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Abstract

The loss of a job is the loss of a major social and economic role and is associated with long-term 

negative economic and psychological consequences for workers and families. Modeling the causal 

effects of a social process like layoff with observational data depends crucially on the degree to 

which the model accounts for the characteristics that predict loss. We report analyses predicting 

layoff in the Fragile Families data as part of the Fragile Families Challenge. Our model, grounded 

in empirical social science research on layoff, did not perform substantially worse than the best

performing model using data science techniques. This result is not fully unforeseen, given that 

layoff functions as a relatively exogenous shock. Future work using the results of the Challenge 

should attend to whether small improvements in prediction models, like those we observe across 

models of layoff, nevertheless significantly increase the validity of subsequent models for causal 

inference.
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Introduction

Job loss is a disruptive event to individuals and families with far-reaching implications. 

Sociologists and economists have persuasively shown that displaced workers experience 

lengthy periods of unemployment, earnings losses, job quality declines, higher levels of 

depressive symptoms, social withdrawal, and poorer physical health (see Brand 2015 for a 

review of the literature). Studies have also documented a notable intergenerational effect; 

that is, parental job loss affects the well-being and attainment of children (Johnson, Kalil, 

and Dunifon 2012; Kalil and Ziol-Guest 2005, 2008; Peter 2016; Stevens and Schaller 

2011). Brand and Simon Thomas (2014) show that children of single mothers, who may 

be particularly vulnerable to economic shocks, experience lower social-psychological well

being and educational attainment in young adulthood after a parental job loss.
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With the Brand and Simon Thomas (2014) analysis as motivation, we joined the Fragile 

Families Challenge (hereafter referred to as the Challenge) to consider alternative models 

predicting layoff among disadvantaged primary caregivers and to ultimately improve causal 

estimates of the effects of parental layoff on children. The Challenge asked scholars from 

social and data science to develop models predicting six outcomes using the Fragile Families 

data: layoff of the child’s primary caregiver (the focus of this article), family material 

hardship, eviction, job training of the primary caregiver, academic achievement of the child, 

and grit of the child. Participants of the Challenge used information from the first five waves 

of the Fragile Families data (through age 9 of the child) to predict outcomes in the sixth 

wave (age 15). Participants developed models using training data, which accounted for one 

half of the total data in wave 6, and predictions were scored based on two sets of holdout 

data. The Challenge was designed to improve our knowledge of how techniques from social 

and data science can be used collectively to understand social processes and to inform 

policy to help mitigate some of the disadvantages facing low-income children. For more 

information about the details of the Challenge, see the Introduction to this special collection 

(Salganik et al. 2019).

In this article, we describe models that draw on social science research to predict layoff of 

the primary caregiver. We find that these simple models performed only moderately worse 

than the best-performing submissions that use more complex data science techniques. We 

emphasize that no model performed particularly well. As a relatively less self-selective 

social process among those considered in the Challenge, layoff presents some distinct 

lessons concerning our ability to generate predictive models. The article begins with a 

discussion of three key types of heterogeneity in social processes, focusing on that which is 

most relevant to the Challenge: pretreatment heterogeneity, that is, individual characteristics 

that vary systematically with the likelihood of experiencing a treatment.1 We then describe 

our analytic approach and present our results from the leaderboard and the final holdout 

sample. We end with a discussion of our ability to predict an event like layoff and 

the generalizability and utility of models predicting layoff from the Challenge for future 

research.

Heterogeneity and Layoff

Three types of heterogeneity warrant discussion in considering a model of layoff and the 

degree to which we can infer causality in the effects of layoff on subsequent outcomes. 

First, and most relevant to the Challenge, is pretreatment heterogeneity. Modeling the causal 

effects of layoff with observational data, as opposed to randomized controlled trials, depends 

crucially on the degree to which the model accounts for these pretreatment characteristics. 

Research on layoff suggests that it functions as a relatively exogenous, or random, shock 

to individuals (Brand 2015). That is, while many social processes involve a high degree of 

self-selection (e.g., divorce or migration), layoff is typically the result of macroeconomic 

and business conditions beyond the control of individual workers. As a widespread event 

affecting workers with varied sociodemographic characteristics, attempts by social scientists 

1We adopt the conventions of the potential outcome approach to causal inference and thus refer to layoff as a “treatment.” Layoff is of 
course not randomly assigned and is not analogous to a treatment in a randomized trial.
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to model layoff have produced generally weak predictions with low levels of variation 

explained (see Fallick 1996 for a review). It is thus unsurprising that different strategies for 

adjusting for pretreatment characteristics have produced substantively similar results (Brand 

2006; Coelli 2011; Stevens and Schaller 2011). If layoff involved more self-selection, then 

strategies that differ in the degree to which they adjust for pretreatment characteristics 

used to predict layoff may yield more meaningfully different effect estimates. Outcomes 

in the Challenge like material hardship and academic achievement, by contrast, are social 

processes known to be strongly associated with a range of sociodemographic characteristics 

(Edin 2015; Reardon 2011; Sirin 2005).

Two other types of heterogeneity deserve mention: treatment heterogeneity and treatment 

effect heterogeneity. Treatment heterogeneity refers to variation in the key treatment in 

a causal process, in this case layoff. In prior research, respondents are typically asked 

open-ended questions pertaining to job separation, which then are categorized as layoff, 

downsizing, and plant closing. Researchers generally combine these categories to form an 

indicator of job loss. The Challenge focuses on self-reported layoff of the primary caregiver, 

which may differ from the combined measure of job loss characteristic of prior studies. 

Treatment effect heterogeneity indicates the degree to which the impact of layoff varies by 

population characteristics and contextual factors. For example, workers who are accustomed 

to socioeconomic stability and have few peers undergoing economic distress may be more 

psychologically harmed by a layoff event (Brand 2015). The submissions and results of the 

Challenge deal with modeling pretreatment heterogeneity, but these two additional types 

of heterogeneity have important implications for the generalizability of the Challenge and 

future work using its results. We return to the discussion of these implications in the 

Conclusion.

Modeling Approach

To construct a model predicting layoff, we draw on prior social science research that 

has demonstrated some association between job loss and sociodemographic, employment, 

family, psychosocial, and family background characteristics (Brand and Simon Thomas 

2014).2 To improve prediction of layoff, we use the most proximate information on the 

primary caregiver’s education and employment characteristics from the wave 5 interviews. 

Table 1 provides descriptive statistics of our selected variables. Sociodemographic and 

socioeconomic variables include race, sex, citizenship status, economic hardship, and 

education of the primary caregiver. Family variables include primary caregiver’s age, 

household size, and marriage/cohabitation status. We include family background of the 

primary caregiver using highest education of either parent (grandparent of the child in the 

Fragile Families data) and whether the caregiver reported having lived with both parents 

when she or he was age 15. We also include key employment variables. Workers in the 

manufacturing sector and other blue-collar industries are generally more likely to experience 

layoff (Brand 2015; Farber 2005). Other employment measures include employment status, 

self-employment status, full-time work, and union membership. Finally, models account for 

2These variables have been theorized and shown empirically to have some impact on the likelihood of layoff. The decisions, however, 
governing the precise specification of models predicting layoff are seldom well articulated.

Ahearn and Brand Page 3

Socius. Author manuscript; available in PMC 2021 September 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the possibility that individuals who exhibit poor mental health and delinquent behaviors are 

at higher risk of layoff (Brand and Simon Thomas 2014). We include variables indicating a 

major depressive episode, drinking, and impulsive or delinquent behavior.3

We estimate logistic regression models to predict layoff of the primary caregiver; results are 

reported in odds ratios. Our submissions included a sequence of attempts to improve our 

predictions of layoff both by tailoring the models to the specific population in the Fragile 

Families data and by developing more parsimonious models to avoid overfitting. We present 

three of these specifications in Table 2. Model 1 was our first Challenge submission. It 

includes a set of covariates we hypothesized captured pretreatment heterogeneity in layoff 

based on prior literature. As 90 percent of the primary caregivers are mothers, a model 

used to predict job loss among single mothers in Brand and Simon Thomas (2014) guided 

our specification in model 2. Models 1 and 2 are quite similar, however, and include 

most of the same variables with slightly different specifications. We then specified a third, 

more parsimonious model. The motivation underlying this final model was to determine 

whether a more parsimonious model performed similarly on the leaderboard. Missing data 

presented an analytic challenge. We tested models that did and did not use imputation 

to handle missing data and tested various imputation strategies. The appendix provides 

more information about missing data and our imputation strategy. Below we discuss our 

interpretation of these models, their success on the leaderboard and in the final holdout 

samples, and how results changed with missing data imputation.

Results

Figure 1 presents our results from the leaderboard and final holdout samples. Success in the 

Challenge is indicated by mean-squared errors, which measure the accuracy of predicted 

probabilities of submitted models in the training and final holdout data. Despite our 

varying specifications and imputation approaches, we found minimal variation in success 

in predicting layoff in the Challenge. Our first model produced the best (lowest) scores 

in both the leaderboard and the final holdout samples. Using multiple imputation did not 

improve our score on the leaderboard and only slightly improved our score in the final 

holdout sample. Model 2 produced our worst results in the leaderboard and final holdout 

samples. Model 3 produced midrange leaderboard and final holdout scores.

We were surprised to find that our first model was most successful in the Challenge. 

Model 1, although grounded in prior work on job loss, less closely followed research on 

layoff among disadvantaged mothers. However, we emphasize that the margin of improved 

performance between this and our other specifications was quite small, as shown in Figure 

1. Notably, there was little variation across our scores. Moreover, we observe little variation 

between our models and the best prediction. The mean-squared error of our best model 

(.164) is only about 1 percent worse than the mean-squared error produced by the winning 

model in the Challenge (.162). Likewise, the winning model scored only about 3 percent 

3Our models do not include two potentially key predictors of job loss identified by prior research: tenure of current employment and 
mental ability. Tenure of employment is not available in the data set. Although Fragile Families administered a verbal aptitude test, 
almost 40 percent of the primary caregivers were missing information on this variable (i.e., more than any other variable for which we 
chose to impute missing data). We tested models that included this variable, but those models did not improve fit.
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better than the baseline (.167), which predicted layoff in the leaderboard and final holdout 

samples using the mean of layoff in the training sample.

The difference between the scores from the best model and those from the baseline is 

smaller than for the other outcomes, as shown in Figure 2. While layoff has a difference 

of only about 3 percent between the baseline and the best model, material hardship has a 

difference of about 30 percent, and GPA has a difference of about 24 percent. The winning 

model predicting eviction, for which individual characteristics also have limited predictive 

power (Desmond 2016), performed 6 percent better than the baseline. Although the best 

submissions did improve the prediction of layoff, the relatively limited predictive power of 

even the top scores likely reflects the relatively exogenous process governing the risk of 

layoff. This result aligns with our theoretical prior.

We present our regression results for models 1 through 3 in Table 2. A few of our regression 

results are worth noting. As expected, conditional on all other covariates, respondents who 

are black, unemployed, and blue-collar or manufacturing workers were more likely to 

experience layoff six years later. Education is not associated with layoff in this sample after 

adjusting for other primary caregiver characteristics. We tested many measures of education 

and consistently found this result. This is not unexpected given the lower educational 

attainment, and thus less variation, among the disadvantaged Fragile Families sample. It 

is, however, a departure from prior findings (Brand and Simon Thomas 2014). In addition, 

citizenship was one of the most consistently statistically significant predictors of layoff 

across the models we tested, indicating the precarious position of noncitizen women in the 

urban labor market.

Conclusion

The Challenge offers insights into the utility of mass scientific collaboration for 

understanding social processes and ultimately improving social science research. We focus 

on a particular social process, parental layoff, that has been used to study the causal impact 

of socioeconomic mobility on a range of life outcomes. Our best-performing model of 

parental layoff, grounded in empirical social science research on job loss, did not produce 

substantially more error than the best-performing model using data science techniques. 

Indeed, we find notably small differences across the results of our own models and between 

ours and better-scoring submissions to the Challenge. Given prior work emphasizing the 

relatively less self-selective processes governing job loss, these findings are not unexpected. 

They also do not speak to the utility of data science techniques and collaborative models of 

more self-selective social processes.

We caution that results predicting layoff in the Challenge, and future work using these 

models to estimate the effects of layoff, pertain to a particular type of job loss and a 

particular population. First, the effects of job loss vary according to how we characterize 

loss (i.e., treatment heterogeneity). Researchers typically include layoff, downsizing, and 

plant closing in studies of job loss, while the Challenge used only a measure of whether the 

primary caregiver experienced a self-reported layoff. Plant closings are a more exogenous 

form of loss than (more individualized) layoffs and involve different economic and 
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psychological consequences (Brand 2015). In addition, layoff in the Challenge pertains to 

disadvantaged primary caregivers, 90 percent of whom are mothers and almost half of whom 

are single parents. Results estimating effects of layoff on this group of individuals will likely 

differ from the results pertaining to the full population of workers experiencing a layoff (i.e., 

treatment effect heterogeneity). Brand and Simon Thomas (2014) show that children of the 

most disadvantaged single mothers experienced smaller reductions in social-psychological 

well-being and educational attainment. The effects of experiencing a layoff in this sample 

on subsequent outcomes will thus be influenced by both treatment and treatment effect 

heterogeneity and will not necessarily provide insight into the processes governing job loss 

among the majority of workers who experience loss.

Despite the limitations to drawing broader conclusions, future work on job loss will benefit 

from the knowledge advanced in this article and the Challenge more broadly. As data 

scientists develop increasingly powerful techniques, it will be important to marry those 

with social science knowledge about the particulars of social processes under consideration. 

Future research also should attend to whether small gains in predictive performance, like 

those we observe across models of layoff in the Challenge, significantly reduce selection 

bias and improve estimates of causal effects on subsequent outcomes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

Funding

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication 
of this article: This research made use of facilities and resources at the California Center for Population Research, 
UCLA, which receives core support from the National Institute of Child Health and Human Development, Grant 
R24HD041022. The ideas expressed herein are those of the authors. Funding for the Fragile Families and Child 
Wellbeing Study was provided by the Eunice Kennedy Shriver National Institute of Child Health and Human 
Development through grants R01HD36916, R01HD39135, and R01HD40421 and by a consortium of private 
foundations, including the Robert Wood Johnson Foundation. Funding for the Fragile Families Challenge was 
provided by the Russell Sage Foundation. The results in this article were created with Stata 14.2 (StataCorp 2015) 
for Macs using the following user-written commands and packages: fsum (Wolfe 2002) and estout (Jann 2005, 
2007). Replication code for this article is available with the manuscript on the Socius website.

Appendix:: Missing Data

We imputed missing data for several variables from the Fragile Families data. First, layoff 

is measured at the level of primary caregiver, but our covariates predicting layoff come 

from individual surveys—either the biological mother, the biological father, or a nonparental 

primary caregiver. The primary caregiver’s status (mother, father, nonparent) was asked in 

wave 5, for which 14 percent of the sample is missing. For these cases, we could not match 

covariates with the appropriate survey response and could not impute from prior waves. 

More than 90 percent of the primary caregivers of known status are mothers. We took 

advantage of the high likelihood that primary caregivers are mothers and used mothers’ 

information for missing primary caregivers. In other words, we assumed that the missing 

primary caregivers were the biological mothers of the children and used the mother’s data to 
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predict primary caregiver layoff in wave 6. We did this for all models reported in this article. 

We suspect this did not significantly affect our results because a case missing primary 

caregiver status in wave 5 was also likely to be missing in wave 6. Second, some data were 

missing in the manner that is typical of survey analysis. To handle these missing data, we 

used two different types of imputation: multiple imputation and single imputation. We first 

tested multiple imputation with model 1. Using Stata’s mi suite of commands, we used 

chained imputation with 10 imputations to impute variables that had 3 percent or more 

missing (see Table 1). We then tested whether results differed when we used a simpler, 

single imputation process. Results were virtually identical using both types of imputation, 

and the single imputation process is less computationally intensive. We therefore used the 

single imputation process in models 2 and 3. In sum, all models presented in Table 2 replace 

missing primary caregiver data with the biological mothers’ data. The imputation version 

of model 1 uses Stata’s mi suite of commands to conduct multiple imputation, and the 

imputation versions of models 2 and 3 use Stata’s single imputation command to impute 

missing data. Our imputed models nevertheless resulted in some missing predictions because 

we imputed only variables with at least 3 percent missing. After the submission window had 

closed for the Challenge, we reran these models using fully imputed predictors and found 

no substantive differences in our results. Finally, the Fragile Families Challenge required 

submissions to include predictions for all observations, and to comply with this requirement, 

we replaced remaining missing predicted probabilities with the mean of the layoff outcome 

variable in the training data (about 0.21).
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Figure 1. 
Mean-squared error from leaderboard and holdout samples, models 1 through 3, with and 

without imputation, with best prediction and baseline.

Note: Baseline is the mean-squared error produced by using the mean value of layoff in the 

training sample to predict layoff for all observations in the leaderboard and final holdout 

sample. Best prediction is the highest-scoring model, or the model that produced the lowest 

mean-squared error with layoff in the leaderboard and final holdout sample.

Ahearn and Brand Page 9

Socius. Author manuscript; available in PMC 2021 September 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Difference in predictive power between the baseline and the winning submissions for six 

outcomes in the Fragile Families Challenge.

Note: Difference in predicted power is the extent to which the best prediction, or the model 

that produced the mean-squared error for any given outcome, differs from the baseline 

prediction. The baseline is the mean-squared error produced by using the mean value of the 

outcome in the training sample to predict layoff for all observations in the leaderboard and 

final holdout sample.
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