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Abstract

Snow algae inhabit unique environments such as alpine and high latitudes, and can grow and bloom with visualizing on
snow or glacier during spring-summer. The chrysophytes Ochromonas smithii and Ochromonas itoi are dominant in yellow-
colored snow patches in mountainous heavy snow areas from late May to early June. It is considered to be effective utilizing
the xanthophyll cycle and holding sunscreen pigments as protective system for snow algae blooming in the vulnerable
environment such as low temperature and nutrients, and strong light, however the study on the photoprotection of
chrysophytes snow algae has not been shown. To dissolve how the chrysophytes snow algae can grow and bloom under
such an extreme environment, we studied with the object of light which is one point of significance to this problem. We
collected the yellow snows and measured photosynthetically active radiation at Mt. Gassan in May 2008 when the bloom
occurred, then tried to establish unialgal cultures of O. smithii and O. itoi, and examined their photosynthetic properties by a
PAM chlorophyll fluorometer and analyzed the pigment compositions before and after illumination with high-light
intensities to investigate the working xanthophyll cycle. This experimental study using unialgal cultures revealed that both
O. smithii and O. itoi utilize only the efficient violaxanthin cycle for photoprotection as a dissipation system of surplus energy
under prolonged high-light stress, although they possess chlorophyll c with diadinoxanthin.
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Introduction

Oxygenic phototrophs born and living in an aquatic environ-

ment had to evolve efficient systems for trapping light because light

attenuates drastically and the wavelength distribution altered with

depth in the water column. However, on land, green plants faced

the problem of dealing with very strong light [1]. If photosystem II

(PSII) over works with such strong light, excess active oxygen is

produced which causes damage to the photochemical apparatus

(photoinhibition) [2–5]. Thus, to live and survive in a terrestrial

environment, green plants had to evolve additional countermea-

sures against fluctuating light intensities. In low light (LL), it is

advantageous to collect photons as efficiently as possible; however,

when light intensities become supersaturating for photosynthesis,

phototrophs need to protect themselves from potential damage

due to excess energy absorption. Antenna carotenoids play

important roles in both situations [6–8], i.e., in light harvesting

as well as in photoprotection.

It has been generally recognized that photosynthetic organisms

using the two major xanthophyll cycles to regulate dissipation of

surplus light energy [9,10] on a short time scale [11,12] utilize

either the violaxanthin (Vx) cycle, a reversible conversion of Vx,

antheraxanthin (Ax), and zeaxanthin (Zx) in higher plants and

green algae [13,14] or the diadinoxanthin (Ddx) cycle, a

conversion of Ddx and diatoxanthin (Dtx), in some chlorophyll

(Chl.) a/c-containing algae such as diatoms, dinophytes, and

haptophytes [15–17; Fig. 1]. Although the Vx cycle comprises two

deepoxidation steps, the Ddx cycle involves a single step because

only one of the ionone rings of Ddx carries an epoxide group

(Fig. 1).

Snow algae inhabit unique environments such as alpine and

high latitudes, they are especially well known in Europe, North

America, Japan, the Arctic as well as Antarctica and the

surrounding islands [18–24]. During the 20th century, many

studies have been conducted on these algae to identify the different

species growing on or in snow and describe the species responsible

for red, green, yellow, orange, and gray snow (a comprehensive

summary of the current state of knowledge of systematics,

occurrence, and physiology of snow algae is given by Hoham &

Duval [25]). Algae belonging to the families Cyanophyta,

Chlorophyta, Euglenophyta, Chrysophyta, Pyrhophyta, and

Cryptophyta have been found in snow; however, the population

sizes of snow algae are best known for Chlorophyta (i.e.,

Chlamydomonas and Chloromonas), which color the snow green, red,

and orange [26,27].

The chrysophytes Ochromonas smithii and Ochromonas itoi dominate

in yellow-colored snow patches (Fig. 2) and are frequently

encountered in heavy snow-affected mountainous areas facing
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the Japan Sea, from late May to early July, even though the areas

are less than 1000 m above sea level. These algae bloom, and

make the snow color deeply and visualize within short snowmelt

season in which the snow still remain and solar irradiance reaching

the snow surface is the highest time of the year. Not only the O.

smithii and O. itoi but also all snow algae can live and bloom with

visualizing on snow or glacier during spring-summer, although

they are subject to extremes in terms of cold temperatures, low

nutrient availability, and high solar irradiance levels [28,29]. In

such low temperature and nutrients condition, photosynthetic

productivity are generally limited by light [30], and also

phototrophs are susceptible to photoinhibition. While the

existence and growth of snow algae are still an enigma during

snowless season [31], it is highly probable that they are dormant

over the period from the data of their growth temperature zone

[32]. Then it has a critical implication to proliferate and have an

ability increasing the population in a very limited snowmelt time.

It is considered to be quite effective utilizing the xanthophyll cycle

and holding sunscreen pigments as protective system for snow

algae in the vulnerable environment by light such as low

temperature and strong light. Snow chlorophytes comprising a

majority of snow algae all over the world, are considered to be able

to regulate strong light by utilizing Vx cycle, however there has

been poor previous studies experimentally demonstrated. More-

over, there is no knowledge about photo-regulation of chryso-

phytes snow algae. Part of the reason that the experimental study

has not been curried out before is that it is difficult to isolate and

grow as unicellular cultures, and determine the photosynthetic

properties for these snow algae.

A question arise how can the chrysophytes snow algae grow and

bloom under such a low temperature and nutrients, and strong

light environment? To dissolve this question, we studied with the

object of light which is one point of significance to this problem.

Therefore, we tried to establish unialgal cultures of O. smithii and

O. itoi, and examined their photosynthetic properties such as non-

photochemical quenching (NPQ) and the corresponding function

of xanthophyll cycling before and after illumination with high-light

(HL) intensities in an experiment by using the cultivated strains.

Results and Discussion

It is considered to be quite effective utilizing the xanthophyll

cycle as protective system for snow algae because they live in the

vulnerable environment by light such as low temperature and

strong light and have an ability increasing the population in a very

limited snowmelt time. How can the chrysophytes snow algae

grow and bloom under such a low temperature and nutrients, and

strong light environment? To dissolve this question, it is important

to study with the object of light which is one point of significance

to this problem. However any experimental studies have not been

curried out previously, and this was partly due to the difficulty to

establish unicellular cultures and determine the photosynthetic

properties for the chrysophytes snow algae. Therefore, we

collected the yellow snow samples and measured photosyntheti-

Figure 1. Molecular structures of the xanthophyll cycle pigments mentioned in the text. Arrows between pigments denote enzymatic
conversions caused by xanthophyll cycling.
doi:10.1371/journal.pone.0014690.g001
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cally active radiation (PAR) at Mt. Gassan, Japan when the snow

algae bloomed. Microscopic observation of the snow sample was

performed to determine the dominant species, and then, we tried

to establish unialgal cultures of each dominant species. Using the

unicellular cultures, the light irradiation experiment was done to

elucidate the working of xanthophyll cycle and the corresponding

xanthophyll cycle pigments. The pigment compositions were

analyzed by a high performance liquid chromatography (HPLC)

after cessation the de-epoxidase activity in the xanthophyll cycle

(Fig. 1), and their photosynthetic responses such as maximum

quantum yield of PSII, relative electron transport rate (rETR), and

NPQ using a pulse amplitude modulation (PAM) chlorophyll

fluorometer, to make sure the working of xanthophyll cycle and

which pigments are utilizing in these chrysophytes snow algae

before and after illumination with HL intensities (1500 mmol/m2/

s) by using the cultivated strains.

Yellow snow algal community collected at Mt. Gassan in May

2008 was dominated by two freshwater chrysophytes, O. smithii

and O. itoi, which form extensive colorations of snow (Fig. 2).

While the temperature on the snow surface was at about 0uC, such

the cold environment is not enough to perform photosynthesis for

the common algae. However the two species can grow up at 0uC
and this means that they are adapted to cold environment.

Unicellular cultures of O. smithii and O. itoi were established

aseptically for the first time ever, at 4uC in AF-6 medium with

10 mmol/m2/s of PAR. O. itoi is 2–3 mm diameter of spherical or

piriform cell, and there is one discotic chloroplast and no cell wall,

they have two anisometric flagella (Fig. 2B). O. smithii has about

10 mm diameter of cell, and spiny projections, and a discotic

chloroplast, non cell wall, and two anisometric flagella as O. itoi.

Although there are one or two spiny projection(s) on the cell

surface and it is similar to tetrapod-like form in morphology

(Fig. 2C), the morphology transformation is observed from

tetrapod to non-spiny spherical form under the cultural condition.

Both two species were observed that the cells explode under room

temperature.

Using a PAM chlorophyll fluorometer, chlorophyll fluorescence

binding to PSII were measured and PSII yield, rETR, and NPQ at

various light intensities were determined. Chlorophyll fluorescence

indicates the energy destination after the absorption into the

chlorophylls, such as photochemical reaction at PSII, heat,

fluorescence, and photochemical reaction at photosystem I (PSI).

Maximum quantum yield of PSII (PSII yields under no actinic

light which was obtained from dark adapted cells, indicating the

stress condition) of O. itoi was 0.70 (Fig. 3A) under LL (10 mmol/

m2/s). This indicates that they were not subject to stress,

compared with the healthy non-stressed yield of benthic algae

and phytoplankton (0.65, cf. [33]). Photo-inhibition of O. itoi was

observed at 495 mmol/m2/s of PAR (Fig. 3B), and NPQ indicating

xanthophyll cycling was detected from 145 mmol/m2/s of PAR

(Fig. 3C) in the LL condition. After 6-h HL irradiance, there was

slight decrease in the maximum yield of PSII to 0.63. Relative

electron transport rate also declined. NPQ was detected at

96 mmol/m2/s of PAR, and the value at a high PAR range

(,332 mmol/m2/s) was lower than that before illumination with

HL. Clearly observed NPQ in both algae despite a 10 mmol/m2/s

LL condition, shows that they intrinsically provide a highly

functional heat dissipation system by xanthophyll cycling, and the

detected NPQ at lower PAR after HL treatment suggests that they

could obtain higher ability of xanthophyll cycling with response to

the strong light than under LL (Fig. 3C). Because of this

investment in photo-protection, the photosynthetically light use

efficiency may have led to be lower throughout the whole light

intensities under HL condition.

From the pigments analysis using a HPLC, both O. itoi and O.

smithii possessed pigments not only typical of those found in

chrysophytes, Chl.a and c, and the primary carotenoids, a- and b-

Car, Fx, and Ddx as xanthophyll cycle pigments, but also, in

Figure 2. Microscopy photographs of A, Ochromonas itoi; B, Ochromonas smithii; C, landscape of yellow snow caused by Ochromonas
itoi and Ochromonas smithii on/in the deposited snow surface in Mt. Gassan.
doi:10.1371/journal.pone.0014690.g002
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addition, a series of Vx cycle pigments, Vx, Ax, and Zx in LL

before HL illumination (Table 1). This results suggested that the

chrysophytes snow algae dissipate surplus light energy using both

xanthophyll cycles, as reported in a previous study showing that

algae with Chl.a/c display the Ddx and Vx cycles [34].

After 6-h HL irradiation, all four pigments increased in O. itoi

(Vx: 15.7 (60.288)–18.9 (60.108); Ax: 0.293 (60.0158)–1.12

(60.00711); Zx: 0.212 (60.00387)–0.504 (60.00327); Ddx: 0.650

(60.0255)–1.06 (60.0234); Fig. 4). Decrease in Ddx and Vx from

0.378 (60.0234) mol/100 mol Chl.a to 0.353 (60.000462) mol/

100 mol and from 14.1 (60.108) mol/100 mol to 13.4 (60.105)

mol/100 mol, respectively, and increase in Ax and Zx from 0.322

(60.0174) mol/100 mol to 1.26 (60.0240) mol/100 mol and

0.427 (60.00341) mol/100 mol to 0.971 (60.00258) mol/

100 mol, respectively, were observed in O. smithii. Although the

pool size of Vx cycle pigments (Vx+Ax+Zx) increased in both

species, Dtx was not detected. The values are means of three

independent measurements, and error estimates in parenthesis are

standard deviations. This increase of the Vx cycle pool size

supports to the photosynthesis data in which showed the detected

NPQ and the decrease of light use efficiency at lower PAR after 6-

h HL irradiation. In LL illumination after 6-h HL, Vx, Ax, and Zx

in O. itoi began to decrease after 5 min, and Ax and Zx then

continued to decrease until 30 min (Fig. 5A). Ddx also decreased

at 5 min; however, Dtx was never detected (Fig. 5B). Then, Vx

and Ddx did not almost change during 1-h HL after 6-h HL

followed by 1-h LL, but Ax and Zx gradually increased for 1 h

(Fig. 6). These results showed that the deepoxidation reactions

from Vx to Ax and Zx and the epoxidation reactions from Ax and

Zx to Vx occur under HL and LL, respectively. Although the two

snow algae were thought to utilize both Ddx and Vx cycles as

xanthophyll cycles at first, the pigments analysis after HL and the

time-course irradiation experiment confirmed that only the Vx

cycle operates in both snow algae, even though they possess Ddx.

The molar ratios of Ddx/Chl.a shown in Table 1 clearly indicate

that the amount of Ddx is too low to be functional in

photoprotection.

Chlorophyta are one of the most evolutionarily ancient

eukaryotic alga which is considered to have been born by a

primary endosymbiosis of a photosynthetic cyanobacterial-like

prokaryote inside a eukaryotic phagotroph [35], and fossils have

been found from Precambrian times. Chlorophyta originated in

the ocean; they then succeeded in colonizing land after

completion of the ozone layer. Coping with strong light was a

big problem for them in the terrestrial environment. They

consequently developed a system to avoid damage to the

photochemical apparatus for dissipating excess light energy as

heat by production and decomposition reactions called the

xanthophyll cycle with Vx-Ax-Zx. According to a generally

accepted theory, Chl.a/c-containing algae evolved from red

algae, which are also one of the most ancient eukaryotic alga, by

a secondary endosymbiosis over a long natural history of

oxygenic phototrophs [35]. Almost Chl.a/c-containing algae

are thought to possess a Ddx cycle as the xanthophyll cycle in

place of the Vx cycle [15], but some Chl.a/c-containing algae are

known to hold either the Vx cycle or Ddx cycle [36–37]. Both

Ax and Dtx have 10 conjugated double bonds; however, the

degree of conjugation is thought be higher in Ax than Dtx

because the terminal conjugated double bond of Dtx is located at

some distance from the next one (Fig. 1). Therefore, the

quenching ability is higher in Ax because there are two reaction

steps in the Zx cycle, and the energy gap from Chl.a is larger in

Ax with its lower energy level of singlet excited states (S1) than

Dtx [38]. Therefore, the Ddx cycle as a system that regulates a

small amount of light energy is considered suitable for almost

Chl.a/c-containing algae that live and have evolved under water

being low-intensity light environment. Vx is rarely seen in

chrysophytes, but diatoms which bloom in spring in ocean and

possess the same Chl.a/c as chrysophytes prevail utilizing the

Ddx cycle as dissipation system [39–42]. Considering this

knowledge and the results of this study, it seems that Chl.a/c-

containing algae develop the xanthophyll cycle depending on

their each habitat.

This study’s algae grow and bloom on snow deposits on beech

forest (deciduous forest) floors in early spring (mid-May to early-

June). This is a unique light environment because the intensity of

sunlight fluctuates drastically due to sudden direct light shining

through the young leaf canopy combined with reflection and

scattering of sunlight on the snow surface. In fact, PAR value at

noon during the blooming period, measured by a spherical sensor,

immediately changed from 1842 mmol/m2/s to 3843 mmol/m2/s

in less than 5 min from 11:55 am to 12:05 pm on 26 May. It is

quite significant to utilize the xanthophyll cycle as one of

protective system for snow algae to live and bloom in the

Figure 3. Change in photosynthetic responses of Ochromonas
itoi determined by a PAM fluorometer before illumination and
after 6-h high-light (HL) illumination. A, Relationship between
photosynthetically active radiation (PAR) and photosystem II (PSII) yield;
B, relationship between PAR and relative electron transport rate (rETR);
C, relationship between PAR and non photochemical quenching (NPQ).
doi:10.1371/journal.pone.0014690.g003
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vulnerable environment by light under low temperature during a

very limited snowmelt time. However any experimental studies on

snow algal xanthophyll cycling have not been curried out

previously, especially for chrysophytes snow algae. In this study,

we have succeeded to establish the world’s first unialgal cultures of

two dominant snow algae in the yellow snow. Using the unicellular

cultures, our experimental study demonstrated that the chryso-

phytes snow algae have high photoprotection ability, and in

addition, they perform it by utilizing not Ddx cycle, but only

efficient Vx cycle under strong light. The Ddx cycle which almost

Chl.a/c-containing algae utilized may be unnecessary for the snow

algae because their extreme habitat, and this may be the reason for

populations of snow algae being dominated by chlorophyta

[28,29] definitely possessing this effective Vx-Ax-Zx system.

Moreover, the chrysophytes snow algae could have survived and

bloomed along the course of evolution with adapting to this unique

snow environment by acquiring the high regulation system against

light.

Materials and Methods

Algal strains and culture conditions
The chrysophytes O. smithii and O. itoi were sampled from snow

deposited on Mt. Gassan (38u309N, 139u609E), Yamagata

Prefecture, Japan, in May 2008. Unicellular cultures were

established aseptically using AF-6 medium (cf. Microbial Culture

Collection, National Institute for Environmental Studies, Japan;

http://mcc.nies.go.jp/02medium-e.html;jsessionid = 23C606E10

56F4DC40E66FF01A0F561AE#AF-6) at 4uC in 500 mL conical

flasks with continuous LL illumination of 10 mmol/m2/s PAR, as

measured in the empty culture vessels. Chl.a concentrations of both

Table 1. Pigment composition of Ochromonas itoi and Ochromonas smithii before high light (HL) and after 6-h HL incubation.

Pigments [mol/100 mol Chl.a]

Chl.a *1 Chl.c Fx Ddx Dtx Vx Ax Zx *2 a+b-Car

Before HL O. itoi 100 16.1 55.4 0.650 0 15.7 0.293 0.212 20.5 (a+b)

s.d. - 0.0968 0.397 0.0255 - 0.288 0.0158 0.00387 0.304

After 6-h HL O. itoi 100 27.1 64.6 1.06 0 19.0 1.12 0.504 26.8

s.d. - 0.0146 0.0204 0.0234 - 0.108 0.00711 0.00327 0.300

Before HL O. smithii 100 17.3 58.3 0.378 0 14.1 0.322 0.427 6.29 (b)

s.d. 0 0.0361 0.155 0.0234 - 0.108 0.0174 0.00341 0.0214

After 6-h HL O. smithii 100 17.3 57.5 0.386 0 13.3 0.979 0.835 6.19 (b)

s.d. 0 0.00474 0.0184 0.000462 - 0.105 0.0240 0.00258 0.0256

Chl.a, chlorophyll a; Chl.c, chlorophyll c; Fx, fucoxanthin; Ddx, diadinoxanthin; Dtx, diatoxanthin; Vx, violaxanthin; Ax, antheraxanthin; Zx, zeaxanthin; a-Car, a-carotene;
b-Car, b-carotene. Values are means of three independent measurements, and s.d. are standard deviation.
*1 Chl.c, Chl.c1+c2.
*2 a-Car and b-Car were not absolutely separated using this study’s HPLC method. a-Car was only detected in O. itoi.
doi:10.1371/journal.pone.0014690.t001

Figure 4. Changes in xanthophyll cycle pigments in Ochromonas
itoi and Ochromonas smithii after 6-h high-light (HL) incubation.
doi:10.1371/journal.pone.0014690.g004

Figure 5. Time course of xanthophyll cycle pigment changes in
a cell suspension of Ochromonas itoi in low-light (LL) during 1-h
illumination after 6-h high-light (HL) illumination. Pigments are
normalized to chlorophyll a (Chl.a). Values are means of three
independent records, and error bars are standard deviations. A,
Epoxidation of zeaxanthin (Zx) from antheraxanthin (Ax) to Vx; B,
epoxidation of diatoxanthin (Dtx) to diadinoxanthin (Ddx).
doi:10.1371/journal.pone.0014690.g005
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algae were kept at 1–2 mg/L, as determined by fluorescence

measurements. At this density, all cultures were colored yellow or

gold.

Light irradiation experiment
The cultures were exposed to 6-h HL with 1500 mmol/m2/s

PAR by cold light (HL-150, HOYA) with gentle stirring at 4uC in

a temperature-controlled chamber, followed by 24-h LL to

acclimation before the experiments started. After 6-h HL

exposure, three sets of time-course experiments were conducted

as follows. The cultures were returned to the LL condition for 1 h,

and then 10- and 2-mL aliquots from the cultures were sampled at

5-min intervals for pigment analysis and photosynthesis measure-

ments, respectively. Immediately after sampling for pigment

analysis, dithiothreitol was added at a final concentration of

300 mM to the sampled cells to stop the de-epoxidase activity in

the xanthophyll cycle [40–42]. Cells were then centrifuged at

150006g and 4uC for 5 min, and the precipitate was freeze-dried.

The samples were extracted in N,N-dimethylformamide solution at

220uC for 20 h in darkness. After 1-h LL, each culture was again

exposed to HL until 1 h, and pigment analysis and photosynthesis

measurements were performed as described above.

Measurements of photosynthesis
Photosynthetic yield (PSII quantum yield) and NPQ were

measured using a Water-PAM fluorometer (Waltz) with control

and analysis software, Win-control, under nine stepwise actinic light

intensities (0, 96, 145, 214, 332, 495, 707, 988, 1644 mmol photons/

m2/s of PAR with 30 s duration) and .2,000 mmol photons/m2/s

of saturating pulse with 0.4 s duration for determination of the light

photosynthetic rate (determined as relative electron transport rate,

rETR) at 4uC in a temperature-controlled chamber. The gain value

of photoelectric multiplier (PM-Gain) was set to 3 throughout the

whole measurements. After incubation of each sample in dark

conditions for 10 min, 2 mL of the sample was transferred to the

measuring quartz cuvette of the fluorometer, and a stirring

apparatus was installed. Light curves were obtained by running a

rapid light curve protocol in Win-control software. The photosyn-

thetic rate, expressed as rETR [43], was as follows:

NPQ ~ Fm { Fm’ð Þ=Fm’ | PAR ð1Þ

where F and Fm’ are the transient and maximum fluorescence levels

at certain actinic light intensities at a given time. Then (Fm’ 2 F)/

Fm’ indicates PSII yield, and PAR is the photosynthetically active

radiation. NPQ was as follows:

NPQ ~ Fm { Fm’ð Þ=Fm’ | PAR ð2Þ

where Fm is the maximum fluorescence level of non-illuminated

samples.

Pigment analysis
The extracted samples were purified using 0.20-mm, PTFE, HPLC

syringe cartridge filters (DISMIC-13JP, ADVANTEC). Separation

was achieved using a Shimadzu Prominence series HPLC (LC-20AT)

with a system controller (CBM-20A), refrigerated autosampler

compartment (SIL-20A), thermostatically controlled column com-

partment (CTO-10ASVP), dual pump with in-line vacuum degasser

(DGU-20A), and photodiode array detector set (SPD-M20A) to

monitor at wavelengths from 300 nm to 750 nm, and a Phenomenex

LUNA C8(2) column (150 mm64.6 mm; 3-mm particle size)

protected by a Phenomenex guard cartridge (C8; 463.0 mm). The

gradient elution program was performed according to the method

described by Heukelem and Thomas [44] with some modifications.

Solvent A was 70:30 (v/v) methanol and 28 mM aqueous tetrabutyl

ammonium acetate (pH 6.5), and Solvent B was methanol, eluted as

described below at a flow rate of 1 mL/min over a period of 72 min.

The ratio of Solvent B increased linearly from 20% to 45% over the

first 18 min, then gradually increased to 90% until 65 min, and

finally 95% at 66 min. The ratio of 95% Solvent B was kept for 5 min

to elute highly hydrophobic pigments. Detected pigments were

analyzed by Shimadzu CLASS-Agent Manager ver. 2.30 and

LabSolution ver. 1.21 SP1.

The HPLC system was calibrated using authentic pigment

standards from the DHI Institute of Water and Environment,

Denmark, and the separated algal pigments were identified and

quantified by comparing retention times and absorption patterns.

PAR measurement in natural conditions
Changes in light environment were measured using a PAR logger

(MDS type-L, Alec) from 10:00 am on 25 May to 9:00 am on 27

May, 2009, on Mt. Gassan (38u30935.00N, 139u59950.60E),

Yamagata Prefecture, Japan. The logger has a spherical (270u)
sensor, then the recorded PAR data were the sum of the direct,

reflex, and scattering radiations on snow surface where the snow

algae bloomed. The logger was pre-calibrated by the manufacturer,

who found no significant drifts in the measurements and sampled

data every 1 min. The logger was placed on the snow surface in the

same place as the yellow snow blooming at the time of the study.
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Figure 6. Time course of xanthophyll cycle pigment changes in
Ochromonas itoi in high-light (HL) after 6-h HL illumination,
followed by 1-h low-light (LL) illumination. Pigments are
normalized to chlorophyll a (Chl.a). Values are means of three
independent records, and error bars are standard deviations. A,
Deepoxidation of violaxanthin (Vx) from antheraxanthin (Ax) to
zeaxanthin (Zx); B, deepoxidation of diadinoxanthin (Ddx) to diatoxan-
thin (Dtx).
doi:10.1371/journal.pone.0014690.g006
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