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Pan-cancer analysis of SETD2 mutation and its association
with the efficacy of immunotherapy
Mingdong Lu1,2, Bin Zhao 1,2✉, Mengshan Liu1, Le Wu1, Yingying Li1, Yingna Zhai1 and Xian Shen1✉

Histone methyltransferase SETD2 plays a critical role in maintaining genomic integrity and stability. Here, we investigated the
characteristics of SETD2 somatic mutation in the cancer genome atlas pan-cancer cohort. Our data revealed that, compared with
SETD2 nonmutant patients, SETD2 mutant patients had higher tumor mutation burden and microsatellite instability. In addition, the
transcriptions of most genes related to immune activities were upregulated in patients with SETD2 mutant tumors. Further
examination of cancer patients treated with immune checkpoint inhibitors suggested SETD2 mutation was associated with
favorable clinical outcomes. These results have implication for the personalization of cancer immunotherapy.
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Immune checkpoint inhibitors (ICIs) targeting programmed cell
death protein-1 (PD-1), programmed cell death ligand 1 (PD-L1),
and cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) can
significantly improve the overall survival (OS) in cancer patients1.
However, most patients cannot benefit from immunotherapy and
reliable biomarkers are warranted2. Although the US Food and
Drug Administration (FDA) has approved the application of PD-L1,
defective mismatch repair or microsatellite instability high (dMMR/
MSI-H), and tumor mutation burden (TMB) in clinical practice, we
and others have shown these biomarkers are imperfect2,3.
Histone methyltransferase SETD2, the sole human gene

responsible for the trimethylation of histone H3 at lysine 36
(H3K36me3), plays a critical role in maintaining genomic integrity
and stability by several distinct pathways4. Pfister et al. found
SETD2 was necessary for homologous recombination repair5,
depletion of SETD2 shows MSI and an increased spontaneous
mutation frequency, characteristic of dMMR cells6. SETD2 also
provides an alternative mechanism that leads to DNA damage
repair through interacting with p53 tumor suppressor7. Moreover,
SETD2 can directly change the chromatin accessibility, which will
generate RNA processing defects8. It is estimated that mRNA
processing defects occur in 25% of expressed gene across the
whole genome when SETD2 is mutant8. We speculate the
mutation of SETD2 results in the enrichment of tumor mutation-
specific neo-antigens in the cell surface, the immune system will
recognize and attack these cells with the help of ICIs. The unique
features of SETD2 mutation makes it a potential biomarker for
cancer immunotherapy. Accordingly, with accumulated data that
are publicly available, here we conducted a comprehensive
analysis to examine the characteristics of SETD2 mutation and its
association with the efficacy of immunotherapy.
We first examined the prevalence of SETD2 somatic mutations

in the cancer genome atlas (TCGA) pan-cancer cohort. Of all
10,427 patients, 451 (4.33%) harbored SETD2 mutations (Fig. 1a).
SETD2 mutations occurred in a small subset of most tumor types,
and the mutant frequencies differed significantly across various
tumors (P < 0.001). Totally, 569 SETD2 mutations were identified,
375 (65.9%) were missense mutations, 193 (33.9%) were
truncating mutations, and 1 (0.2%) was inframe mutation
(Fig. 1b). These mutations occurred in a dispersed manner

throughout the whole sequence (Fig. 1b) and 3D protein structure
(Fig. 1c).
In TCGA cohort, higher TMB was observed in patients with

SETD2 mutant cancer (median, 5.9; interquartile range, 1.8–29.2)
than those in patients with SETD2 nonmutant disease (1.5, 0.7–3.3;
P < 0.0001). Moreover, TMB was significant different among SETD2
truncating mutant cancer (2.2,1.–10.2), SETD2 missense mutant
cancer (9.4, 2.3–39.5), and cancer with multiple mutations (118.1,
21.2–270.7; Fig. 1d). TMB stratified by SETD2 mutation status in
different tumors were presented in Supplemental Fig. 1a. In
colorectal cancer, further analysis revealed that TMB in non-MSI
SETD2mutant tumors (4.9, 2.8–132.2) was significantly higher than
TMB in non-MSI SETD2 nonmutant tumors (2.5, 2.0–3.3; P <
0.0001). Interestingly, we observed a significant correlation
between the frequencies of SETD2 mutation and median tumor
mutation burdens across multiple tumor types (correlation
coefficient, 0.62; P= 0.005; Fig. 1e).
MSIsensor is an effective and efficient tool for deriving MSI

status9. MSIsensor scores in patients with SETD2 mutant cancer
(0.12; 0.01–0.84) were significantly higher than the scores in
patient with SETD2 nonmutant cancer (0.05, 0.00–0.31; P < 0.0001;
Fig. 1f). There was no correlation between the frequency of SETD2
mutation and median MSIsensor scores (correlation coefficient,
0.10; P= 0.71). The associations between MSIsensor scores and
SETD2 mutation in different tumors were presented in Supple-
mental Fig. 1b. To further validate the association between SETD2
mutation and MSI status, we also examined the MSI MANTIS10

scores in patients with SETD2 mutant cancer (0.32, 0.30–0.34) and
patients with SETD2 nonmutant cancer (0.31, 0.29–0.33; P <
0.0001). Of note, the scores showed no differences among various
subtypes of SETD2 mutation (Fig. 1g). MSH2, MSH6, MLH1, and
PMS2 played critical roles during the mismatch repair (MMR)
process11,12, the mutation in any of these four MMR genes might
cause MSI-H. Here, we investigated the co-occurrence patterns of
these four MMR mutant genes and SETD2 mutation (Fig. 1h).
Compared with patients with SETD2 nonmutant cancer, patients
with SETD2 mutant cancer harbored more MMR mutant genes
(MSH6, 1.24% vs.14.38%; MSH2, 0.98% vs.11.73%; MLH1, 1.06%
vs.8.41%; PMS2, 0.98% vs.9.73%; P < 0.0001 for all four genes).
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Next, we investigated the correlations between SETD2 mutation
and various immune signatures, including 28 tumor-infiltrating
lymphocytes, 24 immunoinhibitors, 45 immunostimulators, 21
major histocompatibility complex molecules, 40 chemokines, and
18 chemokine receptors, in kidney renal clear cell carcinoma (KIRC,

n= 43), colon adenocarcinoma (COAD, n= 41), lung adenocarci-
noma (LUAD, n= 30), bladder urothelial carcinoma (BLCA, n= 27),
and uterine corpus endometrial carcinoma (UCEC, n= 22), five
tumors with over 20 SETD2 mutant cases in TCGA cohort (Fig. 2).
Compared with SETD2 nonmutant samples, most immune-related
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Fig. 1 The characteristics of SETD2 mutations in TCGA pan-cancer cohort. a The prevalence of SETD2 mutations across tumors. b The
subtypes and distributions of SETD2 somatic mutations. X-axis, amino acid; Y-axis, numbers of SETD2 mutations; green box, SET domain
(1561–1667); red box, WW domain (2391–2420); blue box, SRI domain (2466–2558); green dot, missense mutation; black dot, truncating
mutation; orange dot, inframe mutation. c Location of variants on the 3D protein structure of SETD2. Purple, mutated amino acid. d Tumor
mutation burden (TMB) in SETD2 nonmutant cancer and different subtypes of SETD2 mutant cancer. Each gray dot represents one patient,
black line represents the median TMB and its interquartile ranges. e The prevalence of SETD2 mutation and median TMB in multiple tumors.
Red line, fitted curve; HNC, head and neck cancer; LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma; KIRC, kidney renal clear
cell carcinoma; KIRP, kidney renal papillary cell carcinoma. f MSIsensor scores in SETD2 nonmutant cancer and different subtypes of SETD2
mutant cancer. g MSI MANTIS scores in SETD2 nonmutant cancer and different subtypes of SETD2 mutant cancer. h The mutant frequencies of
MSH2, MSH6, MLH1, and PMS2 in SETD2 mutant and nonmutant cancer. i Overall survival (OS) analysis stratified by SETD2 mutation status in the
whole TCGA cohort. j Disease-free survival (DFS) analysis stratified by SETD2 mutation status in TCGA. k Disease-specific survival (DSS) analysis
stratified by SETD2 mutation status in TCGA. l Progress-free survival (PFS) analysis stratified by SETD2 mutation status in TCGA. NS, P > 0.05;
*P < 0.05; ***P < 0.001.
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genes were upregulated in SETD2 mutant samples, and many
showed statistically significant. These results suggested the
immune system was more active in SETD2 mutant cancer, which
might be recognized as immunologically “hot” tumor. Moreover,
our data provided strong evidence that cancer epigenetic driver
mutations could shape tumor immune phenotype.
To investigate whether these distinct characterisitics of SETD2

mutation could translate into cancer prognosis, we compared the

OS (P= 0.38, Fig. 1i), disease-free survival (P= 0.53, Fig. 1j),
disease-specific survival (P= 0.76, Fig. 1k), and progress-free
survival (P= 0.96, Fig. 1l) between patients with SETD2 mutant
cancer and patients with SETD2 nonmutant cancer. The prognosis
and survival for cancer patients in TCGA cohort were independent
of SETD2 mutant status.
Previous studies suggested that copy number alteration (CNA)

of SETD2 contributed to the nucleosome stabilization,
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Fig. 2 SETD2 mutation and immune features in cancer. The differences of median gene expression between SETD2 mutant samples and
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coordination of DNA repair, and suppression of replication
stress13. Hence, we examined the features of cancer patients with
CNA of SETD2. Totally, 75 patients (0.68%) with SETD2 CNA were
identified in TCGA cohort. The frequencies of the SETD2 CNA
acorss different tumors were shown in Supplemental Fig. 2a. The
CNA of SETD2 was not associated with TMB (P= 0.73, Supple-
mental Fig. 2b), MSI MANTIS scores (P= 0.32, Supplemental Fig.
2c), MSIsensor scores (P= 0.71, Supplemental Fig. 2d), and OS
(P= 0.63, Supplemental Fig. 2e). It should be noted that, due to
the limited number of SETD2 CNA patients included in the TCGA
cohort, further investigations are needed to confirm these results.
Our previous study including 22,165 patients treated with PD-1/PD-

L1 blockade monotherapy from 160 trials demonstrated the objective
response rates (ORRs) in various tumors1. With the frequencies of
SETD2 mutations extracted from TCGA, we found that there was a
significant correlation between the prevalences of SETD2 mutations
and ORRs (correlation coefficient, 0.72; P= 0.001, Fig. 3a).
For survival analysis, a total of 2734 patients from eight studies

were included (Table 1). SETD2 mutation was associated with
significantly better OS (hazard ratio (HR), 0.55; 95% confidence
interval (CI), 0.46–0.65; P < 0.0001; Fig. 3b). This association
remained robust after adjusting for confounding factors, including
age, sex, cancer type, treatment strategy, and TMB (Fig. 3c),
suggesting SETD2 mutation was not a prognostic, but a predictive
biomarker for cancer immunotherapy.
Due to the success of POPLAR and OAK, two multicenter

randomized controlled trials conducted in patients with non-small
cell lung cancer, FDA granted the application of atezolizumab in
clinical practice14. Here, we specifically examined the association
between SETD2 mutation and various clinicopathological char-
acteristics in patients enrolled in POPLAR and OAK. As shown in
Table 2, more PD-L1-positive tumors and higher TMBs were
discovered in patients with SETD2 mutant cancer.
In summary, our data reveal that SETD2mutation is correlated with

higher tumor mutation burden and MSI, and more immune activities
in cancer. Moreover, SETD2 mutation status is a potential biomarker
in predicting the clinical outcomes in patients treated with ICIs.

METHODS
Study design
Our study was deemed exempt from institutional board approval and
patient informed consent because all data are deidentified and publicly
available. The nonsynonymous mutations were defined as frameshift,
missense, nonsense, splice site, nonstop, and translation start site changes.
Truncating mutations were defined as nonsense, nonstop, frameshift
deletion, frameshift insertion, and splice site. Inframe mutations included
inframe deletion and inframe insertion.

TCGA data
TCGA database included sequencing and clinicopathological data from
patients with over 30 types of tumors. All data included for prevalence
analysis of SETD2 mutations and CNA, subtype analysis, 3D protein
structure, mutation counts, MSIsensor score, MSI MANTIS score, and
survival analysis were queried and downloaded from the cBioPortal for
Cancer Genomics database (https://www.cbioportal.org)15. To study the
association between SETD2 mutation and immune characteristics, KIRC,
COAD, LUAD, BLCA, and UCEC data obtained from TCGA were analyzed
using TISIDB (http://cis.hku.hk/TISIDB)16, a database integrated multiple
types of data resources in onco-immunology.

Data analysis of patients with immunotherapy
We searched “immune checkpoint blockade clinical trials” across all tumor
types on ClinicalTrials.gov for status as completed. The treatment
strategies were classified as anti-PD-L1 (avelumab, atezolizumab, and
durvalumab), anti-PD-1 (nivolumab, pembrolizumab, and cemiplimab), and
anti-CTLA-4 (ipilimumab and tremelimumab), in each tumor type. Then, we
conducted systematic search of PubMed database for potential trials in
November 2020. Two investigators (M.L. and B.Z.) independently screened

the full texts were checked for their eligibility. Any discrepancy was
resolved by discussion. The selection criteria were prespecified. To be
eligible, studies had to meet the following standards: (1) population:
clinical trials including over 30 adult patients with solid tumor; (2)

Fig. 3 SETD2 mutation and the efficacy of immunotherapy. a The
correlation between the frequencies of SETD2 mutation and
objective response rates across multiple tumors. Red line, fitted
curve; HNC, head and neck cancer. b Kaplan–Meier survival analysis
stratified by SETD2 mutation status in 2734 cancer patients treated
with immune checkpoint inhibitors. CI, confidence interval; HR,
hazard ratio. c Multivariate analysis of the association between
SETD2 mutation and overall survival.
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intervention: at least one arm in the trial was treated with ICIs irrespective
the dosage and duration of the treatment; and (3) outcomes: reported
information regarding SETD2 mutation status and OS. In addition, the
reference lists of all trials fulfilling the eligibility criteria were also checked
for possible relevant studies. When multiple publications of the same study
appeared, only the most recent and/or most complete reporting study
were included. We retrospectively collected clinical data of cancer patients
samples from three melanoma studies17–19, two lung cancer trials20–22, one
renal cancer datasets23, and two cohorts, including multiple tumors24,25.
After removing patients samples without survival information, a total of
2734 patients treated with ICIs were included in this study.

Statistics
Survival analysis was analyzed by Kaplan–Meier method and compared
using log-rank test. It was censored at the last date that the patient was
not dead. HR was calculated by Cox proportional hazards model and 95%
CI was reported. Median OS time and 95% CI were presented where
relevant. Spearman’s ρ correlation coefficient was calculated. The relations
between various clinical characteristics and SETD2 mutation were
evaluated with χ2 test, Student’s t test, or Fisher’s exact test depending
on the context. Two-sided P < 0.05 was considered statistically significant.
All statistical analysis was conducted by MedCalc 18.2.1 (MedCalc Software,
Belgium).

Table 2. The clinicopatholgical characteristics of patients included in POPLAR and OAK trials.

SETD2 mutant SETD2 nonmutant P

Number of patients 24 545

Age(median, range, year) 63(39–80) 63(33–82) 0.34

Race (White/Other, %) 83/17 72/28 0.11

Sex (male/female, %) 63/37 62/38 0.49

Smoking status (current/former/never, %) 21/71/8 14/66/20 0.07

ECOG performance status (1/0, %) 67/33 64/36 0.40

Subtype (squamous/non-squamous, %) 38/62 28/72 0.15

Line of treatment (second/third, %) 63/37 73/27 0.13

Mean diameter of target lesion 78.88 77.52 0.45

Mean number of metastatic sites 3.04 2.91 0.33

KRAS mutant status (positive/negative/unknown, %) 0/21/79 7/22/71 0.11

EGFR mutant status (positive/negative/unknown, %) 8/63/29 9/69/22 0.50

EML4-ALK mutant status (positive/negative/unknown, %) 0/63/37 0/49/51 0.37

PD-L1 expressiona (positive/negative/unknown, %) 58/13/29 42/32/26 0.02

TMB (mean ± SE) 17.13 ± 2.32 10.65 ± 0.45 0.001

ECOG Eastern Cooperative Oncolgy group.
aThe threshold for PD-L1 positivity and negativity was that PD-L1 stained cell accounted for 1% of tumor cells or immune cells.
The bold values mean P < 0.05.

Table 1. Baseline features of 8 eligible studies included in the immunotherapy analysis.

Study Drugs Cancer type SETD2 mutation status No. patients Sex (male/
female)

Age(mean,
range, year)

Van Allen17 Ipilimumab Melanoma Positive 10 7/3 63(32–83)

Negative 100 71/29 58(18–86)

Hugo18 Pembrolizumab/nivolumab Melanoma Positive 5 2/3 63(27–82)

Negative 32 24/8 60(19–84)

Riaz19 Nivolumab Melanoma Positive 2 NA NA

Negative 71 NA NA

Miao23 Nivolumab Renal cancer Positive 15 11/4 62(50–69)

Negative 20 11/9 62(36–77)

Miao24 Anti-CTLA-4, anti-PD-1, and
anti-PD-L1

Microstatellite-
stable tumors

Positive 18 11/7 67(39–83)

Negative 231 143/88 59(18–86)

Samstein25 Anti-CTLA-4, anti-PD-1, and
anti-PD-L1

Multiple tumors Positive 131 102/29 63(19–90)

Negative 1530 932/598 61(15–90)

POPLAR20,21 Atezolizumab Lung cancer Positive 7 5/2 60(42–74)

Negative 137 88/49 61(42–82)

OAK21,22 Atezolizumab Lung cancer Positive 17 10/7 65(39–80)

Negative 408 251/157 63(33–82)

NA not available.
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Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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