugated with CD4+ T cells. A representative image showing the ROI selected for the quantification of colocalization is depicted (right image). Twenty
two Raji-PODXL- CD4+ T cell conjugates from five independent experiments were analyzed. Error bar displays the standard error. Scale bars in confocalimages
correspond to 5 um.
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containing glycans expressed on immature and tolerogenic DC
has been reported to promote immune tolerance by binding to
inhibitory siglecs expressed on effector T cells (50). Additional
studies will be required to determine whether the sialomucin
PODXL expressed on DCs regulates T cell responses, including
cytokine release, clonal expansion and cell survival.

An earlier study demonstrated that IL-4 induces monocyte
differentiation into immature DCs through the demethylation
and subsequent expression of DC-specific genes via activating
JAK3/STAT6 signaling pathway (52). Another report pointed to
a role of MEK/ERK signaling pathway in the differentiation and
survival of monocyte-derived immature DCs (53). These
observations are in line with our data showing increased
expression of PODXL in myeloid THP-1 cells and immature
DCs derived from monocytes in response to IL-4 or a
combination of IL-4 and GM-CSF, respectively. In addition,
our results prove the involvement of JAK3/STAT6 as well as
MEK/ERK signaling pathways in IL-4-induced PODXL
expression in THP-1 cells. The mechanism of PODXL
expression in THP-1 cells revealed in our study resembles that
of the DC marker CD209 (DC-SIGN; DC-specific ICAM-3-
grabbing nonintegrin), whose expression has been reported to
depend on JAK/STAT and MEK/ERK signaling pathways in the
same cells (41, 54).
Frontiers in Immunology | www.frontiersin.org 12
Several studies support the role of PODXL in normal and
tumor cell adhesion, migration and polarity (28, 55–60).
PODXL has been reported to directly interact with or to
activate molecules implicated in these processes (33, 61). For
instance, PODXL interacts with the actin-binding protein ezrin,
which belongs to the ezrin/radixin/moesin (ERM) family (33).
ERM proteins regulate the formation of immune synapse by
inducing changes in membrane rigidity (62). In line with this,
our results showed PODXL polarization to the APC-T cell
contact site where it partially colocalizes with actin.
Furthermore, PODXL has been shown to activate cell division
cycle 42 (Cdc42) (61), a member of the Rho guanosine
triphosphatase family of signaling proteins that govern actin
organization, migration, adhesion, intercellular trafficking and
membrane ruffling as well as cell polarity (63, 64). In DCs,
Cdc42 coordinates the formation of the leading edge necessary
for cell migration (65) and controls endocytic activity, cell
polarity and polarized release of cytokines towards the
immune synapse (66, 67). A study stated that Cdc42 GTP,
the active form of Cdc42, is expressed only in immature DCs
and gradually diminished during DC maturation (66), which
agrees with our finding that PODXL is mainly detected in the
immature state of DCs and decreases in response to maturation
stimuli. Another study reported that Cdc42-mediated actin
A

B

FIGURE 7 | PODXL expressed in APCs perturbs CD4+ T cell-centrosome polarization to the contact site. (A) Raji PODXL or Raji control cells pulsed with SEA were
incubated with CD4+ T cells at a ratio of 1:1 for 30 min or 60 min. Then, cells were stained with a monoclonal antibody against g-tubulin to visualize the centrosome
(red) and Hoechst 33342 for nuclei staining (blue). Confocal fluorescence microscopy images show separate and merged channels of maximal intensity z-projections
of z-sections from a representative experiment performed at 60 min of incubation. Arrows point to T-cell centrosome in each T-cell. DIC: differential interference
contrast. Scale bars correspond to 5 mm. (B) Quantification of T-cell centrosome polarization in Raji-CD4+ T cells conjugates. Scatter graph depicts the distance of
CD4+ T cell centrosome to Raji-cell contact site in each conjugate for a total of 41 (Raji Ctrl, 30 min), 37 (Raji PODXL, 30 min), 51 (Raji Ctrl, 60 min), and 45 (Raji
PODXL, 60 min) conjugates from three independent experiments. The results are shown as mean ± SD. *p < 0.05, two-way ANOVA followed by Holm-Šıd́ák multiple
comparisons test. Bar graph represents the percentage of conjugates in which T-cell centrosome localizes at a distal (≥3 mm), intermediate (1-3 mm) or proximal (≤1
mm) distance from Raji-cell contact site for the indicated conditions.
May 2022 | Volume 13 | Article 835527

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Amo et al. Podocalyxin in Antigen Presenting Cells
dynamics maintain DCs in an immature state and the
inhibition of Cdc42 activity in mature DCs allows the
secretion of proteins and induces the upregulation of the co-
stimulatory molecule CD86 (68). Correspondingly, we found
that PODXL overexpression in APCs diminishes surface
expression of CD86, suggesting a potential regulatory role for
PODXL in these processes.

Previous studies have documented the involvement of
PODXL in intercellular adhesion (34, 55, 69). Our results
indicate that PODXL expressed by APCs increases the
interaction with CD4+ T and Jurkat cells, as well as with CD8+

T cells, suggesting a role for PODXL in the stabilization of APC-
CD4+ T cell and APC-CD8+ T cell interactions. On the contrary,
we previously reported a lack of effect of PODXL expressed in
MCF-7 breast cancer cells on the formation of MCF-7-NK cells
conjugates (35). These discrepancies may reflect a differential
expression of PODXL ligands on T cells and NK cells. In early
stages of T cell priming, it has been reported that T cells contact
with DCs in an antigen-independent manner to scan DCs in
search for specific antigen-MHC complexes (70, 71). These
interactions are mediated by integrins and other molecules,
such as DC-SIGN (71). Once the TCR recognizes the specific
antigen-MHC complex, DC-T cell interaction is strengthened
through the engagement of LFA-1 with ICAM-1 during the
formation of the immune synapse (72). Our results suggest that
PODXL-induced APC-T cell interaction is antigen-independent
and does not involved the interaction of LFA-1-with ICAM-1.
Moreover, we demonstrated that PODXL in APCs polarizes
towards T cell contact site, suggesting that PODXL may
promote the initial contact between APCs and T cells.
Contrary to expected results, we observed downregulated levels
of MHC-I, MHC-II and CD86 on PODXL-overexpressing cells.
Thus, it is likely that binding of PODXL to its putative ligand on
T cells could overcome the negative effect that the reduction of
CD86, MHC-I and MHC-II levels by PODXL would exert on
APC-T cell interaction. Alternatively, PODXL may alter the
expression or function of other adhesion molecules involved in
such an interaction.

During APC-T cell interaction, activating signals, including
the costimulatory signal delivers by the CD86 ligand CD28,
induce T cell centrosome translocation to the immune synapse,
facilitating the directional secretion of T-cell cytokines-loaded
vesicles toward the contacting APC (19, 20, 73). The altered
repositioning of T-cell centrosome in CD4+ T cells interacting
with Raji-PODXL cells showed in this study could be due to the
decreased levels of MHC-II and CD86 on these cells, which
would lower TCR and CD28 signal intensity. Centrosome
translocation also requires the previous removal of actin
from the center of cell-to-cell interface, followed by its
accumulation at the periphery to form a mature immune
synapse (74). Although most studies addressing the role of
actin reorganization have focused their interest on the T cell
side of the immune synapse, DC actin depolymerization has
been shown to alter immune synapse structure and to
compromise the ability of DC to stimulate T cells,
Frontiers in Immunology | www.frontiersin.org 13
highlighting the importance of actin on the DC side of the
immune synapse (75). Accordingly, DC cortical stiffness
controlled by the actin cytoskeleton has been found to
regulate T cell responses (76). Our findings that PODXL
reduces T-cell centrosome translocation to the APC-CD4+ T
cell interface led us to speculate that PODXL could alter the
reorganization of the actin cytoskeleton and restrain actin
clearance from the center of the contact site, ultimately
preventing repositioning of T-cell centrosome and thereby
T-cell mediated immune responses. In agreement with this
hypothesis, a previous work of our group demonstrated that
PODXL expressed on MCF-7 breast cancer cell line
accumulates at the immune synapse formed with NK cells
and inhibits NK cell activity as well as agonist-induced CD4+ T
and CD8+ T cell proliferation (35).

In conclusion, our data demonstrate that PODXL is
expressed in human monocyte-derived immature DCs but is
markedly reduced in mature DCs, suggesting that it could serve
as a marker of DC maturation state. We also show that PODXL
expressed in APCs polarizes to CD4+ T cell contact site and
enhances APC interaction with CD4+ T and CD8+ T cells while
reduces CD4+ T-cell centrosome translocation to the contact
site, implying that this protein may negatively modulate T cell
activity. Further research will be required to define the
functional relevance of PODXL expressed by DCs in the
regulation of immune responses and the development of
immune-related pathological conditions. The presence of
PODXL on the surface of DCs would make this protein a
suitable therapeutic target for manipulating the immune
response to treat cancer and infectious diseases.
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18. Choudhuri K, Llodrá J, Roth EW, Tsai J, Gordo S, Wucherpfennig KW, et al.
Polarized Release of TCR-Enriched Microvesicles at the T Cell Immunological
Synapse. Nature (2014) 507:118. doi: 10.1038/nature12951
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52. Vento-Tormo R, Company C, Rodrıǵuez-Ubreva J, de la Rica L, Urquiza JM,
Javierre BM, et al. IL-4 Orchestrates STAT6-Mediated DNA Demethylation
Leading to Dendritic Cell Differentiation. Genome Biol (2016) 17:1–18.
doi: 10.1186/s13059-015-0863-2

53. Xie J, Qian J, Yang J, Wang S, Freeman ME, Yi Q. Critical Roles of Raf/MEK/
ERK and PI3K/AKT Signaling and Inactivation of P38 MAP Kinase in the
Differentiation and Survival of Monocyte-Derived Immature Dendritic Cells.
Exp Hematol (2005) 33:564–72. doi: 10.1016/j.exphem.2005.03.001
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