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Abstract: The highly rapid spread of the current pandemic has quickly overwhelmed hospitals all
over the world and motivated extensive research to address a wide range of emerging problems.
The unforeseen influx of COVID-19 patients to hospitals has made it inevitable to deploy a rapid
and accurate triage system, monitor progression, and predict patients at higher risk of deterioration
in order to make informed decisions regarding hospital resource management. Disease detection
in radiographic scans, severity estimation, and progression and prognosis prediction have been
extensively studied with the help of end-to-end methods based on deep learning. The majority of
recent works have utilized a single scan to determine severity or predict progression of the disease.
In this paper, we present a method based on deep sequence learning to predict improvement or
deterioration in successive chest X-ray scans and build a mathematical model to determine individual
patient disease progression profile using successive scans. A deep convolutional neural network
pretrained on a diverse lung disease dataset was used as a feature extractor to generate the sequences.
We devised three strategies for sequence modeling in order to obtain both fine-grained and coarse-
grained features and construct sequences of different lengths. We also devised a strategy to quantify
positive or negative change in successive scans, which was then combined with age-related risk factors
to construct disease progression profile for COVID-19 patients. The age-related risk factors allowed
us to model rapid deterioration and slower recovery in older patients. Experiments conducted on two
large datasets showed that the proposed method could accurately predict disease progression. With
the best feature extractor, the proposed method was able to achieve AUC of 0.98 with the features
obtained from radiographs. Furthermore, the proposed patient profiling method accurately estimated
the health profile of patients.

Keywords: disease progression; deterioration prediction; feature extraction; sequence learning

1. Introduction

In late 2019, SARS-CoV-2 infections (later recognized as COVID-19) started appearing
in patients across China and quickly spread to the entire world, exhibiting highly con-
tagious characteristics [1]. Within months, the virus started a global pandemic, severely
overwhelming the healthcare infrastructure, even in the developed countries [2]. During
such emergency situations with unprecedented influx of patients, hospitals become severely
resource constrained. In the case of novel infectious diseases such as COVID-19, initial
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patient assessment is usually carried out utilizing radiographic imaging such as X-rays and
CT scans [3]. This initial assessment is highly crucial in determining the severity of disease
in order to establish an effective triage system for patients. Radiographic scans such as
chest X-rays (CXR) are a rapid way of examining patients for symptoms of lung-related
problems. They are primarily used for disease diagnosis but have also proven to be an effec-
tive modality for detecting disease progression [4]. Radiologists often use successive CXRs
to monitor the progression of infection in patients. Careful examination of CXRs reveal
where and how much improvement or deterioration has taken place, which is then used
to determine a future course of treatment. Although it may require a quick glance by an
expert radiologist, in emergency situations, automated assessment of disease progression
from radiographic scans can save precious time and can therefore be highly desirable.

Medical imaging is widely recognized as a vital resource for assisting radiologists to
diagnose diseases and monitor their progression. Chest X-rays, due to their fast imaging
speed, lower radiation, and relatively lower costs, are the most commonly used modality
for the examination and diagnosis of pulmonary diseases [5]. Although other modalities
such as computed tomography (CT) or magnetic resonance imaging (MRI) reveal high-
resolution, detailed anatomy in 3D mode, CXRs are widely available and inexpensive
and are therefore extensively used by radiologists [6]. Considering the widespread use
of CXRs in COVID-19 and other infectious pulmonary diseases, researchers have widely
investigated the use of image processing, machine learning, and techniques based on deep
learning to interpret them. Although sufficient success has been achieved in detection of
infectious diseases from CXRs, they are still regarded as the most challenging plain film to
interpret correctly [7].

Advances in artificial intelligence techniques, particularly deep learning, have led
to several breakthroughs in many challenging medical image analysis and interpretation
tasks, including detection, grading, delineation, and even understanding of pathological
disorders in radiographic scans [8]. The availability of huge volumes of imaging datasets
and the superior performance of learning algorithms have enabled methods based on
deep learning to surpass human experts in disease identification [9]. Regarding CXRs,
deep convolutional neural networks (CNNs) have been able to achieve highly desirable
performance in the detection and diagnosis of thoracic diseases as well as successfully
differentiate between bacterial and viral pneumonia [10]. In the case of COVID-19 infection,
early-stage CXRs reveal interstitial infiltration in peripheral lung and subpleural regions,
which gradually develops into ground glass opacities, and consolidations with varying
degree of densities [11]. The health of patients with COVID-19 infection can rapidly worsen
from a mild to moderate or severe state in a matter of days. In such a case, it becomes
necessary to monitor the progression of patients, thereby making it necessary to obtain
CXRs on a regular basis. Radiologists are therefore required to investigate the progression
of infection in patients by simultaneously reading the current and previous CXRs. It is a
cumbersome and sometimes challenging task to spot subtle changes in both scans. Hence,
an AI-assisted method to predict disease progression from successive scans becomes highly
beneficial.

Radiologists compare successive radiographic scans to determine disease progression
(i.e., change in disease status over time) in a particular patient. Most current prediction
systems work with a single scan to determine severity of a disease and utilize that scoring
to infer its prognosis. For instance, Signoroni et al. [12] developed a multipurpose network
to detect COVID-19 pneumonia, segment and align lung regions, and output severity
scores by dividing the lungs into six regions. A regression head was trained on a large
dataset with severity scores provided by expert radiologists for the purpose of estimating
disease severity. The model achieved a mean absolute error (MAE) of 1.8. In a similar
study, Cohen et al. [13] pretrained a DenseNet [14] model on 18 common radiological
findings from several publicly available datasets. A linear regression model was then
trained on severity scores for pneumonia extent and opacity scores provided by three
expert radiologists. Amer et al. [15] trained a deep learning model to simultaneously train a
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detection and localization model for pneumonia in CXRs. The localization maps were then
used to estimate a pneumonia ratio indicating severity of infection. Although these works
effectively determined disease severity, their use of a single image did not allow them to
compute the relative difference in successive scans. Sun et al. [16] used time-aware LSTM
to predict disease progression using demographics and laboratory tests. The outcome
was computed in terms of survival and mortality. The LSTM network received these
readings about patients at different times and attempted to predict survival or mortality.
They exhibited that their model was capable of predicting mortality with a high degree of
accuracy. Shamout et al. [17] showed that considering CXRs along with clinical tests and
patient demographics was paramount in predicting the risk of deterioration in the near
future. They were able to estimate a deterioration risk curve for patients that indicated the
occurrence of adverse events in the future. Pu et al. [18] utilized CT scans to determine
COVID-19 disease severity and progression through segmentation and registration of the
lung boundary. They identified the regions with pneumonitis and assessed progression
using the segmented regions. They also generated heatmaps to indicate the affected regions,
which were rated as “acceptable” by the radiologists. Feng et al. [19] also studied chest
CT scans along with clinical characteristics to predict disease progression. They scored
each of the five lung lobes on the basis of their involvement in the infection, and the scores
were then summed to obtain an overall severity score. A similar study was conducted
by Zhang et al. [20] to exhibit the capability of AI in determining disease progression
from CT scans. Sriram et al. [21] developed a deterioration prediction model in terms
of adverse events occurring within 96 h and mortality within the same duration from
single or multiple scans. They showed that utilizing the transformer-based architecture
yielded the best performance when used with multiple scans. Although the use of single
image to predict severity and disease progression is dominant in the existing literature,
we believe that a better estimation of disease progression could be made if multiple scans
are utilized simultaneously. In this regard, we propose to utilize multiple successive scans
(at least two) simultaneously to predict disease progression by comparison through deep
learning methods. We model disease progression as a sequence learning problem utilizing
CXR-specific features from successive scans. This strategy can be used in conjunction with
severity detection models, which can only predict severity scores but cannot differentiate
between two CXR with similar severity scores. There can be subtle changes indicating
improvement or deterioration within a particular severity class, which the existing methods
cannot detect. Automated patient monitoring systems can make good use of disease
progression systems that utilize successive scans to detect positive or negative changes.

The primary objectives of this study are as follows:

1. Development of a novel sequence learning strategy for successive radiographs that
can detect subtle changes in CXRs and determine improvement or deterioration.

2. Propose a patient profiling method to monitor disease progression in individual pa-
tients. The method incorporates positive or negative change in radiographs compared
to a reference scan, duration between scans, and patient age to model deterioration as
a function of time and age.

2. Materials and Methods
2.1. Datasets

In this study, we used a large dataset from the Valencian Region Medical Image Bank
(BIMCV COVID-19) [22], which contains 2465 COVID-19 CXRs from 1311 patients. From
this data, we extracted 1735 CXRs of 582 patients who had multiple scans from multiple
sessions along with the associated radiologist reports. The majority of patients had 2, 3, or
4 scans, whereas some patients even had 12 or 15 scans from subsequent sessions (frequency
distribution of the dataset is provided as Figure S1 in the Supplementary Material). This
subset was then annotated with the help of a radiologist in terms of improvement and
deterioration in the associated reports and visual examination of the scans (visual changes
that appear in CXR in response to COVID-19 infection is provided in Figure S2 in the
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Supplementary Material). There was insufficient number of samples with no change as
reported by the radiologist. Therefore, the no-change assessment was made on the basis of
confidence scores of the trained model such that smaller difference in both probabilities
was interpreted as negligible change or no change. The dataset was split into two sets of
training and validation, with proportions of 70% and 30%, respectively.

The second dataset was the COVID chest X-ray dataset [23], which was used to
evaluate the performance of the proposed disease progression detection method. From a
total of 472 patients, 177 were excluded because they had only one CXR. Therefore, 930 scans
from 295 individual patients were used. Each set of scans was annotated with various
attributes, including scan acquisition date, age, gender, survival, need for supplemental
oxygen, intubation, admitted to ICU, and others. This dataset was used to test cross dataset
performance of the proposed method to determine disease progression for individual
patients. It was also used to assess model robustness and effectiveness of the proposed
method. Figure 1 shows the population statistics for both the datasets used in this study.
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2.2. Proposed Progression Detection Framework

This method relies on a deep convolutional neural network to extract features from
individual radiographic scans. This network should be capable of identifying a wide
variety of abnormalities in CXRs. For this purpose, we trained a deep CNN to classify
CXRs into mild, moderate, and severe infections of COVID-19. Features extracted by
this network for a pair of scans were then fed into a long short-term memory (LSTM)
network for sequence learning. This sequence was then classified into two classes of
improvement and deterioration. The length of the sequence depended on the granularity
of the annotations. For image level annotations, the sequence consisted of feature vectors
from two images. Similarly, for lung and zone-level annotations, the sequence length was
increased to 4 and 12, respectively (Zone based segmentation of CXR is provided as Figure
S3 in Supplementary Material section).

The features were extracted from convolutional layers, where each neuron was sen-
sitive to a particular visual characteristic in the image. Corresponding features could
be compared to effectively learn about the changes in image characteristics. The LSTM
network then determined progression of the COVID-19 infection via sequence analysis.

Disease progression detection in this work was modeled as a multiclass classification
problem via sequence learning as follows:

y = fSeq(Xt−1, Xt) (1)

where the input is a pair of successive CXRs in the frontal view [Xt-1, Xt] and the output is
a label y ∈ {I, D indicating whether any improvement (I) or deterioration (D) is noticed in
the pair of scans, and fSeq is the sequence learning function. In order to achieve this, we
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utilized a pretrained model ChexNet [8] to extract CXR-specific features from both images.
Further details regarding each component in the proposed framework, shown in Figure 2,
are provided in the subsequent sections.

Int. J. Environ. Res. Public Health 2022, 19, x  5 of 17 
 

 

Disease progression detection in this work was modeled as a multiclass classification 
problem via sequence learning as follows: 

1( , )Seq t ty f X X−=  (1)

where the input is a pair of successive CXRs in the frontal view [Xt-1, Xt] and the output is 
a label y ∈ {I, D indicating whether any improvement (I) or deterioration (D) is noticed in 
the pair of scans, and fSeq is the sequence learning function. In order to achieve this, we 
utilized a pretrained model ChexNet [8] to extract CXR-specific features from both im-
ages. Further details regarding each component in the proposed framework, shown in 
Figure 2, are provided in the subsequent sections. 

 
Figure 2. Proposed disease progression detection framework. 

2.3. Feature Extraction 
Each scan in the pair of successive scans was separately fed to the ChexNet model 

for feature extraction. This network was pretrained on a large dataset containing images 
representing 14 different lung pathologies. The network was able to detect lung diseases 
at the level of an expert radiologist. For using this network as a feature extractor, the last 
classification layer of the network was dropped, and activations from the second last layer 
(7 × 7 × 1024) were obtained as feature maps. Each of these maps were generated by one 
of the neurons in the CNN that had become sensitive to a particular characteristic in the 
CXR image. The presence of that particular pattern was indicated by the position of the 
high activations in the map. The number of high activations in a map showed the size of 
that pattern in the scan. We believe that accumulating activations from each map reveals 
the strength of specific patterns in a particular CXR. Therefore, we used global average 
pooling (7 × 7) to obtain a 1024-dimensional feature vector for each image. Each value in 
this vector indicated the presence, absence, or strength of individual neuronal activations 
in the image. The output obtained from the feature extraction module is as follows: 

( )t ChexNet tF f X=  (2)

Figure 2. Proposed disease progression detection framework.

2.3. Feature Extraction

Each scan in the pair of successive scans was separately fed to the ChexNet model
for feature extraction. This network was pretrained on a large dataset containing images
representing 14 different lung pathologies. The network was able to detect lung diseases
at the level of an expert radiologist. For using this network as a feature extractor, the last
classification layer of the network was dropped, and activations from the second last layer
(7 × 7 × 1024) were obtained as feature maps. Each of these maps were generated by one
of the neurons in the CNN that had become sensitive to a particular characteristic in the
CXR image. The presence of that particular pattern was indicated by the position of the
high activations in the map. The number of high activations in a map showed the size of
that pattern in the scan. We believe that accumulating activations from each map reveals
the strength of specific patterns in a particular CXR. Therefore, we used global average
pooling (7 × 7) to obtain a 1024-dimensional feature vector for each image. Each value in
this vector indicated the presence, absence, or strength of individual neuronal activations
in the image. The output obtained from the feature extraction module is as follows:

Ft = fChexNet(Xt) (2)

where fChexNet is the feature extractor function (the ChexNet model in this case), Xt is the
input CXR image, and Ft is the resulting feature vector. The extracted features from both
scans were then constructed into a sequence, which was then utilized by the sequence
modeling module for learning. The sequence was obtained as follows:

FSeq = concat(Ft−1, Ft) (3)

In addition to extracting features from the entire image, more fine-grained features
were also extracted from each scan. Firstly, each lung was segmented from both scans,
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and features were extracted from them individually. For both the left and right lung in
each image, a separate 1024-dimensional feature vector was obtained. The sequence was
then constructed by combining the extracted feature vectors as given in (4), resulting in a
sequence length of 4.

FSeq = concat(FL
t−1, FL

t , FR
t−1, FR

t ) (4)

where FL
t−1, FL

t , FR
t−1, FR

t are the features extracted from left lung in the previous scan, left
lung in the current scan, right lung in the previous scan, and right lung in the current scan.
Here, the features extracted from individual lungs were considered as finer-grained and
more expressive compared to the features extracted from the entire image.

Going one step further, we also subdivided each lung into three zones of upper,
middle, and lower and extracted features from each zone using the ChexNet model. These
features were the most fine-grained features and regarded as the most expressive ones. The
sequence length in this case became 12. The final sequence in this case was constructed as
follows:

FSeq = concat(FUL
t−1, FUL

t , FML
t−1 , FML

t , FLL
t−1, FLL

t , FUR
t−1, FUR

t , FMR
t−1 , FMR

t , FLR
t−1, FLR

t ) (5)

2.4. Sequence Modeling

Convolutional feature output by neurons in deeper layers of the ChexNet model were
sensitive to specific properties in CXRs corresponding to the 14 abnormalities the network
was trained to recognize. The labeled sequences we generated from the dataset were
strictly unidirectional. If the order of the sequence were to be reversed for improvement or
deterioration, their labels would also get reversed, giving rise to a new sample. Utilizing
this strategy, we expanded our dataset by reversing pairs of images labeled “improvement”
to obtain a sample labeled “deterioration” and vice versa. These sequences were then used
to train the deep sequence learning model.

2.5. Deep Sequence Learning

Sequence learning is a common machine learning task, where an algorithm attempts
to learn from time series data such as text sentences, speech audio, videos, and sensor
readings to solve classification and regression problems. In this work, we employed deep
sequence learning technique to determine improvement or deterioration in successive
radiographic scans obtained over time. For this purpose, gated recurrent units were used
to perform sequence learning.

The inbuilt memory mechanism implemented via gates in GRUs allow it to effectively
model both short and long sequences without running into vanishing gradient problems.
These characteristics make it a suitable candidate for sequence learning of subtle change
detection in successive CXRs.

The sequence learning model was constructed using the ChexNet model, followed
by a GRU layer, a dense layer, and finally a classification layer. The input layer took
N images/patched from two successive scans depending on the granularity of feature
extraction, which were input to the feature extraction network (ChexNet). This network
output a 1024-dimensional vector for each image. The sequence constructed from N images
of the sequence was then forwarded to the sequence learning layer consisting of 1024 GRUs.
This was followed by a dense layer of 512 neurons, and finally the classification layer
output probabilities for the two classes (Complete network architecture is provided in the
Supplementary Material as Table S1).

2.6. Progression and Severity Detection

The proposed progression detection method can be used to estimate disease progres-
sion in CXRs when they are compared with known CXRs. The output of the detection
model predicting either improvement or deterioration if quantified can be far more useful
in determining progression. In an attempt to quantify the change in successive scans, we
devised a progression estimation function (PEF) where features from the current CXR was
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compared with those of the previous CXR and the normal reference CXR. The inverse
cosine similarity using deep features extracted from the ChexNet model was then used as
a quantification mechanism for positive or negative change in both scans. An additional
reference distance was also computed by taking the difference of the two CXRs from a
reference normal scan. Furthermore, age has also been noted as a potential risk factor
associated with COVID-19 patients. In this regard, we computed age risk factor for these
patients by analyzing historical data. A risk score was computed using (6) for each age
group (as depicted in Figure S4 in the Supplementary Material).

ageRFa =
1

A
∑

a=1
na

c

(na
d) (6)

where ageRFa is the risk factor associated with the age group a, na
d is the number of COVID-

19 cases in the age group a, and na
d is the number of COVID-19 deaths in the group. The

risk factor was simply the ratio of deaths in a particular age group to the total number of
COVID-19 deaths reported for a period of time. The risk factor scores for this study were
calculated from CDC data for the US [24].

This risk factor was then used as a penalty term in the PEF to determine overall
progression by modeling quicker deterioration and slower recovery rates for older patients
compared to younger patients. The algorithm for determining patient progression profile
is provided below as Algorithm 1.

Algorithm 1: Progression Estimation Function

Input:
Fref = The reference normal CXR
Fprev = The previous CXR
Fcurr, = The current CXR
d = The duration in days between the two successive CXRs
ageRF: Age risk factor computed from historical data using Equation (10)

PEF (Fref, Fprev, Fcurr, d, ageRF)

Extract features from all three input scans to construct feature vectors Fref, Fprev, and Fcurr using
FX = fChexNet(X)
Compute inverse cosine similarity between the feature vectors as
DCP = 1− cosine_sim(Fcurr, Fprev)
DCR = 1− cosine_sim(Fcurr, Fre f )
DPR = 1− cosine_sim(Fprev, Fre f )
Compute the relative difference between successive CXRs using the weighted summation
Di f f = w1.|DCR−DPR |+w2.DCP

d
The Diff is then added or subtracted to the previous profile score based on the prediction of the
sequence model, or the score remain unchanged if no change is reported.

St =


St−1 − Di f f + 1

t

t
∑

b=1
Sb × ageRF, fSeq(Xt−1, Xt) = “Improve”

St−1 + Di f f + 1
t

t
∑

b=1
Sb × ageRF, fSeq(Xt−1, Xt) = “Deter”

St−1 , fSeq(Xt−1, Xt) = “No Change”


Return St

Different sets of experiments were designed to determine optimality of the proposed
framework and evaluate its performance with the optimal set of parameters. For this
purpose, we experimented with a variety of feature extraction strategies from CXRs. Some
of the most capable CNN architectures were evaluated as feature extractors for our sequence
learning problem. Finally, the architecture of sequence learning model consisting of GRUs
was optimized through experimentation.
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2.7. Experimental Setup

The proposed framework was implemented in Google TensorFlow 2.4 (Google, Moun-
tain View, CA, USA) with CUDA support. All the experiments were performed on a PC
equipped with a 10th Gen Intel Core i7 CPU (Intel Corporation, San Jose, CA, USA) with
16 GB RAM and an Nvidia RTX 3060 GPU (Nvidia, Santa Clara, CA, USA) with 12 GB
memory, running Microsoft Windows 10 (Microsoft, Redmond, WA, USA).

3. Experimental Results

The proposed framework was experimentally evaluated on the BIMCV COVID-19
dataset and the COVID chest X-ray dataset to exhibit its effectiveness for disease progression
detection given successive CXRs of patients. The experimental setup, experiment design,
and disease progression results are provided and discussed in the subsequent sections.

3.1. Disease Progression Results

In this experiment, we studied a wide variety of state-of-the-art CNN models for their
feature extraction capabilities in radiographic scans. A number of recent deep learning
models were chosen, including RresNet-50 [25], InceptionV3 [26], InceptionResNetV2 [27],
ChexNet, and EfficientNet [28]. All the models except ChexNet were fine-tuned using a
large dataset of COVID-19 and non-COVID-19 scans [29]. These models were then used as
feature extractors to represent radiographic image sequences. To assess their performance
and compare them to features from the pretrained ChexNet model, we tested these models
in our image-based sequence learning experiment. The results presented in Table 1 show
that the ChexNet model pretrained on 14 different pathologies in CXRs outperformed the
fine-tuned models, proving that ChexNet is a superior feature extractor. Although the
other models performed reasonably well, their overall performance was not on par with
the ChexNet model. The performance of these models can be further improved if they are
trained on COVID-19-specific abnormalities, which is an endeavor for our future research.

Table 1. Performance evaluation of various feature extractors for image-based prediction.

Model Feature Dimension Precision Recall F-Measure AUC

ResNet-50 FT 2048 0.891 0.855 0.873 0.85
InceptionV3 FT 2048 0.883 0.880 0.881 0.88

InceptionResNetV2 FT 1536 0.892 0.892 0.892 0.89
EfficientNet-B0 FT 1280 0.886 0.852 0.869 0.84
EfficientNet-B2 FT 1408 0.871 0.866 0.867 0.87

ChexNet (DenseNet121) PT 1024 0.921 0.918 0.920 0.92

In the second experiment, we tested the performance of the ChexNet feature extrac-
tor with different feature extraction strategies as reported in Table 2. For image-based
scheme where the sequence length was 2, an AUC score of 0.92 was obtained. Significant
improvement was observed when lung-based and zone-based schemes were used to con-
struct longer sequences. The finer-grained features were found to be more expressive, so
significant improvement was noticed over the coarse-grained features in the image-based
scheme. We observed AUC of 0.96 for lung-based and 0.98 for zone-based feature extraction
schemes. The receiver operating characteristics (ROC) curves for all three schemes is shown
in Figure 3.

Table 2. Performance evaluation of ChexNet features with varying feature extraction approaches.

Granularity Precision Recall F-Measure AUC

Image-based 0.921 0.918 0.920 0.92
Lung-based 0.959 0.964 0.962 0.96
Zone-based 0.982 0.979 0.981 0.98
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In this experiment, we evaluated a variety of sequence learning architectures and units,
including LSTM and GRU. Their width and depth were also evaluated to determine the
optimal architecture for the disease progression detection problem. The architectures along
with their performance are shown in Table 3. The first configuration consisted of 1024 GRUs
followed by dense layer of 512 neurons and a classification layer based on two neurons. Its
performance was recorded to be the optimal one with an AUC of 0.98 on the test set. In
the second configuration, the number of GRUs was reduced by 50%, with a 7% decrease in
performance. We also experimented with two layers of GRUs with a dense layer based on
128 neurons, but the model overfit. Finally, we tested reducing the neurons in the dense
layer by 50% to witness 4% decrease in performance. Although the architecture evaluation
was not exhaustive, it would be interesting to see automatic configuration construction
using Auto-ML methods.

Table 3. Sequence learning architecture performance for zone-based prediction.

Architecture Precision Recall F-Measure AUC

1024 GRU + 512 FC + 2 FC 0.982 0.979 0.981 0.98
512 GRU + 512 FC + 2 FC 0.926 0.896 0.911 0.91

1024 GRU + 512 GRU + 128 FC + 2 FC 0.878 0.890 0.883 0.88
1024 GRU + 256 FC + 2 FC 0.944 0.938 0.941 0.94

3.2. Patient Progression Profile

Hospitalized patients are often subjected to radiographic scanning for their active
monitoring. An automatic assessment system capable of comparing successive scans
can be highly beneficial to the physicians and radiologists in effectively utilizing their
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precious time by prioritizing deteriorating patients. In this regard, our proposed method
can provide sufficient information to construct a patient progression profile where the first
scan is compared with a reference normal CXR and then each successive one is compared
with the previous one to determine progression over a period of time using the proposed
PEF algorithm. The duration between the two scans, along with the confidence scoring of
the proposed system, can be utilized to build the patient profile graph. A few samples of
different patients taken from the COVID chest X-ray dataset [23] along with their patient
profile graphs are shown in Figures 4–7. Each of the patient had three or more successive
scans. Their corresponding progression profile graphs shown in the figures below reveal
the capability of the proposed method in determining progression (both improvement and
deterioration) for active monitoring of hospitalized patients.
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Figure 5. (a) Subsequent radiographs belonging to a patient (173) who exhibited deterioration till
day 9 but showed improvement on day 10, which is reflected in (b) the disease progression profile
(red line). The patient was intubated but survived the infection.

The four scans in Figure 4a were taken from a female patient aged 72 years who did
not survive the infection. The first scan was taken on the first day of the infection, and
subsequent scans were obtained every following day. The patient profile graph indicates
consistent deterioration in the CXRs, as shown in Figure 4b. The rapid decline in health
of such older patients is quite common with COVID-19 infections, which the proposed
method was able to demonstrate in this sample.

The scans in Figure 5a were also obtained from a female patient aged 70 years whose
CXRs showed deterioration in the first three scans taken on the days 3, 7, and 9. However,
the scan obtained on day 10 exhibited slight improvement, which is depicted in Figure 5b.
Similarly, the scans in Figure 6a belong to a male patient aged 74 years. The subsequent
scans taken on days 7, 11, and 28 showed consistent improvement over the course of a
month. The improvement of the patient was accurately depicted by the proposed method.
Similarly, Figure 7a shows the scans obtained from a male patient aged 35 years. Deteri-
oration could be seen in the first three scans taken on days 4, 7, and 9. However, slight
improvement was noticed in the scan on day 10. The progression profile accurately depicted
the trend, as shown in Figure 7b.
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Figure 6. (a) Subsequent radiographs belonging to a patient (303) who exhibited improvement as
reflected in (b) the disease progression profile. The patient was intubated but survived the infection.

The performance of the proposed method in estimation of disease progression was
assessed quantitatively using the test dataset. Scans from 295 patients were included in
the evaluation where improvement was observed in 201 patients (68%), deterioration in
77 (26%), and both deterioration and improvement in 17 patients (6%). Table 4 presents
the performance metrics of precision, recall, and F-measure. The results indicated that the
proposed method was capable of accurately determining progression profile in all the cases.
For instance, deterioration and improvement in patients from the test set were detected
with 76% and 90% F-scores, respectively, whereas the patients whose scans exhibited both
states were detected with 70% F-score.

Experimental results showed that the proposed method could effectively model and
recognize patterns in successive radiographic scans for determining progression in COVID-
19 patients. Both older and younger patients were tested with the proposed method to
observe progression using successive chest X-ray scans. The proposed method shows
promise, and further research can improve the overall framework if more significant
variables are added to it.
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Table 4. Disease progression detection performance using PEF.

Scenario Bal. Accuracy Precision Recall F-Measure

Deterioration 0.84 0.71 0.82 0.76
Improvement 0.84 0.93 0.87 0.90

Deterioration + Improvement 0.80 0.67 0.73 0.70

Overall 0.82 0.77 0.81 0.78

4. Discussion

Previous studies have proposed a wide variety of methods to predict progression in
COVID-19 patients [4,16,18,19]. However, little attention has been paid to analyze time
series observations and modeling of the sequential characteristics of COVID-19 patients.
Radiologists regard it as essential to observe the relationship between historical and current
observations (vital signs, radiographic scans, physiological characteristics, lab tests, etc.) in
order to make informed decisions regarding patient health [16]. It has been found that more
accurate predictions regarding disease progression can be made by considering both histor-
ical and current readings. In this regard, Sriram et al. [21] studied methods based on both
single and multiple scans and found that the sequence-based models outperformed those
based on single scans. Their multi-image prediction method yielded superior performance
in predicting probabilities of ICU admission, intubation, and mortality. Their approach
utilized feature pooling and transformer to perform sequential analysis of multiple CXRs.
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The authors predicted adverse events with considerable accuracy, but individual patient
profiling was not performed. In a similar study, Sun et al. [16] showed that time series
analysis of clinical biomarkers can be effectively modeled in order to perform survival
prediction in COVID-19 patients. Although they were able to predict disease outcome, they
did not utilize radiographic scans. In another study, Jiao et al. [30] proposed a method
based on deep learning to predict patient admission, ICU admission, mechanical ventila-
tion, death, and discharge using CXR and clinical data including lab tests and vital signs.
However, they used a single image, and the method’s dependency on availability of clinical
data means its use is limited in situations where past observations are unavailable.

Several challenges exist when considering sequences of observations (radiographs or
other clinical records) for determining progression. Irregular interval between observations
and missing values are a few of the problems researchers have to deal with. Deep learning
methods have exhibited outstanding performance in prediction tasks. They have also been
found to achieve excellent performance in time series prediction. Disease progression detec-
tion is intuitively regarded as a sequence observation problem. Therefore, deep sequence
learning models are the best candidates for solving this problem. In this work, a method
based on sequence learning was proposed and evaluated on COVID-19 datasets to deter-
mine disease progression using successive radiographic scans. Deep convolutional features
from a pair of scans were utilized by the sequence learning model consisting of GRUs to
determine improvement or deterioration. The proposed method was able to predict the
change with considerable accuracy. This model forms the basis for a disease progression
estimation function that attempts to quantify change and construct disease progression
profiles for individual patients. The cases with both deterioration and improvements were
more challenging, yet the proposed method was able to detect changes and accurately
determine progression.

In most studies, deep learning models are considered as black boxes with very little
focus on their interpretability, which restricts their adoption in clinical settings. Medical
experts desire interpretable models and are keen to understand how the prediction can be
interpreted. In this regard, further work can be carried out with the proposed method to
make it interpretable up to some extent. One possibility is to incorporate gradient class
activation maps (GradCAM [31]) to visualize biomarkers in the sequence of radiographic
scans. It can be helpful for the radiologist if the model can highlight regions where im-
provement or deterioration has taken place. This will significantly reduce the time needed
to prepare the diagnosis report based on the sequence of scans. Similarly, inclusion of
other parameters such as comorbidities and other relevant clinical variables into the over-
all framework will enhance prediction performance of the method. Segmentation-based
preprocessing can also be incorporated to further enhance the proposed model. Finally,
the mathematical model of the framework needs to be improved so that the progression
estimation is carried out on a uniform scale, which would allow better overall management
of patients, particularly in emergency situations.

5. Conclusions

In this work, we showed that a deep sequence learning model can be used to determine
disease progression in COVID-19 CXRs. It was also observed that features extracted from
the ChexNet model were superior in their representation ability for COVID-19 CXRs.
The proposed method of deriving patient progression profile using positive or negative
change in conjunction with the patient age can also be used with other modalities of medical
imaging, such as CT scans, MRI, and skin lesion images, to monitor disease progression and
even predict prognosis. We believe that our method has promise and that further research is
needed to improve the radiographic scan comparison and patient profiling method, which
can be helpful in developing an automated triage system for use in unforeseen emergency
situations.

One of the shortcomings in the proposed method is that the progression profile is not
generated on a uniform scale. Therefore, in its current state, patient progression profiles
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cannot be directly compared to assess which patient is deteriorating faster compared to
the rest. Similarly, we have not considered other variables that add risk to deteriorating
patients in COVID-19, such as comorbidities.

In the future, we intend to use multipurpose deep learning methods to automatically
quantify improvement or deterioration in successive scans and also predict prognosis. We
also plan to use a diverse dataset to fine-tune models for detecting COVID-19-specific ab-
normalities along with their severity in a single end-to-end sequence learning architecture.
Furthermore, integration of other risk factors with the proposed method can reveal interest-
ing insights into disease progression and prognosis prediction of COVID-19 patients.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijerph19010480/s1, Figure S1: Frequency distribution of selected patients’ number of scans in
the dataset, Figure S2: Sample scans showing signs of deterioration as infection spreads in a patient
from (a) to (c), the area of infected region outgrows the normal lung area in (c), Figure S3: Zone-based
segmentation in CXR, Figure S4: Risk factors for age groups, Table S1: Proposed model architecture
for sequence learning in CXRs.
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