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ABSTRACT: Quantum chemical methods for calculating paramagnetic NMR observables are
becoming increasingly accessible and are being included in the inorganic chemistry practice.
Here, we test the performance of these methods in the prediction of proton hyperfine shifts of
two archetypical high-spin pentacoordinate nickel(II) complexes (NiSAL-MeDPT and NiSAL-
HDPT), which, for a variety of reasons, turned out to be perfectly suited to challenge the
predictions to the finest level of detail. For NiSAL-MeDPT, new NMR experiments yield an
assignment that perfectly matches the calculations. The slightly different hyperfine shifts from
the two “halves” of the molecules related by a pseudo-C2 axis, which are experimentally divided
into two well-defined spin systems, are also straightforwardly distinguished by the calculations.
In the case of NiSAL-HDPT, for which no X-ray structure is available, the quality of the
calculations allowed us to refine its structure using as a starting template the structure of
NiSAL-MeDPT.

■ INTRODUCTION
Quantum chemical analysis of paramagnetic shifts (pNMR) in
terms of the electronic structure of metal centers is gathering
momentum, thanks to the effort of computational and
experimental groups: the understanding of the electronic
structure allows for a deeper understanding of the magnetic
behavior of paramagnetic systems for the spectroscopic
characterization of inorganic compounds,1−9 for structure
analysis in bioinorganic chemistry,10−14 and also in view of the
development of (e.g.) single-ion magnets or qubits.15−23 With
this work, we want to challenge state-of-the-art QC methods to
accurately predict hyperfine shifts (both contact and pseudo-
contact) for an inorganic system the NMR properties of which
have been studied over decades. We select complexes of
nickel(II) coordinated by pentadentate salicylaldiminates with
dipropylenetriamine bridges (SAL-DPT), such as NiSAL-
MeDPT and NiSAL-HDPT (SAL = salicylaldiminate; DPT =
dipropylenetriamine), which are archetypical of high-spin
pentacoordinate complexes of this metal (Figure 1), being the
first to be designed to enforce thisat the timeunusual
coordination and spin state in nickel(II).24 These complexes
have very particular spectroscopic features:

(1) The 1H NMR spectra may span almost 1000 ppm (Figure
1)25,26 and, therefore, are used as benchmarks for NMR
hardware development and testing.27

(2) The hyperfine shifts originate from both contact and
pseudocontact contributions, none of the two being
negligible for some protons.

(3) Being intrinsically not symmetric, there are no magneti-
cally equivalent protons.

(4) However, the two enantiomers can interconvert into one
another; therefore, the signal of each proton (except for
those on the apical nitrogen) is always linked by chemical
exchange to the signal of the proton that is in the mirror
position.

In addition, the HDPT derivative does not easily crystallize;
therefore, there is no structure available for it.
All these features make these complexes an optimal

benchmark for testing the prediction of QC methods: pNMR
QC methods are not always in agreement with one another, as
far as the calculation of the pseudocontact shift (PCS)
contribution is concerned.28,29 A recent QC treatment differs
from the semiempirical approach based on the Spin Hamil-
tonian parameters for the inclusion of the nucleus-orbit coupling
(called in the literature Paramagnetic Spin-Orbit contribution),
and this difference breaks the link between the pseudocontact
shifts and the magnetic susceptibility anisotropy tensor.29 This
QC-based approach has been increasingly used to describe
inorganic and bio-inorganic systems,30−33,14 although the
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discrepancy was not completely understood. The inclusion of
further terms in the rigorous QC treatment has allowed for the
resolution of the ambiguity,34 demonstrating that the
pseudocontact shift is indeed dependent on the magnetic
susceptibility tensor and thus providing a definitive proof of the
McConnell−Robertson (or Kurland−McGarvey) equation35,36

r
Tr rrr(ppm)
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6 2χ χδ
π

= [ · − ]
(1)

where χ is the magnetic susceptibility anisotropy tensor, and r is
the metal−nucleus distance vector.
For the above reasons, we have performed a quantum

chemical analysis of the 1HNMR spectra of NiSAL-MeDPT and
NiSAL-HDPT and verified the computational predictions by
new experiments.

■ METHODS
Structure. The 3D structure of NiSAL-MeDPT was

obtained from the CCDC (accession number 1254189, ID:
SAIMNI10).37 The structure was subjected to refinement at the
DFT level of theory, with the B3LYP functional38−41 using
Ahlrichs polarized basis set def2-TZVP42,43 and Grimme’s
dispersion correction D3.44,45 The resolution of identity

approximation46,47 was employed with auxiliary basis set def2-
TZVP/J in order to speed up the calculations. CPCM implicit
solvent (chloroform) was used.48 The structure of NiSAL-
HDPT is not available and, therefore, it has been obtained by
substituting the methyl group with a hydrogen atom and
repeating the geometry optimization. All calculations were
carried out using the ORCA 4.2.1 quantum chemistry
package.49,50

Shifts. The “diamagnetic” contribution, i.e., the chemical
shift net of the contributions of the coupling with the unpaired
electron spins, has been calculated at the same level of theory as
the geometry optimization, using gauge-invariant atomic
orbitals and referencing to tetramethylsilane calculated under
the same conditions.
For the calculation of the PCS, we have used theMcConnell−

Robertson (or Kurland−McGarvey) equation (eq 1),35,36 using
the magnetic susceptibility tensor computed with the state-
averaged complete active space self-consistent field (SA-
CASSCF),51,52 accounting for the dynamic correlation by N-
electron valence perturbation theory to the second order
(NEVPT2)53,54 as described in detail in ref 55. The segmented
all-electron relativistically contracted version of Ahlrichs
polarized basis sets def2-TZVP56,57 and the second-order

Figure 1. Structure and 1H NMR spectra acquired at 1200MHz of NiSAL-MeDPT (panel a) and NiSAL-HDPT (panel b). The assignment indicated
in gray is the one proposed by Sacconi and LaMar; the assignment in black is the one obtained in the present work.
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Figure 2.Agreement between experimental andQC calculated shifts for NiSAL-MeDPT andNiSAL-HDPT, with the assignment proposed by Sacconi
and LaMar (panels a and c),25 and the theory-based reassignment (panels b and d), respectively. Agreement between experimental and QC calculated
shifts of theNiSAL-HDPToptimized structure (panel f) and comparison between initial (beige) and optimized (cyan)NiSAL-HDPT structure (panel
e). The QC calculated shifts, together with their FC, PCS, and diamagnetic contributions, and the experimental shifts of NiSAL-MeDPT and
optimized NiSAL-HDPT are reported in Tables S1 and S2, respectively. The linear regression lines are shown in red, and the equation and correlation
coefficient are given in the figures. Bisecting lines are shown in black as a guide to the eye.
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Douglas−Kroll−Hess Hamiltonian (DKH)58 were employed to
account for the scalar relativistic effects. The active space was
chosen to contain eight electrons in the five nickel 3d-based
molecular orbitals. All microstates arising from the d8

configuration were included in the calculation. The spin-orbit
coupling was treated using the spin-orbit mean field
approximation as implemented in ORCA.59 Note that the
Fermi contact tensor cannot be obtained properly by that same
approach since the CASSCF wave function lacks spin-polar-
ization and the NEVPT2 correction only pertains to the energy.
Hence, the Fermi-Contact (FC) contribution to the para-
magnetic shift was calculated at the same level of DFT as used
for the geometry and the diamagnetic chemical shift calculation,
but accounting for scalar relativistic effects through the DKH
Hamiltonian.58 Property calculations involving the application
of non-relativistic operators on relativistic wavefuctions include
picture change effects,60 and a finite nucleus model.61 A note on
the calculation of the contact shift term: ORCA provides the
hyperfine coupling constant A in MHz; the FC shift (in ppm) is
therefore given by δFC (ppm) = 2π1012AgisoμBS(S + 1)/
(3γHkBT).

62 The value of the isotropic g-shift is taken from the
DFT calculation for consistency: DFT has a tendency to
overestimate electron delocalization,63,64 whereas it under-
estimates the molecular g-matrix because of the lack of
configuration interaction and dynamical correlation.63,65,66

The isotropic g-shift calculated at the multireference level is
about 6−10% larger than that calculated at the DFT level in the
considered systems. Consequently, the contact shift values
would be increased by the same amount.

■ EXPERIMENTS
The complexes were prepared as described in ref 24, recrystallized from
dichloromethane/toluene and finally dissolved in deuterated chloro-
form for performing the NMR experiments. Caution!The health and
environment ef fects of the reported complexes have not been characterized.
Nickel(II) complexes may cause sensitization by skin contact; there is
limited evidence of carcinogenic ef fects and may cause long-term adverse
ef fects in the aquatic environment. Chloroform is a suspect carcinogenic
agent.
The NMR spectra were recorded on three instruments:

(1) A Bruker Avance III spectrometer operating at 400 MHz 1H
Larmor frequency (9.4 T) using a 5 mm, 1H selective probe
dedicated to paramagnetic systems (the nutation frequency of
the hard pulse is ca. 90 kHz).

(2) A Bruker Avance NEO spectrometer operating at 1.2 GHz with
a 28.2 T HTS/LTS hybrid magnet, using a 3 mm, triple
resonance TCI cryo-probehead (the nutation frequency of the
hard pulse is ca. 37 kHz; therefore, the excitation was achieved
with a small flip-angle 200 ns pulse length).

(3) A Bruker Benchtop NMR Fourier 80 device (1.9 T, the nutation
frequency of the hard pulse is ca. 27 kHz; therefore, uniform
excitation can be achieved over the considered chemical shift
range).

■ RESULTS AND DISCUSSION
In line with the expectations, the metal coordination in the DFT-
refined structures of both NiSAL-MeDPT (Figure S1, panels a,
d, g) and NiSAL-HDPT (Figure S1, panels b, e, h) is square
pyramidal, with a slight trigonal distortion: the two oxygen
donors are bent out of plane by about 12°. The effective
magnetic moment obtained with CASSCF-NEVPT2 is in line
with the experimental one: 3.33 B.M. for NiSAL-MeDPT
(experimental 3.34 B.M.) and 3.32 B.M. for NiSAL-MeDPT
(experimental 3.32 B.M.).

The first observation is that most of the calculated shifts agree
rather well with the experimental data of both complexes using
the assignments reported in ref 25 (Figure 2, panels a and c).
However, if the assignment of the methylene signals is reversed,
the agreement becomes nearly perfect for NiSAL-MeDPT
(Figure 2, panel b) and reasonably good also for NiSAL-HDPT
(Figure 2, panel d).
We have used NiSAL-HDPT to confirm this theory-based

reassignment because of the larger separation of the resonances:
a COSY spectrum recorded at 80 MHz shows three crosspeaks
(Figure S2):

(a) 288 ppm to 79.9 ppm.
(b) 259 ppm to 35.2 ppm.
(c) 79.9 ppm to −0.82 ppm.

Crosspeaks a and b are unambiguously attributable to two
geminal pairs, whereas c links one of the alpha methylene
protons to the vicinal beta methylene protons, establishing an
unambiguous connectivity. Finally, the presence of a strong
NOE response of the resonance at 288 ppm to the irradiation of
the one at 229 ppm and the presence of an exchange response of
the resonance at −1.9 ppm to the irradiation of the one at −8.5
(Figure S3) remove all the ambiguities in the two propylene
branches, but that between the two signals at 117 and 111 ppm,
which could not be resolved experimentally. The connectivity
obtained in this way is perfectly compatible with the assignment
obtained from the comparison between computed and
experimental spectra.
The COSY spectrum acquired at 400 MHz allows for tracing

the connectivity in the two rings (Figure S4), resulting in a
pattern of the type (from downfield to upfield, Figure 1) 4-4′; 6′-
6; 5-5′; 3-3′, which is again confirmed by the calculations.
In a situation in which the assignment obtained from the

calculations is fully confirmed by the experimental data, the
reliability of the theoretical calculations is strongly supported.
On this basis it is possible to interpret the small discrepancies
between observed and calculated shifts obtained for the HDPT
derivative (whose structure is not experimentally determined
but only modeled on that of the MeDPT derivative) in terms of
minor structural changes. Most of the deviation relates to the
alpha methylene protons, where the calculation appears to be
underestimating the contact contribution, especially for α1 and
α2, whereas α′1 and α′2 deviate much less. Bearing in mind that
this structure is not experimental, it is reasonable to think that
the structure may need to be altered. Therefore, we have
performed a very coarse scan (9 steps, ca. 7° for each) of the
dihedral angles formed by α1 with its carbon, the apical nitrogen,
and the nickel ion, around the initial position of −172.9°
(187.1°) found in the optimized structure. From a qualitative
viewpoint, this angle is likely the strongest determinant of the
contact shift because it controls the overlap of the hydrogen
nuclei with the orbitals of the donor atom overlapped with the
metal orbitals bearing the unpaired electron.67−70,62,71 When α1
is 172.9° (Figure 2, panel e, and Figure S1, panels c, f, i), the
agreement to the experimental data becomes very good and
comparable in quality to that of the MeDPT derivative (Figure
2, panel f).
We feel that a further comment is needed on the strategy we

adopted in this work. In line with recent literature on the
calculation of magnetic,72,73 EPR, and NMR proper-
ties,14,17,18,21,74,75,30 we apply single point calculations per-
formed on minimum positions achieved by optimization at the
DFT level; therefore, the results do not include effects that are
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due to mobility or dynamics. The latter are, indeed, very
important in the calculation of relaxation properties.76−78

Conversely, to calculate shift/susceptibility values, a symmetric
averaging around a single minimum position is not expected to
yield average values significantly different from the values
calculated in the average position. Calculations of magnetic
properties from structural ensembles are currently too
demanding for routine applications. However, we expect that,
with the improvement in the computers and in the computa-
tional tools, all the calculations needed to average among the
accessible states (e.g., calculated through ab initio molecular
dynamics) will become feasible in the near future, providing
access not only to thermal effects but also to solvent effects, as
recently discussed in refs 79 and 80.

■ CONCLUSIONS
The first evidence of the existence of five coordination in
transition metal complexes and, in particular, of high-spin 5-
coordinate nickel(II) complexes81−83 was put forward in the
1960s by the Institute of General Chemistry of the University of
Florence, founded and directed by Luigi Sacconi. To gain
further insight into this unusual coordination, Sacconi, together
with Ivano Bertini in 1966, developed the SAL-DPT class of
ligands.24 These pentadentate ligands are sufficiently rigid and
bulky to enforce pentacoordination and to sterically discourage
the access to the sixth coordination position, and the N- and O-
donors favor the high-spin configuration.84 They were among
the first paramagnetic compounds ever addressed by NMR,25

and therefore extremely well characterized. However, the
present calculations gave a strong hint toward reassigning the
signals, which could be verified by measuring at low field, and
provided a complete site-specific assignment that would have
not been achievable on a purely experimental basis. This work
thus demonstrates that the combined use of experiments and
calculations can reveal details that are not easily accessible by
experiment alone and suggests how to perform the experiments
to resolve ambiguities. Finally, the minor, but significant,
refinement of the HDPT derivative structural model suggests
that the quality of QC calculations has reached such a maturity
so as to experimentally determine the structure of metal
complexes starting from homologous compounds.
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