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Abstract

Evolutionary forces like Hill-Robertson interference and negative epistasis can lead to dele-

terious mutations being found on distinct haplotypes. However, the extent to which these

forces depend on the selection and dominance coefficients of deleterious mutations and

shape genome-wide patterns of linkage disequilibrium (LD) in natural populations with com-

plex demographic histories has not been tested. In this study, we first used forward-in-time

simulations to predict how negative selection impacts LD. Under models where deleterious

mutations have additive effects on fitness, deleterious variants less than 10 kb apart tend to

be carried on different haplotypes relative to pairs of synonymous SNPs. In contrast, for

recessive mutations, there is no consistent ordering of how selection coefficients affect LD

decay, due to the complex interplay of different evolutionary effects. We then examined

empirical data of modern humans from the 1000 Genomes Project. LD between derived

alleles at nonsynonymous SNPs is lower compared to pairs of derived synonymous vari-

ants, suggesting that nonsynonymous derived alleles tend to occur on different haplotypes

more than synonymous variants. This result holds when controlling for potential confounding

factors by matching SNPs for frequency in the sample (allele count), physical distance, mag-

nitude of background selection, and genetic distance between pairs of variants. Lastly, we

introduce a new statistic HR
(j) which allows us to detect interference using unphased geno-

types. Application of this approach to high-coverage human genome sequences confirms

our finding that nonsynonymous derived alleles tend to be located on different haplotypes

more often than are synonymous derived alleles. Our findings suggest that interference

may play a pervasive role in shaping patterns of LD between deleterious variants in the

human genome, and consequently influences genome-wide patterns of LD.
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Author summary

Many mutations in genomes are deleterious, decreasing fitness in carriers. Popular meth-

ods to quantify deleterious mutations model mutations independently while ignoring the

correlations between nearby variants. Theory predicts that a deleterious mutation can

influence the frequency change of variants located nearby along the genome. Here we use

simulations under population genetic models with parameters relevant to humans to

show that pairs of deleterious mutations located near each other in the genome tend to

have different correlations between them as compared to pairs of neutrally evolving SNPs.

Specifically, if an individual carries the deleterious allele at one variant, that individual is

less likely to carry the deleterious allele at a nearby variant. We then searched for these

patterns in both low and high-coverage human genetic variation datasets from multiple

populations. We found that pairs of deleterious alleles tend to be found in different indi-

viduals more frequently than are pairs of neutrally evolving variants at the same fre-

quency, even after controlling for confounding factors. Our results suggest that the

interference between deleterious alleles is common across the human genome, which has

implications for inferring demographic history, natural selection, and associating variants

with complex traits.

Introduction

The non-random association of alleles at different loci is often referred to as linkage disequilib-

rium (LD). The magnitude of LD between two single nucleotide polymorphisms (SNPs) is

shaped by both population processes, such as demographic history, and intrinsic cellular fac-

tors, like recombination and gene conversion [1–4]. If two variants are in linkage disequilib-

rium, they can either be in positive LD or negative LD. Positive LD occurs when derived alleles

appear on the same haplotype more often than expected under independence (i.e. linkage

equilibrium) and negative LD occurs when derived alleles appear on the same haplotype less

often than expected under linkage equilibrium. Previous studies have used LD to estimate

demographic parameters of populations such as the historical effective population size (Ne)

and divergence times between populations [2,5,6]. Additionally, methods have been developed

to estimate recombination rates from patterns of LD [7–11]. Most of the previous work on

modeling patterns of LD has relied on assumptions about selective neutrality among markers,

though some work quantified the effects of positive selection on LD [12–16].

Negative selection can influence patterns of LD in two ways: negative synergistic epistasis

and Hill-Robertson Interference (HRI). Negative synergistic epistasis occurs when haplotypes

carrying multiple deleterious mutations are less fit than predicted by their marginal fitness

[17]. This leads to negative selection efficiently removing haplotypes containing multiple dele-

terious alleles. The remaining deleterious alleles are more likely to segregate on distinct haplo-

types compared to neutral mutations, leading to negative LD [18]. Further, as individuals

carrying many deleterious mutations are efficiently removed from the population, this syner-

gistic epistasis leads to the distribution of deleterious mutations per genome being underdis-

persed [19,20]. Sohail et al. showed that rare loss-of-function alleles are underdispersed in

human and Drosophila genomes [18], suggesting that polymorphisms currently segregating in

human and Drosophila populations are not only experiencing negative selection, but are also

non-independently affecting fitness.

A second way in which negative selection can impact LD is through Hill-Robertson inter-

ference (HRI) [21]. This scenario occurs when deleterious alleles are not efficiently removed
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from the population by negative selection and can increase in frequency due to drift. Here, one

deleterious variant inhibits or accelerates the removal of a cosegregating deleterious variant.

[22]. When LD is positive, haplotypes carrying multiple deleterious variants are more effec-

tively removed from this population than haplotypes containing only one deleterious variant

because such haplotypes have the lowest fitness. In other words, positive LD between deleteri-

ous variants increases the rate at which the population responds to selection as the variance in

fitness among individuals is greatest [22]. If, however, deleterious mutations occur on different

haplotypes in a population, then the variance in fitness across haplotypes is reduced, as they all

carry a similar number of deleterious alleles [23,24]. Consequently, selection becomes less effi-

cient at removing haplotypes carrying one deleterious allele. In finite populations not in muta-

tion-selection balance and experiencing drift, interference predicts pairs of deleterious SNPs

will exhibit negative LD (relative to pairs of variants not under selection), especially when they

are separated by small physical and genetic distances [25–27]. In our study, an excess of nega-

tive LD means the same thing as seeing fewer pairs of variants in positive LD, which shows

that variants are less likely to occur on the same haplotype than expected under independence.

Importantly, population genetic models without drift do not predict an excess of negative LD.

Specifically, by considering Fisher’s fundamental theorem, as long as selection is able to effi-

ciently remove load and Muller’s ratchet is operating slowly compared to the timescale of coa-

lescence, excess negative LD is not expected as a result of linked selection [23]. For instance, a

population with a single non-recombining chromosome with deleterious mutations that are

removed at the same rate at which they are created (in mutation-selection balance), does not

experience interference [23,28].

Hill and Robertson first studied the effect of linkage disequilibrium on natural selection

with only two additive loci under natural selection [21]. They reported that interference creates

a detectable excess of negative LD with biologically relevant effective population sizes and vari-

ants with realistic selection coefficients. However, their simulations and theory did not incor-

porate new mutations or multiple loci that differed in age and distance from focal mutations.

Adding to their work, McVean and Charlesworth [25] studied the effects of Hill-Robertson

interference between weakly selected mutations. They simulated multiple weakly selected

mutations and observed that weak selection Hill-Robertson interference generates negative

LD between beneficial mutations. This excess of negative LD was most apparent among alleles

that were physically close to each other and appeared to disappear with increasing distance

between markers. They suggested that interference is a prevalent force driving the distribution

of biased codon usage in Drosophila. Although they looked at the effects of interference caused

by negative selection on fixation probabilities, heterozygosity, and average time to loss, they

did not examine the impact of interference among deleterious sites on LD. Additionally,

Comeron and Kreitman showed via simulations that interference among multiple positively

selected variants should create an excess of negative LD among low frequency variants while

reducing overall levels of neutral polymorphism [26]. However, these simulation studies con-

sidered only populations of constant size, and their applicability to the LD patterns of natural

populations with more complex demographic histories and multiple sites under negative selec-

tion remains understudied. Indeed, recent work has found that the expected pattern of back-

ground selection is heavily affected by the demographic history of the population [29,30].

Preceding this work, Comeron et al. hypothesized that interference could influence the spa-

tial distribution of putatively beneficial codons [31]. Using forward simulations and biologi-

cally relevant recombination rates, Comeron et al. proposed that a multi-site model of a finite

population, with mutations, selection, and linkage could predict the observed relationship

between the magnitude of codon usage bias and coding sequence length observed in natural

Drosophila populations. Recent literature on Hill-Robertson interference proposes
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mechanistically why and when Hill-Robertson interference causes negative LD, both in cases

of positive selection in asexually evolving populations [24] and negative selection in asexually

evolving and recombining populations [23]. In these works, the authors study how the vari-

ance in fitness within “effectively asexual linkage blocks” is important when interference is

prevalent.

The role of interference has also been assessed in primates (human, chimpanzee, and rhesus

macaque) by quantifying the relationship between recombination and dN/dS [32]. Bullaughey

et al. [32] suggested that there is no detectable effect of recombination on rates of protein evo-

lution. Later, Hussin et al. [33] looked for signatures of interference by quantifying the relative

enrichment of deleterious mutations in cold spots of recombination. Theory suggests that cold

spots of recombination should be enriched with slightly deleterious mutations relative to hot-

spots of recombination [34,35]. They identified this relative enrichment in exons, though the

strength varied across populations. Additionally, they observed that conserved exons in

recombination cold spots are enriched with haplotypes with two NS variants relative to exonic

haplotypes in hotspots of recombination. Hussin et al. concluded this excess of mutational

burden in cold spots would be expected under a process similar to Muller’s ratchet [34]. Here,

the least-loaded haplotype class cannot be quickly regenerated if recombination is scarce

because it is degraded by drift or new mutations. These results suggested that interference

might play a significant role in determining patterns of genetic diversity in human autosomes.

Although this study examined the effects of negative selection on the distribution of burden

and enrichment of deleterious variation across haplotypes and recombination rates in the

human genome, it did not explicitly study the effect of negative selection on LD summary sta-

tistics (r2, D, D’).

In the present study, we first examined how negative selection affects levels of LD among

deleterious nonsynonymous (NS) SNPs relative to the LD among neutral synonymous (S)

SNPs using forward simulations. Although all summary statistics of LD depend on allele fre-

quency, we controlled for this possible confounder in our comparisons by limiting pairwise

LD calculations using the method of frequency matching described by Eberle et al. [36]. We

found in forward simulations with a human-oriented recombination rate, mutation rate, and

distribution of fitness effects of new mutations, that negative selection induces a detectable

excess of negative LD among derived alleles. Next, we used human data from the Phase 3 1000

Genomes Project (1KGP) [37] and tested for a difference in LD patterns between NS and S

SNPs. We found that pairs of derived NS variants tend to be located on different haplotypes

(i.e. have more negative LD between them) compared to matched pairs of derived S variants.

Additionally, to replicate our results, and to provide a method to detect interference in

unphased data sets, we introduce a new summary statistic HR
(j). Using this statistic, we demon-

strate signatures of interference in the New York Genome Center’s (NYGC) unphased high

coverage resequencing of 1KGP individuals [38]. Our findings of an excess of negative LD

between pairs of putatively deleterious variants suggest that interference might play a pervasive

role in shaping patterns of LD between proximal NS variants in the human genome.

Results

Forward simulations

We performed forward simulations using SLiM 3.0 [39]. Each generated chromosome was

approximately 5 Mb long and contained intergenic, intronic, and exonic regions. Only NS

mutations within exonic regions experienced negative selection (see Materials and Methods).

In our simulations, for every 1 synonymous (S) mutation, there are 2.31 NS mutations. This

value is derived from degeneracy of the codon table of eukaryotes [40]. We refer to mutations
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as NS and S throughout this study because these terms refer to the precise types of mutation

analyzed in empirical data. We simulated under three demographic models (S1 Fig). Model 1

consists of a population of 10,000 individuals evolving for 100,000 generations. Model 2 is the

model of human demography by Gravel et al. [41] and implemented into SLiM [39]. Model 3

is identical to Model 2 except that there is no migration across the populations. For each simu-

lation replicate, we sampled 50 individuals from the African population and computed the var-

ious LD statistics as described in Materials and Methods.

Predicted effect of negative selection on LD between pairs doubletons

We first used our simulations to investigate the effect of negative selection on patterns of LD.

It is well-known that LD summary statistics are influenced by allele frequency [3,36]. There-

fore, we controlled for this effect in the simulations by only considering pairs of SNPs with the

same allele frequency in the sample. Further, we only calculated LD statistics between pairs of

SNPs with the same functional annotation. For example, we computed LD only between pairs

of NS SNPs or between pairs of S SNPs. See S1 Text and S2 Fig for further simulation results

considering other LD statistics and other variant frequencies.

We begin by focusing on doubletons (derived variants that show up in our sample of 50

diploid individuals twice, or variants with a frequency in our sample of 2/100) because we

hypothesized that doubletons would be enriched with polymorphisms that are more strongly

influenced by negative selection relative to higher frequency variants [42–44]. Consistent with

this hypothesis, simulations under Model 1 with a gamma distributed DFE (see Materials and

Methods) show that deleterious NS variants with a frequency greater than 2/100 in a sample of

50 individuals tend to be less deleterious than doubletons (S3 Fig). Additionally, relative to sin-

gletons, we expect doubletons to be less influenced by sequencing error or errors in variant

calling in empirical data. From a theoretical perspective, studying doubletons is advantageous

because they are the most prevalent type of variants after singletons under the standard neutral

model [45]. We quantify LD between derived doubletons using D’ rather than r2 because the

sign of D’ is informative regarding whether the derived alleles preferentially occur on the same

haplotypes (are in coupling, also called positive LD) or different haplotypes (are in repulsion,

also called negative LD) (see S4 Fig). If a pair of doubletons only occur on the same haplotype

in our sample of 100 chromosomes, they will have a D’ value of 1. Pairs of derived doubletons

that never occur on the same haplotype in our sample have a D’ value of -1. Thus, the average

value of D’ at a given distance reflects the number of pairs of SNPs that occur on the same hap-

lotype (more positive) or on different haplotypes (more negative).

We found that D’ between doubletons located within 10kb of each other is greatly affected

by negative selection (Fig 1). When assuming additive effects on fitness, D’ for weakly and

moderately deleterious (s = -0.0001, s = -0.001, s = -0.01) variants is lower than those for neu-

tral doubletons, indicating that deleterious doubletons (s<0) tend to occur on different haplo-

types more often than SNPs that are neutral in these simulations (dark blue curve in Fig 1).

Similar trends are seen when computing other summary statistics of LD (e.g. r2, see S5 Fig).

For recessive variants, pairs of moderately deleterious (s = -0.01) doubletons also tend to

have lower values of D’ than pairs of neutral doubletons, when recombination rates are low

(r<1 × 10-8 per bp). However, weakly deleterious SNPs (s = -0.0001 and s = -0.001) have mean

values of D’ that are greater than those values for neutral SNPs (Fig 1). These patterns did not

appear to hold across all recombination rates like in the additive case, though the magnitude of

the difference is greatest in simulations with low recombination rates. The behavior of reces-

sive deleterious mutations is due to the complex interplay of HRI effects combined with a het-

erosis effect (associative overdominance) whereby recessive deleterious mutations are masked

PLOS GENETICS Linkage disequilibrium between deleterious variants
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from selection in the heterozygous state [46]. This effect may be exaggerated if there is little

recombination and the deleterious alleles arise on the same haplotype, leading to positive LD.

In real genomes, putatively neutral S and intronic variants are interspersed with deleterious

NS mutations. We next compared LD patterns between pairs of NS SNPs (with s = -0.0001) to

the LD patterns of pairs of neutral S SNPs (no effect on fitness) in our simulations. Consistent

with our previous simulations, pairs of derived NS doubleton SNPs (blue line) have less posi-

tive LD than pairs of derived S doubletons (yellow line) (S6 Fig). This finding suggests that NS

doubletons are located on different haplotypes more often than are S doubletons.

As the degree of LD between a pair of doubletons also is influenced by the amount of

recombination that occurs between them, we wanted to ensure that the results shown above

were not driven by different amounts of recombination occurring between pairs of NS SNPs

and pairs of S SNPs. To test for this, we simulated 50 replicates under neutrality but with the

same distribution of exons and introns described earlier. We simulated NS SNPs without nega-

tive selection by simulating mutations with a NS mutation rate, but with s = 0. In summary,

the LD patterns for the pairs of NS SNPs without negative selection (red line) matches the LD

patterns of pairs of S SNPs (yellow and purple line) (S6 Fig), suggesting that the distribution of

functional elements is not responsible for the differences in LD patterns between deleterious

NS SNPs and interspersed neutral SNPs in simulations.

Fig 1. Mean D’ for simulated NS doubletons within 10kb from each other across different recombination and dominance parameters. The differences in the decay

curves are most apparent for recombination rate r = 1 x 10−9 per bp and depend on the dominance coefficient of mutations (h) and the selection coefficient (s) of NS

mutations. 150 simulation replicates were simulated for each scenario and were split into 3 groups consisting of 50 simulations. For each group, the mean value of D’ is

shown as the line and the error bars denote the minimum and maximum mean D’ values.

https://doi.org/10.1371/journal.pgen.1009676.g001
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We also simulated under a more complex demography, Model 2, and found similar trends

as the constant size population (see S2 Text and S7–S9 Figs). Both the simulations with con-

stant selection coefficients for all NS mutations as well as simulations with selection coeffi-

cients from a gamma distributed DFE predict deleterious doubletons should have lower values

of mean D’ relative to neutral doubletons.

To examine how LD among variants at other allele frequency categories may be impacted

by negative selection, we simulated 3,000 replicates of Model 1 with a recombination rate of 1

x 10−8 crossovers per base pair per generation, and then computed frequency matched LD sta-

tistics (S1 Table). Under the assumed simulation parameters, our simulations predict that

after deleterious variants increase above a frequency of 6%, they will no longer have lower D’
values than neutral alleles.

A new statistic to quantify the effect of selection on the distribution of

unphased 2-locus genotypes (HR
(j))

The standard LD statistics r2, D, and D’ are based on the frequency of haplotypes that contain

both derived alleles at both loci (pAB), which require phased haplotype information. Often

when studying nonmodel organisms or unprocessed genotype data, we typically do not have

this information and would have to rely on computational phasing. The performance of

computational methods to impute or phase variants becomes more challenging for rare vari-

ants [47,48], which are the focus of our study. Further, when studying sites influenced directly

by natural selection, the assumption of HWE may be violated and the correlation between the

diploid allele counts (as denoted by {0,1, or 2}) may not equal the correlation between the hap-

lotypes for two markers.

Here we introduce new statistics that can be directly computed from diploid genotype data

to quantify whether derived alleles are more likely to be coupled (i.e. on the same haplotype)

or in repulsion (i.e. on different haplotypes) for different functional annotations. Consider a

pair of singleton variants. An individual can be homozygous ancestral (0/0,0/0) at both vari-

ants, heterozygous at one SNP (0/1,0/0 or 0/0,0/1), or doubly heterozygous (0/1,0/1). If an

individual is heterozygous at only one of the SNPs, then by definition, the two singletons must

be on different haplotypes. If an individual is heterozygous for both SNPs, it is possible that

both derived alleles are carried on the same haplotype. Alternatively, if an individual is hetero-

zygous for both SNPs, it is possible that both derived alleles are carried on different haplotypes

(see S4 Fig). Quantifying the distribution of homozygous ancestral, singly heterozygous, and

doubly heterozygous genotypes does not require information about haplotype phase and thus

can be applied to genotype data. We formalize this idea in a statistic that we call HR
(j) (see

Materials and Methods for a more detailed description and how to compute HR
(j); also see S10

Fig). Our statistic can be calculated from pairs of derived variants at different frequencies in a

sample. Applying this statistic to only doubletons in a sample of 50 diploid individuals, corre-

sponding to variants with frequency of 2/100, we call it HR
(2). HR

(1) is used when we compute

the statistic on singletons in the sample. Essentially, HR
(j) counts the average number of indi-

viduals heterozygous at both SNPs for pairs of SNPs at a given distance apart from each other.

This statistic was created to measure the amount of repulsion in a sample, and that is what the

subscript “R” stands for. As it is uncommon for doubletons in a sample of 50 to be found in a

homozygous state, they are not counted in HR
(j), with little loss of information. Based on pre-

dictions from our simulations using other LD statistics (D, D’, r2), we hypothesized HR
(j) to be

lower for deleterious SNPs than for neutral SNPs. To test this hypothesis and examine the

behavior of the HR
(j) statistic, we simulated under Model 2 across two different recombination

rates (r = 1 x 10−9 per bp and r = 1 x 10−8 per bp). Our simulations show that unphased
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genotypes and therefore HR
(2) are affected by negative selection. Specifically, for both recombi-

nation rates (Fig 2), there is a depletion in mean HR
(2) and HR

(1) for pairs of NS variants com-

pared to S variants. Additionally we computed Spearman’s correlation coefficient (ρ) between

mean HR
(2) and mean D’ as well as mean HR

(1) and mean D’ (S11 Fig). In all cases, the HR
(j)

statistics are highly correlated with D’ (ρ> 0.945, p-value < 2.2e-16). Thus, we conclude that

HR
(j) can detect interference between deleterious variants using unphased genotypes.

Matched-pairs permutation test for differences in LD between NS and S

SNPs

To quantify differences in LD while controlling for possible covariates, we developed a

matched-pairs permutation test on pairs of SNPs (S12 Fig). Using the R Package "MatchIt"

[49], for each pair of NS SNPs, we extracted a pair of S variants with a similar physical distance

between variants (bp), the same allele count between pairs, a similar genetic distance (cM),

similar mean B-value amongst pairs of variants, and located on the same chromosome as the

NS pair. With these matching criteria, we compared pairs of variants that have similar levels of

diversity and physical distance between variants. S13 Fig shows how closely we required the

pair of S SNPs to match the pair of NS SNPs across these characteristics. We then computed

the difference between the LD statistic (we considered several different LD statistics, including

D’ as well as our new HR
(j) statistic) for the NS pair and the S pair. The mean of these differ-

ences across all the matched pairs was then computed and used as the test statistic. A matched-

pairs permutation test was then conducted with 10,000 permutations. In each test, the null

hypothesis was that the mean difference in LD statistics between pairs of NS and S SNPs was 0.

The alternative hypothesis was that the mean difference in LD statistic across pairs was less

than 0 (the LD statistic among NS pairs was less than that of the matched S pairs). To evaluate

the performance of our matched-pairs permutation test, we simulated genomes under Model

1 with simulations that: 1) included negative selection using the distribution of fitness effects

inferred by Kim et. al [40], and 2) did not contain negative selection. While a significantly

more negative mean D’ was seen for NS SNPs in simulations with negative selection

Fig 2. Distribution of mean HR
(1) and HR

(2) across simulated data with different recombination rates and

selection coefficients of NS mutations drawn from a DFE. Forward simulations predict NS pairs of variants have a

mean HR
(j) that is on average lower than that of S pairs of variants. (A) HR

(1) for simulations with a low recombination

rate (r = 1 x 10−9 per bp). (B) HR
(2) for simulations with a low recombination rate. (C) HR

(1) for simulations with an

average recombination rate (r = 1 x 10−8 per bp). (D) HR
(2) for simulations with an average recombination rate. Each

point is the mean HR
(j) statistic in a 1.5kb wide distance bin. Error bars represent one standard error of the mean. 4,300

simulation replicates of Model 2 were simulated for each recombination rate.

https://doi.org/10.1371/journal.pgen.1009676.g002
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(p< 0.005; matched pairs permutation test), this significant difference was not seen in simula-

tions without negative selection. Additionally, in the simulations without negative selection,

we performed this matched-pairs permutation test on other summary statistics of LD and

observed no significant difference between pairs of NS variants and S variants (S14 Fig).

Comparison of LD between NS and S SNPs in human data

We next tested whether negative selection has affected patterns of LD across the human

genome. Here we first examined 50 phased diploid genomes from the Yoruba (YRI) popula-

tion of the 1KGP [37]. We computed D’ for pairs of low-frequency (in this study frequency

equal to or less than 5/100, or allele count equal to or less than five) NS variants matched for

allele frequency. The same was done with pairs of low frequency S variants. To test for a signif-

icant difference in the amount of LD between NS and S SNPs, we used the permutation test

described in the previous section where we matched each pair of NS SNPs to a pair of S SNPs

that had the same derived allele frequency, physical distance between the pair of SNPs, genetic

distance between the pair of SNPs, and magnitude of background selection (See Materials and

Methods and S13 Fig).

We observed a difference in the mean D’ of matched pairs of NS and S variants across

genetic distance bins (Fig 3A). Specifically, NS SNPs have lower values of D’ at a given distance

compared to S SNPs. Application of the matched-pairs permutation test showed that the

observed difference of mean D’ between NS and S variants is significant (p< 0.0005) (Fig 3B).

These results suggest that pairs of derived alleles at NS SNPs tend to be located on different

haplotypes more often than are derived alleles at pairs of S SNPs. Because of our matched-

pairs permutation procedure, we conclude the differences in patterns of LD between pairs of

Fig 3. Pairs of NS variants have lower LD compared to pairs of S variants in human genetic variation data. (A) Pairs of

low-frequency (variants with minor allele count< = 5 in a sample of 50 individuals) NS variants in the YRI population of

the 1KGP have a lower (i.e. more negative) mean D’ compared to pairs of S variants across genetic distance bins. Error bars

represent one standard error of the mean and were calculated by dividing the standard deviation by the square root of the

number of pairs of SNPs. (B) In the YRI population of the 1KGP, NS pairs of variants have a significantly lower D’

compared to matched pairs of S variants.

https://doi.org/10.1371/journal.pgen.1009676.g003
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NS SNPs was not due to differences in local recombination rates or differences in background

selection.

Analysis of additional populations

We next tested for differences in LD patterns between pairs of NS and S variants in other

human populations. We selected data from 50 individuals from four other non-African popu-

lations included in the 1KGP (Han Chinese in Beijing, China (CHB), Utah Residents with

Northern and Western European Ancestry (CEU), Mexican Ancestry from Los Angeles USA

(MXL), Japanese in Tokyo, Japan (JPT)) and performed identical analyses to those described

above to quantify the difference in LD between the different types of SNPs. As in the YRI pop-

ulation, we observed that mean D’ between matched pairs of NS SNPs was clearly lower than

that for pairs of S SNPs across genetic distance bins in three out of four populations (CHB,

MXL, JPT; Fig 4A) and that these differences were statistically significant in three out of four

populations using the matched-pairs permutation test (Fig 4B). In the CEU, D’ was more neg-

ative for pairs of NS variants (-0.7806) compared to pairs of S variants (-0.7722), though the

difference was not significant. These findings illustrate that across several human populations,

NS derived alleles tend to co-occur on different haplotypes more frequently than do S variants

that have the same frequency.

Replication in high-coverage sequence data

Our previous analyses used 1KGP Phase 3 data which is the product of genotype imputation

and statistical phasing. To mitigate the possible effects of imputation and haplotype phasing

errors on our analysis, we also examined the distribution of NS and S variants using unphased

genotypes and our new HR
(2) and HR

(1) statistics to test for differences in LD between NS and

S variants. In addition to using the 1KGP Phase 3 dataset, we also used the 30X WGS of the

1000 Genome Project samples, sequenced by the New York Genome Center and funded by

NHGRI (http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/1000G_2504_high_

coverage/working/20190425_NYGC_GATK/) [38].

Our simulations predict that HR
(2) and HR

(1) ought to be lower for pairs of NS variants

compared to pairs of S variants (Fig 2). In the 1KGP Phase 3 YRI data, on average, pairs of NS

variants have a lower mean HR
(2) and HR

(1) (Fig 5A and 5B) compared to S variants. This dif-

ference is statistically significant for both doubletons (observed difference = -0.017, permuta-

tion test p = 0.011) and singletons (observed difference = -0.006, permutation test p = 0.001).

Importantly, the 30X WGS of the same 1000 Genome samples sequenced to higher coverage

by the New York Genome Center replicates this result (Fig 5C and 5D). In this data set, the

observed difference in mean HR
(2) for NS and S variants is -0.065 (p = 0.0088), and the

observed difference in mean HR
(1) is -0.018 (p = 0.001). Thus, our finding that NS SNPs tend

to be located on different haplotypes more often than S SNPs is robust to the specific dataset

used and is not due to phasing and imputation errors in the original 1KGP Phase 3 data.

Can Hill-Robertson effects account for more negative LD between NS

SNPs?

We hypothesize that Hill-Robertson effects are more likely to impact pairs of variants close to

each other, whereas other forces, like synergistic epistasis act on pairs of variants further apart

[18]. To better compare the difference between NS and S SNPs as a function of distance, we

normalized the difference in D between NS and S pairs of SNPs by dividing by the mean D of S

SNPs (Fig 6). Overall, this statistic is negative in the empirical data across the entire range of

genetic distances considered (green line in Fig 6). Simulations under Model 2 show a similar
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pattern, except that the normalized D tends toward 0 with increasing genetic distance between

SNPs. To assess whether the difference between the simulations and empirical data could be

due to the fact that the empirical data has fewer pairs of SNPs (6,066) than do the simulations,

we resampled 6,066 pairs from the simulations with the same allele frequencies as those in the

empirical data. Here, the normalized difference in LD calculated from the empirical data falls

within the range of values seen in the simulations. Some of the non-monotonic trends

observed in our analysis of empirical data may also be due to the limited number of SNP pairs

in particular recombination rate bins leading to imprecise measurements of the mean D. Fig 6

Fig 4. Results from the matched-pairs permutation test for non-African 1KGP populations. (A) Across four other populations in the 1KGP, NS pairs of variants have

lower values of D’ (i.e. have more negative LD) than their matched S counterparts. The quantile bins on the x-axis were set by combining all pairs of variants across all

populations and assigning them into 5 bins based on the centimorgan distance between variants with roughly equal numbers of pairs in each bin. Thus, each population

has the same centimorgan distance used to define each bin. (B) Matched-pairs permutation test shows significantly more negative average LD between pairs of NS SNPs

than S SNPs in all populations except the CEU population, where this difference is not significant.

https://doi.org/10.1371/journal.pgen.1009676.g004
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shows how downsampling the simulation replicates to have the same number of SNP pairs as

do the empirical data (3,160 pairs of NS SNPs and 2,906 pairs of S SNPs) induces fairly high

variance, consistent with the empirical observations. Thus, simulations including negative

selection can recapitulate the difference in LD between NS and S SNPs at different intervals of

genetic distance. We also examined the relationship of mean normalized difference in D in

CEU and CHB and observed a similar relationship with genetic distance (S15 Fig).

Since our forward simulations consisted of mutations that only affect fitness multiplica-

tively across loci, we conclude that the excess of negative LD between NS SNPs can be

explained by interference. However, as a limitation of our study, since we did not explicitly test

for it, we cannot rule out a contribution from negative synergistic epistasis in the empirical

data (see Discussion).

Fig 5. Distribution of mean HR
(2) and HR

(1) across empirical data sets with different coverages. (A, B) Low-

coverage 1KGP data. (C, D) High-coverage NYGC 1KGP data. For both datasets, mean HR
(2) and mean HR

(1) between

NS pairs of doubletons is on average lower than that of S pairs of variants.

https://doi.org/10.1371/journal.pgen.1009676.g005

Fig 6. Mean normalized difference in D across genetic distance quantiles. Empirical (green) and simulated data

shows a deficit in D between NS variants. The lighter orange lines show 100 resamples of the simulated data. Each

resample of the simulated data has the same number of variants with the same allele count as the empirical data.

https://doi.org/10.1371/journal.pgen.1009676.g006
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Discussion

Here we have shown that patterns of LD are influenced by deleterious mutations, in addition

to recombination and the underlying demographic history of a population. In our simulations,

we show how Hill-Robertson interference is expected to influence LD patterns between delete-

rious mutations and find that the effects are likely to be stronger in regions of lower recombi-

nation (Figs 1 and S2), consistent with previous work [25,33,50]. Using a human demographic

model and DFE, our simulations suggest that interference should be detectable in both low

recombination regions (r = 1 x 10−9 per bp) and regions with an average recombination rate

(r = 1 x 10−8 per bp) in the human genome (Figs 1 and S2). We then searched for these pat-

terns in several genomic datasets from several human populations and with different types of

data (low-coverage and exome sequence data followed by imputation as well as high-coverage

whole-genome sequence data). To quantify the difference in LD among NS variants relative to

S variants, we implemented a matched-pairs permutation test. Overall, for most of the compar-

isons considered, NS SNPs appear to be present on different haplotypes more frequently than

S SNPs having the same allele frequency (Figs 3, 4 and 5).

Recent studies have identified batch effects present in the 1KGP that have led to popula-

tion-specific artifacts [51]. We hypothesized that if the excess of negative LD among pairs of

NS variants is due to batch effects, we would not detect this difference across multiple popula-

tions. However, we see qualitatively similar patterns in 4 of the 5 populations from the 1KGP.

Additionally, previous work has suggested that low-frequency errors that are the consequence

of batch effects tend to be in positive LD with each other (i.e. the erroneously called derived

alleles at different loci tend to co-occur in the same individual) [52]. Also, variants that are

identified as error candidates are more likely to be NS variants [52]. With this in mind, we sus-

pect that sequencing errors would bias our analysis of pairs of low frequency variants anno-

tated as being NS towards being more often in positive LD than in negative LD. This suggests

that our observation of a depletion of positive LD amongst NS variants is conservative. Lastly,

the fact that we replicate these findings using unphased genotypes for HR
(2) and HR

(1) from

high coverage sequencing (Fig 5) suggests our conclusions are not due to artifacts in the

1KGP.

While we use simulations to quantify the effects of interference on LD statistics, a limitation

of this study is that we do not simulate full human genomes and directly assess whether the

model parameters can fully explain the empirical data. The DFE that we simulated under

closely recapitulates empirically observed site frequency spectrum in human genetic variation

data [40]. However, for tractability, we did not incorporate empirically measured recombina-

tion maps into our simulations, and instead simulated under uniform recombination rates.

Because of this, the LD decay curves in our sample may not quantitatively match the curves

seen in empirical data. With these limitations in mind, we compared trends from these simula-

tions qualitatively to our empirical data. Future work can test whether realistic genetic maps,

functional annotations, and a DFE can match genome-wide patterns of LD. We focused on

variants with minor allele count less than five because in our sample size of 50 they are affected

by selection (S3 Fig). In many modern datasets, sample sizes are much larger and have many

more than 50 individuals. In such datasets singletons and doubletons can be at very low popu-

lation allele frequencies. In these datasets it may be better to focus on other allele frequency

categories for detecting HRI.

Our work adds to the growing literature indicating Hill-Robertson interference is a non-

negligible force involved in the spatial distribution of NS variation in the human genome.

Sohail et al. [18] found that putatively deleterious loss of function mutations were under-dis-

persed compared to putatively neutral S variation. Their summary statistic essentially
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quantified an increase in negative LD between loss of function variants. Their work is similar

to our finding of an excess of negative LD among NS variants compared to S variants. How-

ever, because the variants they examined were predominantly on different chromosomes and

not physically linked, Sohail et al. mainly attributed this excess of negative LD as a signature of

synergistic epistasis among deleterious variants. Hussin et al. [33] looked for signatures of

interference by quantifying the relative enrichment of deleterious mutations in cold spots of

recombination. Our simulations are concordant with this finding and predict that differences

in LD among deleterious variants will be most distinguishable in regions of low recombination

(r = 1 x 10−9 per bp) and almost indistinguishable in regions of high recombination (r = 1 x

10−6 per bp) (Fig 1).

Our results suggest that inferences of demography that depend on genome-wide LD pat-

terns may be biased if negative selection is not accurately modeled. For example, Tenesa et al.

used r2 at different genetic distances to infer changes in population size and fit exponential

functions to LD decay to infer admixture times [6]. If variants under negative selection are

included in these analyses, they may bias parameter estimates. Further, demographic models

fit to the site frequency spectrum in humans and Drosophila do not recapitulate empirically

observed LD patterns [53–55]. Unmodeled negative selection may contribute to this lack of fit.

We recommend carefully filtering regions of the genome that may be affected indirectly

(linked selection, interference, background selection) or directly by selection by removing loci

that have a short recombination distance to functionally annotated loci [56,57]. Alternatively,

when considering variants under selection, we find that different combinations of recombina-

tion rate, DFE, and dominance predict unique mean r2 and D decay patterns. Thus, LD pat-

terns may offer a strategy to infer the relationship between the dominance coefficient and the

DFE in outcrossing populations [58]. In order to accurately predict the expected LD decay

curve under a given scenario, extensive forward simulations, or recently developed numerical

approaches [59], are needed to determine the predicted LD decay as a function of these geno-

mic and selective parameters.

Further, through methods like LD score regression, LD patterns have been used to learn

about the architecture of complex traits [60]. We have shown that for low-frequency variants,

variants under selection will have more negative LD than putatively neutral variants (S1

Table). This effect may bias methods that assume variants of the same allele frequency will

have the same distribution of r2 values. For example, stratified LD score regression is used to

infer heritability in different functional annotations and assumes that there will be similar LD

between causal variants and tag SNPs regardless of the fitness effects of the causal variants

[61]. Because causal variants under greater negative selection may have larger effects on the

trait [62], the heritability that deleterious variants account for may be systematically

underestimated.

Epistatic interactions have been documented between variants in different genes [63] as

well as variants within the same gene [64] and are believed to be widespread properties of bio-

logical networks [65,66]. Although the genomic consequences of additive deleterious variants

which multiplicatively (across loci) affect fitness are extensively studied, pairwise interactions

among variants might be a non-negligible force governing molecular evolution. Current meth-

ods to identify plausible pairwise interactions between SNPs rely on classic population genetic

summary statistics of LD or other summaries of pairwise association frequencies [65,67,68].

Although we detect differences in LD summary statistics in the human genome among vari-

ants of different annotations, our simulations suggest this difference can be explained by inter-

ference without the need to invoke epistasis (Fig 6). We hypothesize that the difference is

predominantly due to interference because of its relationship with recombination rate. Our

simulations and theory predict that the biggest differences in LD should be present among
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variants with the least amount of recombination separating them, and the smallest differences

in LD should be present between variants with the most amount of recombination separating

them. This scenario aligns with what we observe in our empirical data. We propose that when

developing methods for detecting synergistic epistasis, null models should incorporate Hill-

Robertson interference.

Future work could quantify the prevalence of epistasis among linked deleterious variants

while jointly quantifying the fitness effects of pairs of deleterious variants [59]. Additionally,

although it has been shown that two locus statistics such as D’ can be used in the detection of

epistatic interactions and interference [17,50], it is possible that a combination of summary

statistics can better discern between the two. Machine learning approaches, which can com-

bine different features of genetic variation data [69], may provide a powerful tool for detecting

salient spatial features of proximal variants involved in epistatic interactions and interference.

Materials and methods

Forward simulations

We performed forward simulations using SLiM 3.0 [39]. Each generated chromosome was

approximately 5 Mb long and contained intergenic, intronic, and exonic regions. Only NS

mutations within exonic regions experienced negative selection. The distribution of genomic

elements in our forward simulations followed the specification in the SLiM 4.2.2 manual (7.3),

which is modeled after the distribution of intron and exon lengths in Deutsch and Long [70].

Within exonic regions, NS and S mutations were set to occur at a ratio of 2.31:1 [71], which is

derived from degeneracy of the codon table of eukaryotes. While intergenic deleterious varia-

tion exists, our simulations only considered “exonic” variation. For simulations using a DFE,

the selection coefficients (s) of NS mutations were drawn from a gamma-distributed DFE with

shape parameter 0.186 and expected selection coefficient E[s] = -0.01314833 [40]. All NS muta-

tions were either additive with h = 0.5 or recessive with h = 0.0. The per base pair per genera-

tion recombination rate was constant across each simulated region and was fixed at r 2{10−6,

10−7, 10−8, 10−9} while the per base pair per generation mutation rate was set to μ = 1.5 x 10−8.

We simulated under three demographic models. Model 1 consists of a population of 10,000

individuals evolving for 100,000 generations. Model 2 is the model of human demography by

Gravel et al. [41] and implemented into SLiM [39]. Model 3 is identical to Model 2 except that

there is no migration across the populations (S1 Fig). We simulated the total number of indi-

viduals in the population without additional scaling of parameters with the exception of S14

Fig, where population sizes were scaled to be 10-fold smaller. For each simulation replicate, we

sampled 50 individuals from the African population and computed the various LD statistics as

described in Materials and Methods. Simulation code is on Github for each model.

Empirical data

We first used data from 50 Yoruba (YRI) individuals from the 1KGP. Specifically, we ran-

domly sampled 50 individuals from Supplementary Table 4 in Gazal et al. [72] that were

labeled as coming from the “YRI” population, had a mating type described as “OUT” (out-

crossing), and had a Q-score (quality score) of greater than 50. Then we removed all non-bial-

lelic variants. Next, we polarized the remaining variants using only high-confidence sites in

the 6-way primate EPO multiple alignment as the ancestral allele. All variants without a high-

confidence ancestral allele were also removed from analysis. Remaining biallelic exonic vari-

ants in our sample were annotated as either NS or S variants using ANNOVAR [73]. For analy-

ses with other populations of the 1KGP Phase 3 data, the same procedure described above was

used.
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Analysis of the YRI NYGC 1KGP whole-genome sequence data used the same 50 individ-

uals that were selected from the 1KGP Phase 3 data. Variants were also polarized using only

high-confidence sites in the EPO multiple alignment as the ancestral allele. All variants with-

out a high-confidence ancestral allele were also removed from analysis. Remaining biallelic

exonic variants in our sample were annotated as either NS or S variants using ANNOVAR

[73]. Pairs of variants that were within 10,000 bp of each other, had the same allele count in

the sample of 50, had the same annotation, and were both located in the 1KGP strict mask

(http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/1000_genomes_project/

working/20160622_genome_mask_GRCh38/StrictMask/20160622.allChr.mask.bed) were

then analyzed. The total number of pairs of variants included in each empirical analysis is

indicated in S2 Table.

Computing LD summary statistics with frequency matching

Three different pairwise LD statistics were calculated between SNPs with the same allele count

in our sample. First, to compute D, we used the formula from Lewontin [17]:

D ¼ pAB � pApB:

Here, D is the difference between the observed frequency of haplotype AB (pAB) and the

expected frequency of haplotype AB (assuming random association of the alleles at the two

loci, pA�pB). In this calculation, pA and pB are the observed frequencies of the derived alleles A
and B in our sample. With the notation described here, the coupling haplotypes include

derived alleles at both variants (AB) and the repulsion haplotypes include derived alleles at one

variant (Ab are aB).

We computed r2 with the formula:

r2 ¼
D2

pApapBpb
:

D’ was computed with:

D0 ¼

D
minðpApB; papbÞ

D < 0

D
minðpApb; papBÞ

D > 0

:

8
>>><

>>>:

Whether D’ is negative or positive depends on the arbitrary choice of the alleles paired at

two loci. We chose the pair of derived alleles to be the pair of alleles that cause D’> 0 when

located in coupling. Therefore, a pair of derived doubletons that only ever appear in a sample

together on the same haplotype will have a D’ = 1. A pair of derived doubletons that are never

observed on a haplotype together in a sample will have a D’ = -1.

Limiting LD calculations between SNPs to restricted allele frequency intervals was first

done by Eberle et al. [36] and found to be a more sensitive measure for assessing the average

decay of LD and is able to generate average r2 values across nearly the entire informative

range. We applied this approach to pairs of NS SNPs as well as pairs of S SNPs. For plotting

smooth LD decay curves (Figs S2, S6, and S7), we used a generalized additive model with the

“gam” function from the R package mgcv version 1.8–29 [74]. We fit the default formula y ~ s

(x, bs = "cs"). This formula specifies a generalized additive model between LD (y) and physical

distance (x) with a penalized cubic regression spline which has had its penalty modified to

shrink towards zero (bs = “cs”) [74].
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A new LD statistic for unphased genotypes: HR
(j)

We developed a new statistic to be applied to unphased genotype data to quantify whether

derived deleterious alleles at a pair of SNPs are likely to be found on the same haplotype. We

call our new static HR
(j), where the “R” stands for “repulsion” as we use this summary statistic

to measure repulsion between deleterious variants.

We begin by computing the distribution of counts of homozygous ancestral, singly hetero-

zygous, and doubly heterozygous genotypes amongst pairs of variants that were within 10,000

bp from each other, had an identical allele count, and also had the same functional annotation

(S or NS). Here variants can have three genotypes 0 (homozygous ancestral), 1 (heterozygous),

2 (homozygous derived). For example, for a pair of NS singletons in a sample of 50 diploid

individuals, the counts could be: n11 = 1, n01 and n10 = 0, and n00 = 49. This would correspond

to 1 individual being doubly heterozygous for this pair of variants, 0 individuals being singly

heterozygous, and 49 individuals being homozygous for the ancestral genotypes at these loci.

Then,

HðjÞR ¼
1

lj

Xi¼lj

i¼1

nðiÞ11:

HR
(j) depends on three components: n(i)

11, j, and lj. j refers to the allele count of variants to

be analyzed. For singletons, j = 1, for doubletons j = 2, for tripletons j would be equal to 3, etc.

lj is the number of pairs of variants at allele count j within a distance threshold. n(i)
11 represents

the count of heterozygous individuals with derived variants at both loci of the pairwise com-

parison i (coding genotypes as 0 for homozygous ancestral, 1 for heterozygous, 2 for homozy-

gous derived). For pairs of doubletons, this equation is represented as:

Hð2ÞR ¼
1

l2

Xi¼l2

i¼1

nðiÞ11

and would be called HR
(2). To compute HR

(2) for derived NS variants in a sample, we created a

list of all derived NS doubletons in the sample. Then, we created a list of all unique pairwise

combinations of these doubletons that involve SNPs within a certain distance threshold. The

length of this list would be equal to l2. We then found the number of heterozygous individuals

with derived variants at both loci of the pairwise comparison i are then summed together over

all l2 pairs of SNPs. This is represented by
Xi¼l2

i¼1

nðiÞ11 . Lastly, division by the total number of pair-

wise comparisons (or multiplication by 1

l2
) gives HR

(2)
.

In principle, HR
(j) can be computed for any value of j<2n, where n is the number of individ-

uals in the sample. In practice, we consider j = 1 and j = 2 because low-frequency variants in a

sample size of 50 are most likely to be impacted by negative selection (S3 Fig).

Estimating genetic distance between variants

The genetic distance between two markers was computed using the high-resolution pedigree-

based genetic map assembled by deCODE [75]. First, we averaged the male and female genetic

maps. Occasionally the genetic distance between two markers in our sample was not explicitly

estimated by deCODE. If one or both of the markers were in regions not measured by

deCODE, we removed these markers from our analysis with genetic distance. However, if the

two markers were within a region of the genome with a high-resolution recombination envi-

ronment estimated by deCODE, we imputed the genetic distance between markers by
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estimating a centimorgan per base pair rate and multiplying this rate by the physical distance

between the two markers that lacked a genetic distance annotation.

Annotating variants with amount of background selection

For one of our matched-pairs permutation tests, we matched pairs of NS variants with pairs of

S variants with similar levels of background selection. B-values were downloaded from http://

www.phrap.org/software_dir/mcvicker_dir/bkgd.tar.gz. Then we used liftOver (UCSC

Genome Browser) with its default settings and the hg18Tohg19 chain (http://hgdownload.cse.

ucsc.edu/goldenPath/hg18/liftOver/hg18ToHg19.over.chain.gz) to convert B-value coordi-

nates from hg18 to hg19. Each SNP in our data set was then annotated with its corresponding

B-value using the GenomicRanges package [76].

Supporting information

S1 Fig. Demographic models for simulations. Model 1 represents a constant population size

simulation. Model 2 represents the Gravel et. al (2011) demographic model. The yellow sub-

population represents Africans (YRI). Green represents the ancestral Eurasian bottleneck.

Blue represents East Asia and pink represents Europe. Model 3 is the Gravel demographic

model but without migration.

(TIFF)

S2 Fig. Decay of mean r2 for different recombination and dominance parameters. The dif-

ferences in the LD decay curves are most apparent with recombination rate r = 1 x 10−9 per bp

and depend on the dominance coefficient (h) of mutations and the selection coefficient (s) of

NS mutations. DFE curves come from simulated populations where new NS mutations have

selection coefficients following our defined distribution of fitness effects (see text). All variants

are included in this analysis and no frequency filters are applied.

(TIFF)

S3 Fig. Doubletons in a sample of 50 individuals are more deleterious than higher fre-

quency variants. We simulated 300 replicates of a constant population size of 14, 474 diploid

individuals with r = 1 x 10−8 per bp, and the DFE and genome structure defined in Materials

and Methods. Although simulations predict singletons (first red point), on average, should be

the most deleterious in our samples, doubletons (second red point) are also relatively deleteri-

ous. Higher frequency variants tend to have mean selection coefficients that are much more

neutral. Because we want to study the effects of negative selection on LD, we restrict many of

our analyses to low frequency variants (allele count< = 5)

(TIFF)

S4 Fig. Pictorial representation of variants in coupling and repulsion. Pairs of derived vari-

ants that co-occur on the same haplotypes more frequently than expected are said to be “cou-

pling” or in positive LD (left panel). Pairs of derived variants that occur less frequently than

expected on the same haplotype are said to be in “repulsion” or in negative LD (right panel).

(TIFF)

S5 Fig. Mean r2 for simulated nonsynonymous doubletons within 10kb of each other across

different recombination and dominance parameters. The differences in the decay curves are

most apparent for recombination rate r = 1 x 10−9 per bp and depend on the dominance coeffi-

cient (h) and the selection coefficient (s) of NS mutations. 150 simulation replicates were simu-

lated for each scenario and were split into 3 groups consisting of 50 simulations. For each

group the mean value of r2 is shown as the line and the error bars denote the minimum and
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maximum mean r2 values.

(TIFF)

S6 Fig. Decay of D from simulated NS and S doubletons. There are two different scenarios

shown in the figure: 1) simulations with negative selection, and 2) simulations without nega-

tive selection (completely neutral evolution). The blue line is the decay curve of NS doubletons

with direct negative selection acting on them. In contrast to the decay curve of the NS double-

tons not under negative selection (dark red), the NS doubletons with direct negative selection

acting on them (blue) have a more negative D than the other neutral doubletons (S variants in

simulations without selection, NS variants in simulations without selection, S variants in simu-

lations with selection).

(TIFF)

S7 Fig. Decay of D for simulated NS and S doubletons in scenarios with migration. For

r = 1 x 10−8 per bp, the largest differences between S and NS D is predicted by our simulations

to be within the 0–10,000 bp range. In our simulations with r = 1 x 10−9 per bp, noticeable dif-

ferences between S and NS D is predicted by our simulations to be across the 0–100,000 bp

range. Additionally, migration appears to qualitatively obscure the difference in D between

types of variants at intermediate distances.

(TIFF)

S8 Fig. Mean selection coefficient of deleterious doubletons in our simulated samples and

their population of origin. For both r = 1 x 10−9 per bp and r = 1 x 10−8 per bp, doubletons

that appear in our simulated “African” sample, have on average different mean selection coeffi-

cients depending on their population of origin. Migration (Model 2) allows for deleterious var-

iants that originated from other populations to appear in our African samples. On average, the

doubletons in our sample of African individuals that originate from East Asia and Europe are

less deleterious than the doubletons in our sample that originated from Africa.

(TIFF)

S9 Fig. Simulations under demographic Model 2 predict NS pairs of doubletons are more

often in complete repulsion than S pairs of doubletons. The red line denotes the total frac-

tion of simulated NS doubletons that are in complete repulsion (D’ = -1) and the blue line

denotes the total fraction of simulated S doubletons that are in complete repulsion. For each

recombination rate, pairwise LD computations were binned into 5 quantiles based on the cen-

timorgan distance between variants. The midpoint between the boundaries of each bin was

then computed and defined the bins on the x-axis.

(TIFF)

S10 Fig. Pictorial representation of nAB and HR
(1). The statistic HR

(1) depends on the number

of unique pairwise comparisons among singletons within the distance threshold 10 kb (l1 = 1).

Additionally, it depends on the number of individuals who are heterozygous at both loci. In

both Scenario 2 and 3, the individual is heterozygous at both loci, thus making HR
(1) = 1. The

statistic nAB depends on the number of haplotypes that contain derived alleles at both loci. In

this case, only Scenario 2 contains one haplotype that has both derived variants. HR
(1) can also

be thought of as an indicator variable taking the value of 1 if an individual is heterozygous at

both loci and 0 if not.

(TIFF)

S11 Fig. Spearman’s rank correlation coefficient (ρ) between HR
(j) and D’. (A) For simula-

tions with r = 1 x 10−9 per bp, ρ = 0.978 (p-value < 2.2e-16) for the correlation between HR
(1)

and D’. (B) Also, ρ = 0.978 (p-value < 2.2e-16) for the correlation between HR
(2) and D’. (C)
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For simulations with r = 1 x 10−8 per bp, ρ = 0.947 (p-value< 2.2e-16) for the correlation

between HR
(1) and D’. (D) Also, ρ = 0.996 (p-value < 2.2e-16) for the correlation between

HR
(2) and D’. The DFE of NS mutations was gamma-distributed with shape parameter 0.186

and expected selection coefficient E[s] = -0.01314833.

(TIFF)

S12 Fig. Flow chart of the matched-pairs permutation test. First, sample 50 individuals from

a population. Polarize variants and then annotate variants as either NS or S. Second, compute

LD summary statistics among pairs of variants that are within 10,000 bp from each other and

have the same allele count (AC) and annotation (NS or S). Third, for each pair of NS variants

with a computed LD statistic, find one S pair of variants with the same AC, on the same chro-

mosome, and with a similar (<50 bp) distance between variants. Each pair of NS and S pairs

constitutes a matched pair. Fourth, compute the mean difference between matched pairs.

Fifth, permutate the label (i.e. S or NS) for each pair of SNPs.

(TIFF)

S13 Fig. Matching rules for features and their distribution across NS variants and S vari-

ants in empirical data. In order to reduce possible confounding effects of different distances,

allele counts, levels of background selection, and recombination rate, we implemented a

matched pairs scheme. For each pair of NS variants in our data set, we attempted to identify a

pair of S variants with similar features. This allowed us to compare pairs of variants with simi-

lar distributions and spread of covariates. (A) Physical distance between pairs of S SNPs vs.

pairs of NS SNPs after matching. (B) Distribution of allele counts for NS and S SNPs after

matching. (C) Distribution of genetic distances between pairs of NS and S SNPs after match-

ing. (D) Distribution of B-values surrounding NS and S SNPs after matching. (E) The number

of NS and S SNPs per chromosome after matching. (F) The matching rules and summary sta-

tistics of matching success. The “Matching” column denotes the rules we used for matching.

“SD” stands for standard deviation.

(TIFF)

S14 Fig. Matched-pairs permutation test on various LD summary statistics in simulations

without negative selection. (A) D. (B) D’. (C) r2. (D) Count of the derived haplotype (AB). In

simulations without negative selection, none of the LD summary statistics we computed

showed a significant difference between NS and S matched pairs.

(TIFF)

S15 Fig. Mean normalized difference in D across genetic distance quantiles for multiple

1KGP populations. Empirical and simulated data show a deficit in D between NS variants.

The lighter orange lines show 100 resamples of the simulated data. Each resample of the simu-

lated data has the same number of variants with the same allele count as the YRI empirical

data. All three populations show a more negative D between low frequency NS variants com-

pared to low frequency S variants.

(TIFF)

S1 Table. Summary statistics of D’ across allele counts for neutral (S) and deleterious (NS)

variants. In simulations with a gamma distributed DFE, NS pairs of low-frequency variants

are predicted to have a less positive D’ compared to S pairs of variants. Generally, as the fre-

quency of variants analyzed increases, D’ becomes more positive and the differences between

NS and S pairs decreases.

(TIFF)
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S2 Table. Summary of empirical data used in the figures. The number of pairs of variants in

each analysis is in the “Number of pairs” column. Whether or not matching was required

between synonymous and nonsynonymous pairs of variants is indicated in “Matching between

S and NS pairs” column. The allele count of variants included in the analysis are indicated in

the “Allele count of variants” column. The data set from which variants come from and any

notes included are indicated in the “Notes” column. If “Matching between S and NS pairs” is

“Yes”, then the total number of NS and S pairs are reported in the “Number of pairs” column.

(TIFF)

S1 Text. Predicted effect of negative selection on linkage disequilibrium decay.

(PDF)

S2 Text. Effect of negative selection and complex demography on LD.

(PDF)
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