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Abstract: For this paper, the self-healing ability of poly(methacrylate)s crosslinked via reversible urea
bonds was studied in detail. In this context, the effects of healing time and temperature on the healing
process were investigated. Furthermore, the impact of the size of the damage (i.e., area of the scratch)
was monitored. Aging processes, counteracting the self-healing process, result in a decrease in the
mechanical performance. This effect diminishes the healing ability. Consequently, the current study
is a first approach towards a detailed analysis of self-healing polymers regarding the influencing
parameters of the healing process, considering also possible aging processes for thermo-reversible
polymer networks.

Keywords: self-healing polymers; dynamic covalent bonds; characterization of self-healing;
poly(methacrylate)s

1. Introduction

The consumption of non-renewable resources has been increasing significantly over the last few
years. These raw materials are utilized in a non-efficient manner, primarily as energy sources. However,
there is also a large demand in many other industrial fields. Consequently, humanity is withdrawing
these raw materials from the environment faster than regeneration takes place. Last year, 2018, Earth
Overshoot Day was on August 1. It indicates the day on which the world population has consumed
the regenerative resources of the corresponding year [1]. It is noteworthy that, two decades ago, Earth
Overshoot Day was later, on September 30 [1].

In order to guarantee an optimized ecological and economical handling, new materials are also
required to be self-healing materials, for example. This special ability increases the longevity of the
used materials [2–4].

Generally, self-healing materials are divided into extrinsic and intrinsic systems [3]. Extrinsic
systems are characterized by an additionally added compound, which provides the ability for
self-healing. If the material is damaged, this healing agent is released and can close and subsequently
heal the defect [3,5,6]. Microcapsules as well as microvascular networks have been used for this
purpose [5,7–9]. The disadvantage of this type of self-healing is that no healing can be observed when
the healing agents are consumed.

Intrinsic materials represent another way of designing self-healing materials [2]. They possess the
ability of local multiple healing cycles due to the presence of reversible chemical bonds and physical
interactions, respectively [2]. These reversible bonds can be either dynamic covalent bonds [10],
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such as the Diels–Alder reaction [11–13], or radical-based systems [14] as well as supramolecular
interactions [15], such as ionic interactions [16], π–π interactions [17], metal ligand interactions [18–22],
and hydrogen or halogen bonds [23–27]. Basically, polymers offer a variety of different possibilities
to achieve the ability for healing. In the context of the current study, there are also studies regarding
reversible urea and urethane moieties, which are implemented into polymeric structures [28,29]. In
the case of ureas, sterically demanding groups were attached to the amine compound revealing
reversibility of the formed urea product. Thus, a larger substituent results in a more instable urea
moiety and in a more efficient opening of the bond [29]. This behavior could also be implemented into
methacrylates resulting in polymers with high E-moduli, which are unusual for self-healing materials.
Those materials featured a suitable self-healing behavior while featuring mechanical stiffness [30].

The current study examined the relationship between mechanical properties and healing
parameters such as temperature, time, and damage area for a urea-crosslinked copolymer, evaluating
the optimal healing conditions (highest efficiency under the most moderate conditions minimizing
aging). For this purpose, temperature was used as a healing trigger, since the use of a sterically
hindered amine can result in an opening of the urea motif under thermal treatment responsible for
the mobility required for the healing [29,30]. Furthermore, the aging behavior of the polymers was
analyzed in detail and correlated to the applied healing conditions in order to evaluate the optimal
compromise between degradation and restoration of the material.

2. Results and Discussion

The urea-crosslinked copolymers were synthesized according to Zechel et al. (Scheme 1) [30]. The
procedure can be summarized as follows. The commercially available monomers butyl methacrylate
and 2-isocyanate ethyl methacrylate as well as the diamine N,N’-di-tert-butylethylenediamine were
mixed. The mixture was polymerized by adding the photoinitiator benzoin methyl ether (BME).
Subsequent photopolymerization with the simultaneously occurring urea formation resulted in the
formation of a dynamic covalently crosslinked copolymer network. The polymerization was performed
in a special form to obtain directly a dog-bone tensile test specimen. After polymerization, a thermal
annealing for 12 h was required in order to ensure a complete monomer conversion and polymerization.
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Scheme 1. Schematic representation of the synthesis of the polymer network using a photo
polymerization process with benzoin methyl ether (BME) as initiator and light between 320 and
520 nm.

Figure 1 summarizes the workflow of the sample preparation and the subsequent measurements.
All samples were sanded to level all inhomogeneous surfaces after the photopolymerization. The
dimensions of the tensile specimens were then measured. All tensile tests were subsequently carried
out for the original samples. An exemplary representation can be seen in Figure A1. The polymer
shows a typical behavior of thermoplastics. Average yield strengths of 17 MPa and an E-modulus
of 0.6 GPa were measured for the original samples. These values are in the range of the mechanical
properties published by Zechel et al. [30]. In order to determine the self-healing, the samples were cut
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in the middle horizontally with a scalpel. The subsequent healing process was carried out according
to the studied parameters. For each dependency, at least five samples were measured in the tensile
test and the result represents the mean value of these measurements. After the measurement, the
self-healing efficiency was determined according to the equation in the diagram (Figure 1). Additional
microscopy images of the healed part of the polymer are also depicted in Figure 1. It becomes apparent
that slight deviations from the original cross-sectional area may be present in bulk healing. The images
shown are examples in order to better illustrate the cross-sectional area. For the tensile tests, only
samples with a deviation of less than 5% were used. The deviations from the top view as well as from
the side view were considered. A further analysis of this error cannot be carried out due to the large
number of samples.
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Figure 1. Schematic representations of the sample preparation and the measuring process. σo is
determined from the original samples and σh from the healed sample. The healing efficiency is always
considered regarding the different parameters.

2.1. Time-Dependency of the Original Samples

In order to observe the aging of this polymer, all samples were annealed at 100 ◦C for different
times (Figure 2). It can be observed that the mechanical properties are still increasing after up to
three days of annealing, which is presumably based on a post-curing effect resulting in more densely
crosslinked networks. After three days, the stress values decrease significantly, which also has an
influence on the healing efficiency later on. The decrease is caused by an aging process of the polymer
network, since side reactions can occur in urea or urethane containing polymers in the case of long-term
annealing [31,32]. This effect is presumably enhanced by the high reversibility of the sterically hindered
urea bond.
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Figure 2. Dependency of stress value obtained by tensile test measurement on the annealing time (the
average standard deviation is 1.69 MPa).

In order to evaluate the temperature-dependency behavior in more detail, small tensile samples
were fabricated and measured by dynamic mechanical thermal analysis (DMTA). The results of a
measurement are depicted in Figure A2. The complex elastic modulus depends on the thermal behavior
of the polymer (see Figure 3). The glass transition temperature (Tg = 41 ◦C) determined by DMTA is in
good agreement with the Tg = 30 ◦C obtained by differential scanning calorimetry (DSC) by Zechel
et al. [30]. The glass transition temperature is slightly decreasing after 6 d (39 ◦C) and 8 d (37 ◦C)
of annealing.

The main contribution of the Tg value is based on the butyl methacrylate part, since 95% of the
network are butyl methacrylate repeating units. The major degradation process is expected to originate
from the reversible group (urea bond), which should have only a slight effect on the Tg, because the
opening temperature of the model systems (approximately 100 ◦C) is far above the Tg [30].
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Figure 3. Dependency of the complex modulus of elasticity on temperature at different aging times.

2.2. Temperature-Dependency of the Healing Efficiency

The investigation of the temperature dependency (all measurements were performed after three
days) revealed a significant correlation between the applied temperature and the healing efficiency.
An increasing temperature leads to a higher healing efficiency, that is, the yield strength is increased
(see Figures 4 and A4). This effect is based on the increased mobility of the polymer network due to
the higher energy input. Furthermore, the reversibility of the urea bond is also enhanced with higher
temperatures. However, the stability of the polymer must also be considered (see Figure 4). Zechel et al.
have already measured TGA and DSC of the copolymer network [30]. These measurements revealed
that the polymers are not stable above 140 ◦C. Therefore, a maximum healing temperature of 120 ◦C
is recommended. The healing efficiencies are normalized to the yield strength of the corresponding
annealing time and to the original yield strength.
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Figure 4. Temperature-dependency of healing efficiency. All measurements were performed after three
days (the average standard deviation is SDσ 1 day = 6.67% and SDσ 3 day = 5.9%).

2.3. Time-Dependency of the Healing Efficiency

Besides the healing temperature, the healing time also has a significant impact on the achievable
healing efficiency. Therefore, further testing to evaluate this parameter was performed. The samples
were always healed at 100 ◦C for the corresponding periods of time. When considering the healing
efficiency compared to the yield point of the untreated samples, it is clearly visible that the healing
efficiency decreases significantly after six days (see Figure 5). Within the first four days, there is a
continuous increase in the healing efficiency with a maximum reached after four days of healing. This
behavior can be explained by the post-curing process described above. After a certain time, the aging
is predominantly counteracting the restoration of the mechanical properties. For most self-healing
polymers described in the literature higher, self-healing efficiencies are described for longer healing
times. Additional effects have not been studied in detail.

If the healing efficiency is calculated using the yield stress of the original samples, which are
also annealed for the corresponding time, the decrease in the healing efficiency starts after six days.
Therefore, the aging process can also be differentiated. After six days, the aging seems to influence the
general healing mechanism, resulting in a significant drop of the efficiency after 8 or 11 days of healing.
The previous results were normalized to corresponding measured stresses. If no direct measurement
of the stress was available, it was interpolated from Figure 2.
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Figure 5. Time-dependency of the healing efficiency. All measurements were performed at 100 ◦C (the
average standard deviation is SDσ 1 day = 10.31% and SDσd = 9.63%).

2.4. Area-Dependency of the Healing Efficiency

Self-healing is an interfacial process occurring at the polymer–polymer interface [33]. According
to Kim and Wool, surface rearrangement, surface approach, and wetting are stages during the healing
process [33]. Due to the importance of the interface, we wanted to study the influence of the size of the
damaged area on the healing efficiency. To the best of our knowledge, a comparable study has as yet
not been performed.

Different factors may contribute to this correlation. An increased area contains a higher absolute
amount of reversible bonds at the damage site. However, a uniform surface density of the reversible
bonds can be expected. Small deviations in surface roughness, which lead to a surface contact that is
not ideal, may have a larger impact for small damage areas.

For this purpose, samples with different cross-sectional areas were healed at 100 ◦C for six days.
As can be seen in Figure 6, there is no clear dependency of damage area and the observed healing
efficiency. The results vary significantly, particularly in the range of 27.5 to 40.0 mm2. There are
various explanations for the large fluctuations within these results, for example, (A) inhomogeneities
of the polymer composition due to the batch wise fabrication and (B) handling of the samples. The
crack planes get a better contact for larger cross-sectional areas, which is the prerequisite for an
efficient healing. The contact areas may not be ideal for the smaller areas, in particular due to the high
E-modulus of the polymer (i.e., hard surfaces have to be pressed together).
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Figure 6. Area-dependency of the healing efficiency. All measurements were performed for six days at
100 ◦C (the average standard deviation is SDσ 6 day = 17.14% and SDσ 1 day = 13.76%).

3. Experimental Section

3.1. Materials and Methods

The chemicals benzoin methyl ether (TCI, Eschborn, Germany; <98%), butyl methacrylate
(Sigma-Aldrich, Darmstadt, Germany; 99%), N,N´-di-tert-butyl ethylene diamine (TCI; <98%) and
2-isocyanate ethyl methacrylate (abcr, Karlsruhe Germany; 98%) were used without further purification.
All healing processes were performed in a drying oven (Heraeus Instruments, Hanau, Germany)
at 100 ◦C. The mechanical scratches were inserted using a scalpel (BAYHA® No. 23, Tüttlingen,
Germany). The dynamic mechanical thermal analyses were carried out with the Gabo Qualimeter
Eplexor® 150 N (Selb, Germany). The samples were dynamically analyzed up to a maximum load of
10 N and an elongation of 0.25%. The heating rate was 2 K min−1. Tensile tests were performed on a
standard tensile machine (Z020, Zwick/Roell, Ulm, Germany) at room temperature with a speed of two
millimeters per minute for healed samples and with a speed of 5 mm per minute for standard samples.
The two different sample forms were utilized and are illustrated in Figure A3. For each measurement
condition, five different samples were produced and the mean value was determined.

3.2. Polymer Synthesis and Sample Preparation

The sample synthesis was performed according to Zechel et al. (see Scheme 1) [30]. Benzoin methyl
ether was dissolved in BMA, N,N´-di-tert-butylethylenediamine, and 2-isocyanate ethyl methacrylate.
The solution was thoroughly mixed and filled into the polymerization form. The solution was
polymerized for 30 min using a UV chamber (Kulzer Dentacolor, Hanau, Germany). Afterwards, the
molds with the formed polymer were stored overnight in the drying oven. This procedure ensured
complete polymerization. This simple process made it easy to obtain the various sample shapes. The
sample composition for the tensile samples can be found in Table 1. The tensile specimen form was
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produced in accordance with the specification for proportional tensile specimens (DIN EN 10002). The
initial measurement length lo corresponds to 5.65 times the square of the initial cross-section A0:

l0 = k
√

A0 k = 5.65. (1)

Table 1. The sample composition for the tensile samples.

Monomer Tensile Test (mg)

Benzoin methyl ether 100
Butylmethacrylate 10,000

N,N´-di-tert-butylethylenediamine 302
2-isocyanate ethyl methacrylate 546

In order to reduce the surface roughness, all samples were sanded. Therefore, commercially
available abrasive paper from Siawat (Solingen, Germany) with different grain sizes (row:
40/80/120/200/1000/2000) was used. For all self-healing experiments, the samples were cut vertically
with a scalpel on the constriction of the samples and brought into contact with a clamp aperture.

4. Conclusions

The influence of different parameters on the healing process of urea-crosslinked polymers was
studied. Higher temperatures lead to higher healing efficiencies—healing coefficients of approximately
40% can be achieved at 140 ◦C. The healing time also has a strong influence on the obtainable healing
efficiency. As is known from many other self-healing polymers, the healing efficiency increases with
time for shorter healing times (<6 days) due to the reversible reaction, which is also accompanied by a
post-curing process. However, after 6 days the effect is reversed due to an aging process occurring
in the material. The mechanical properties decrease, leading also to lower healing coefficients. This
effect is described here for the first time for self-healing polymers, which shows the importance of
the applied conditions for the healing process. Lastly, it was revealed that the area of the cut has no
significant influence on the healing coefficient.
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Figure A1. Stress–strain diagram of a tensile measurement of the urea-crosslinked copolymer network.
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Figure A2. Results of the rheology and DMTA measurement of the urea-crosslinked copolymer network.
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Figure A3. Picture of the dog-bone specimen of the urea-crosslinked copolymers. The upper small
dog-bone represents a DMTA sample after the sanding process. The lower larger dog-bone represents
a standard tensile sample before the sanding process.
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