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BACKGROUND Asymptomatic left ventricular systolic dysfunction (ALVSD) affects 7 million globally, leading to

delayed diagnosis and treatment, high mortality, and substantial downstream health care costs. Current detection

methods for ALVSD are inadequate, necessitating the development of improved diagnostic tools. Recently,

electrocardiogram-based algorithms have shown promise in detecting ALVSD.

OBJECTIVES The authors developed and validated a convolutional neural network (CNN) model using single-lead

electrocardiogram and phonocardiogram inputs captured by a digital stethoscope to assess its utility in detecting indi-

viduals with actionably low ejection fractions (EF) in a large cohort of patients.

METHODS 2,960 adults undergoing echocardiography from 4 U.S. health care networks were enrolled in this multi-

center observational study. Patient data were captured using a digital stethoscope, and echocardiograms were performed

within 1 week of data collection. The algorithm’s performance was compared against echocardiographic EF (EF mea-

surements, categorizing EF as normal and mildly reduced [>40%] or moderate and severely reduced [#40%]).

RESULTS The CNN model demonstrated an area under the receiver operating characteristic curve of 0.85, with a

sensitivity of 77.5%, specificity of 78.3%, positive predictive value of 20.3%, and negative predictive value of 98.0%.

Among those with an abnormal artificial intelligence screen but EF >40% (false positives), 25% had an EF between

41%-49% and 63% had conduction/rhythm abnormalities. Subgroup analyses indicated consistent performance across

various demographics and comorbidities.

CONCLUSIONS The CNN model, utilizing a digital stethoscope, offers a noninvasive and scalable method for early

detection of individuals with EF #40%. This technology has the potential to facilitate early diagnosis and treatment

of heart failure, thereby improving patient outcomes. (JACC Adv. 2025;4:101619) © 2025 The Authors. Published by

Elsevier on behalf of the American College of Cardiology Foundation. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
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ABBR EV I A T I ON S

AND ACRONYMS

AI = artificial intelligence

ALVSD = asymptomatic left

ventricular systolic dysfunction

AUROC = area under the

receiver operating

characteristic curve

CNN = convolutional neural

network

ECG = electrocardiogram

EF = ejection fraction

ML = machine learning

NPV = negative predictive

value

NTproBNP = N-terminal pro

B-type natriuretic peptide

PCG = phonocardiogram

PPCM = peripartum

cardiomyopathy

PPV = positive predictive value
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H eart failure remains a significant
global health concern. Congestive
heart failure affects 5 million peo-

ple and consumes more than 30 billion in
health care expenditure.1,2 Asymptomatic
left ventricular systolic dysfunction(LVSD)
has an estimated prevalence of 3% to 6%,
affecting approximately 7 million people,
and is at least as common in the community
as systolic heart failure.3 Because it often
occurs in the absence of known cardiovascu-
lar disease, this condition may go unrecog-
nized and untreated.3 Asymptomatic LVSD,
classified as stage B heart failure, is defined
as structural heart disease without current
or prior symptoms. Early intervention is
known to be effective, yet late diagnosis per-
sists, leading to heart failure being identified
in acute care settings despite earlier docu-
mentation of potential symptoms in primary
care.4 Delayed diagnosis contributes to the
unacceptably high mortality rates associated with
heart failure.5 Additionally, the underutilization of
echocardiography and late diagnosis of heart failure
incur substantial costs for health care systems.6

Underlying this is the lack of simple and scalable
screening tools available for early detection and
intervention.7

Since its invention over 200 years ago, the stetho-
scope has remained an indispensable tool in the clin-
ical examination of patients.8 With advancements in
technology, notably the advent of artificial intelli-
gence (AI) and digital stethoscopes capable of
capturing both heart sound (phonocardiogram [PCG])
and electrocardiogram (ECG) signals, diagnostic capa-
bilities of the stethoscope have substantially improved
for a wide range of users. While echocardiography
remains the gold standard for diagnosing low ejection
fraction (EF), its widespread use is limited by resource
constraints, requirement for extensive training,
operator-dependent variability, and cost. PCG and ECG
signals, captured by a digital stethoscope and pro-
cessed through AI-enabled algorithms, provide a
noninvasivemethod to detect a lowEF that can be used
equally effectively by individuals with all levels of
training and experience.1,9

Digital stethoscopes have already demonstrated
their ability to improve diagnostic accuracy in several
s attest they are in compliance with human studies committe

and Food and Drug Administration guidelines, including patien

thor Center.
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clinical contexts, including the detection of heart
murmurs and lung sounds. By incorporating AI into
these devices, we aim to further enhance their utility
in the detection of low EF, offering a noninvasive,
accessible tool for early heart failure diagnosis.10,11

To our knowledge, few studies have explored
AI-enhanced digital stethoscopes for detecting low EF.
These either did not incorporate PCG data into their
algorithm or involved different patient populations
(eg, peripartum individuals). The usage of PCG for the
detection of low EF is new in this study. Models based
on PCG signal alone are less predictive for low EF
compared to models based on ECG alone. In a previous
study,12 it was observed that a model using PCG alone
had an area under the curve of 77.8%, while a model
using single-lead ECG alone had an area under the
curve of 80.4% for detecting low EF. In the current
study, we show that a model that simultaneously
analyzes synchronously captured PCG and ECG per-
forms better than a model that uses single-lead ECG
alone. Our study incorporates both single-lead ECG
and PCG signals into the algorithm to detect
LVEF #40% in a diverse, real-world cohort. Our aim
was to validate the predictive accuracy of this algo-
rithm in a real-world setting in identifying patients
with an EF of 40% or less, thus facilitating early
detection and management.

METHODS

STUDY POPULATION AND SETTING. This multicenter
observational study was conducted using data from 4
geographically distinct U.S. health care networks:
Jefferson Einstein Philadelphia Hospital (Pennsylva-
nia), Prairie Cardiovascular Consultants (Illinois),
MedStar Health Research Institute (Maryland), and
Ochsner Heart and Vascular Institute (Louisiana). The
study population consisted of adults aged 18 years and
older undergoing a clinically indicated echocardio-
gram for any reason within 7 days of study procedures
and who were willing and capable of providing
informed consent. Nonprobability, exhaustive sam-
pling method was used to enroll individuals in the
study. Exclusion criteria included individuals who
were unwilling or unable to provide informed consent,
as well as hospitalized patients. Prior diagnosis of
heart failure or reduced EF did not preclude patients
from participating in the study. Patient demographic
es and animal welfare regulations of the authors’

t consent where appropriate. For more information,
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FIGURE 1 Placement of the Eko DUO Digital Stethoscope in a

Modified Lead II Orientation

The Eko DUO digital stethoscope is placed on the chest in a

modified lead ii orientation, with the device positioned along

the midline of the sternum, extending diagonally toward the

left hip. This placement is designed to optimize the quality of

both the ECG and phonocardiogram (PCG) signals for accu-

rate ejection fraction analysis. ECG ¼ electrocardiogram.
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data, including age, race/ethnicity, sex, and medical
history, were collected. The responsible Institutional
Review Boards and ethics committees of the partici-
pating centers approved this study.

ALGORITHM DEVELOPMENT. The development of
the low EF convolutional neural network (CNN)
model built upon previous work conducted by Attia
et al.1,9 Briefly, the model uses an ensemble of 3
CNNs. The primary component of the ensemble
(referred to as the ECG model) was trained on 44,959
12-lead ECG and echocardiogram pairings from the
Mayo Clinic database.1 The inputs to the ECG model
were single leads from the 12-lead ECGs in the Mayo
Clinic data set and the model was trained to predict
whether LVEF was normal (>40%) or low (#40%).
Information on which ECG lead was being used was
not provided to the ECG model. The model was
trained in this manner so that the resulting model is
robust and not sensitive to the location/orientation at
which the ECG lead is captured. To further refine the
algorithm, 18,999 paired PCG and ECG recordings
from 1,852 subjects sourced from a proprietary data
set, referred to as the Eko Training Dataset, were
utilized. The training data set was acquired from 8
clinical study sites (both within and outside the
United States) independent of the study sites used for
testing. Subjects in the training data set underwent
transthoracic echocardiography within 30 days of the
ECG-PCG recordings to ensure accurate ground truth
labeling. These data enabled the fine-tuning of the
ECG model and the creation of 2 additional models in
the ensemble that utilize PCG as well, enabling the
low EF CNN model to accept both single-lead ECG and
PCG inputs.

The final model is an ensemble of 3 models (ECG
model, PCG model, and PCG-ECG model). The input
to the PCG model is the one-dimensional time-series
or PCG waveform at 2,000 Hz, and the input to the
PCG-ECG model is synchronously captured PCG and
ECG waveforms. All 3 models have a ResNet13 style
architecture and they all have 2 nodes in the output
layer, one representing the probability of “low ejec-
tion fraction,” and one representing the probability of
“normal ejection fraction” (which is 1 - probability of
“low ejection fraction”). The probability outputs from
the 3 models were averaged to get the final proba-
bility output of the ensemble model. A simple
threshold was then applied on the final averaged
probability output. If the model output for low EF is
equal or greater than the threshold, the output of the
Ejection Classification Algorithm is “low ejection
fraction,” otherwise the output is “normal ejection
fraction.” The probability threshold for the final
ensemble model was determined using a separate
internal validation set (which was not used for
training the model or the final evaluation). The
threshold was chosen to maximize the sum of sensi-
tivity and specificity on the internal validation set.

The Eko Test Dataset includes paired ECG and PCG
recordings and echocardiograms from 2,960 unique
subjects. The data set was collected exclusively from
the 4 study sites using the predefined inclusion and
exclusion criteria and represents a wholly indepen-
dent test set with no overlap with the training data.
This test set was powered to estimate sensitivity and
specificity with the lower bound of the 95% CI to be
above 70%, assuming a sensitivity of 80% and a low EF
prevalence of w15%. Recruitment continued until 210
subjects with low EF were included in the data set to
ensure sufficient precision for sensitivity estimation.

STUDY PROCEDURES. For data capture, a single 15-
second ECG and PCG recording was obtained using
the Eko DUO digital stethoscope (Eko Health, Inc).
The stethoscope was placed in a modified lead II
orientation (Figure 1) on patients in a seated position.
Previous validation work determined that this posi-
tion and orientation provided the best algorithm
performance.14 All participants underwent echocar-
diography within a maximum of 7 days of the corre-
sponding ECG and PCG recordings.



FIGURE 2 Schematic of Eko Low EF AI Operational System

This schematic outlines the operational workflow of the Eko low EF AI system. Input waveforms from heart sound (PCG) and electrocardiogram (ECG) are analyzed for

signal quality. If the ECG signal quality is sufficient, the data are processed for ejection fraction classification. The AI model then outputs one of 3 possible results:

normal ejection fraction, low ejection fraction, or poor ECG signal, based on the quality of the data and the classification outcome. AI ¼ artificial intelligence;

API ¼ Application Programming Interface; EF ¼ ejection fraction; PCG ¼ phonocardiogram.
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EF DETERMINATION. The EF of each person was
measured by the echocardiogram machine’s inte-
grated cardiac quantification software at the time of
the echocardiogram or a manual biplane Simpson’s
measurement. For all included patients, EF mea-
surements were then over-read by board-certified
cardiologists at each site.15 The final EF determina-
tion was based on the EF provided in the clinical
report and, for this study, was dichotomized as #40%
or >40%. Interobserver variability of EF measure-
ments was performed in a subset of 194 patients
from 2 independent readers and was 0.706
(Cohen’s kappa).

CNN MODEL ANALYSIS. The signal quality of the ECG
and PCG recordings was assessed using a deep
learning classifier previously validated against
expert/cardiologist consensus, serving as the ground
truth. Only recordings deemed to have good signal
quality underwent EF classification. Specifically, if
the ECG signal quality was assessed as poor, no EF
classification result was provided, irrespective of the
PCG signal quality. In cases where the ECG signal
quality was deemed good, but the PCG signal quality
was poor, only the ECG model was utilized.
Conversely, when both the ECG and PCG signal
qualities were satisfactory, an ensemble model was
employed (Figure 2). The algorithm identified
instances of “low ejection fraction detected” (defined
as an EF of #40%) when the output of the EF classi-
fication algorithm surpassed a predetermined
threshold. The potential AI outputs for low EF were
“low ejection fraction detected,” “normal ejection
fraction detected,” or “poor ECG signal.”

OUTCOMES. The primary aim of this study was to
determine the performance of an ECG-enabled digital
stethoscope in identifying patients with reduced EF
of #40% using an algorithm derived from single-lead
ECG and PCG inputs. The primary endpoints included
the performance metrics sensitivity and specificity.
Secondary endpoints included positive predictive
value (PPV), negative predictive value (NPV), and
diagnostic yield (Central Illustration).
STATISTICAL ANALYSIS. Patient demographic and
clinical data for the entire cohort are presented using
descriptive statistics. A comprehensive panel of al-
gorithm performance metrics, including sensitivity,
specificity, PPV, NPV, and diagnostic yield, were
calculated. Diagnostic yield is defined as the per-
centage of recordings that the algorithm recognized
as having good signal quality and which were suitable
for a low EF interpretation. Exploratory subgroup
analyses were conducted to assess the effects of
participant characteristics such as sex, race, and
medical history on algorithm performance.



CENTRAL ILLUSTRATION Automated Detection of Reduced Left Ventricular Ejection Fraction Using an
ECG-Enabled Digital Stethoscope

Guo L, et al. JACC Adv. 2025;4(3):101619.

Workflow and outcomes of an AI-enabled digital stethoscope for early detection of asymptomatic left ventricular systolic dysfunction. The device captures single-lead

ecg and heart sound data, which is rapidly analyzed via a cloud-based algorithm to identify patients with ejection fractions (EF) #40%. The convolutional neural

network model showed an AUROC of 0.85, with 77.5% sensitivity and 78.3% specificity, demonstrating its potential as a scalable, noninvasive tool for early heart

failure diagnosis. Abbreviations as in Figures 1 to 3.
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TABLE 1 Demographic and Medical Information of Enrolled Patients

All
(N ¼ 2,960)

EF #40%
(n ¼ 210)

EF >40%
(n ¼ 2,750) P Valuea

Age, y 66 (56-75) 69 (59-77) 66 (55-74) 0.006

Female 1,508 (51) 70 (33.3) 1,439 (52.3) <0.001

BMI, kg/m2 30.3 (26.0-35.2) 29 (25.5-33.5) 30.4 (26.0-35.2) 0.02

Ejection fraction, % 60 (53-86) 34 (30-37) 60.5 (55-65) N/A

Race 0.05

White 2,011 (67.9) 127 (60.5) 1,884 (68.5)

Black or African American 748 (25.3) 66 (31.4) 682 (24.8)

American Indian or Alaska Native 28 (0.95) 0 (0) 28 (1.0)

Asian 21 (0.71) 1 (0.5) 20 (0.7)

Native Hawaiian or other Pacific Islander 5 (0.17) 1 (0.5) 4 (0.1)

Other 145 (5.0) 15 (7.1) 132 (4.8)

Prevalence of comorbiditiesb

Hypertension 2,296 (77.6) 177 (84.3) 2,119 (77.1) 0.02

Coronary artery disease 1,053 (35.6) 114 (54.3) 939 (34.1) <0.001

Diabetes mellitus 800 (27.0) 76 (36.2) 724 (26.3) 0.002

Cardiomyopathyc 489 (16.5) 116 (55.2) 373 (13.6) <0.001

Obesity (BMI>30 kg/m2) 1,525 (51.5) 90 (42.9) 1,435 (52.2) 0.01

Permanent atrial fibrillation 74 (2.5) 12 (5.7) 62 (2.3) 0.004

Chronic obstructive pulmonary disease 289 (9.8) 29 (13.8) 260 (9.5) 0.05

Renal failure 258 (8.7) 29 (13.8) 260 (9.5) 0.12

Obstructive sleep apnea 429 (14.5) 26 (12.4) 403 (14.7) 0.42

Left bundle branch block 155 (5.2) 38 (18.1) 117 (4.3) <0.001

Receiving cardiotoxic drugs 26 (0.88) 0 (0) 26 (0.95) 0.30

Aortic stenosis 157 (5.3) 10 (4.8) 147 (5.3) 0.84

Myocardial infarction 379 (12.8) 56 (26.7) 323 (11.7) <0.001

Values are median (IQR) or n (%). aChi-squared for continuous variables, Wilcoxon rank-sum for categorical variables. bThe total exceeds 100% because some subjects had more
than one risk factor. cCardiomyopathy refers to diagnosis of any disease of the heart muscle, including heart failure.

EF ¼ ejection fraction.
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Finally, as an exploratory analysis, we tested the
performance of both an “augmented” model that
included low EF AI output and pertinent clinical var-
iables known to be associated with heart failure with
reduced EF (ie, age, biological sex, body mass index,
hypertension, diabetes, coronary artery disease, and
presence of a pacemaker16-21) and a “clinical” model,
using the same clinical parameters, but without low
EF AI output. Backward selection was employed to
identify the most relevant variables for model inclu-
sion. Model performance, as indicated by area under
the receiver operating characteristic curve (AUROC),
was compared to that of the “baseline” model (ie,
univariable prediction of reduced EF #40% based on
low EF AI output alone) using DeLong’s test. A P value
of < 0.05 was considered statistically significant.
Statistical analyses were performed using RStudio
(2023.6.1.524).

RESULTS

DEMOGRAPHIC DATA. From October 2020 to May
2022, 2,988 patients (median age 66 years [IQR: 56-
75], 51% female) were enrolled. Due to missing
echocardiographic EF calculation, 28 subjects from
the 4 sites were excluded from the study, resulting in
a final cohort of 2,960. A total of 210 patients (7.1%)
had an EF of #40%, as identified by their study
echocardiogram. Detailed demographic information
can be seen in Table 1. The breakdown by partici-
pating site can be seen in Supplemental Table 1. The
majority of participants were referred through pri-
mary care (55.2%), followed by general cardiology
(18.2%), emergency care (11.7%), other (13.6%), and
urgent care (0.24%); for the remaining 1.0%, infor-
mation was not available. The most commonly iden-
tified comorbidities were hypertension (2,296,
77.6%), obesity (1,525, 51.5%), coronary artery disease
(1,053, 35.6%), and diabetes (800, 27.0%) (Table 1).
The inclusion criteria were patients scheduled for an
echocardiogram for any reason. Among this cohort,
the most common symptomatic indication for the
echocardiogram was dyspnea (1,248, 42%).

PERFORMANCE OF LOW EF AI. The overall perfor-
mance of the EF classification algorithm resulted in
an AUROC of 0.852 (95% CI: 0.826-0.878), sensitivity
of 77.5% (95% CI: 70.7-83.4), specificity of 78.3%

https://doi.org/10.1016/j.jacadv.2025.101619


FIGURE 3 ROC Curve for the Entire Cohort From 4 U.S. Sites

The graph above shows, in blue, the ROC curve and associated AUC for reduced EF detection by the convolutional neural network (CNN)

model alone (ECG þ PCG model). In red are the results when clinical variables (age, sex, BMI, and presence of pacemaker) are added to the

algorithm output in a multivariable model. In black, we show the results of the ECG-only model (ie, without PCG input). Removing the AI

output from that model resulted in a significant reduction in AUROC to 0.710 (P < 0.001). All subsequent results shown in this publication

are based on the ECG-PCG low EF AI unadjusted model. AUC ¼ area under the curve; BMI ¼ body mass index; AUROC ¼ area under the

receiver operating characteristic curve; other abbreviations as in Figures 1 and 2.
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(95% CI: 76.7-79.9), PPV of 20.3% (95% CI: 17.3-23.5),
NPV of 98.0% (95% CI: 97.3-98.6), and a diagnostic
yield of 90.7% (95% CI: 89.6-91.7). An augmented
logistic regression model including age, sex, presence
of a pacemaker, and body mass index in addition to
low EF AI output increased the AUROC slightly yet
significantly from 0.85 to 0.87 (P < 0.001). The
presence of clinical variables alone (ie, without the
AI output included in the model) resulted in a sig-
nificant reduction in AUROC to 0.710 (P < 0.001)
(Figure 3, Table 2).
EXPLORATORY SUBGROUP ANALYSES. By pat ient
character i s t i c . A subanalysis demonstrating the
performance of the low EF AI for subjects with spe-
cific cardiovascular conduction disorders is provided
in Table 3. These patients showed a decreased speci-
ficity compared to other patients. No significant dif-
ferences were observed, although the subgroups were
small with wide confidence intervals. Further sub-
group analyses were conducted to assess perfor-
mance as stratified by age, biological sex, and race
(Table 4). Specificity varied slightly across biological



TABLE 2 Performance Metrics of Low EF AI Classification Against Ground Truth of Echocardiography

Sensitivity Specificity PPV NPV Diagnostic Yield

Low EF AI 77.5 (70.7-83.4) 78.3 (76.7-79.9) 20.3 (17.3-23.5) 98.0 (97.3-98.6) 90.7 (89.6-91.7)

Values are % (95% CI).

AI ¼ artificial intelligence; NPV ¼ negative predictive value; PPV ¼ positive predictive value; other abbreviation as in Table 1.
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sex (male: 73.6% [95% CI: 71.3-75.8] vs female: 81.8%
[95% CI: 79.7-83.9]) and was lower for patients aged
>70 years (70.7% [95% CI: 67.7-73.6]) vs the entire
cohort (78.3% [95% CI: 76.7-79.9]). No other signifi-
cant differences were observed.

Fa lse pos i t ives . An in-depth analysis of the false
positives revealed that approximately 25% (131/543)
had an EF between 41% and 49% on echocardiogra-
phy, and hence closer to the designated threshold.
Furthermore, 342 (63%) had a history or presence of
at least one of the following: (permanent) atrial
fibrillation, left bundle branch block, a pacemaker,
and/or wide QRS complex (>120 ms). The rates of
conduction/rhythm abnormalities for both false pos-
itives and true negatives are shown in Table 5.

DISCUSSION

With this study, we aimed to prospectively validate
the real-world potential of a novel digital stethoscope
coupled with real-time AI analytics to identify pa-
tients with reduced EF (#40%). Using single-lead ECG
and PCG inputs collected from the stethoscope during
a single 15-second recording, we demonstrated an
AUROC of 0.85. This external, real-world validation of
this technology supports its potential value as a
noninvasive, scalable, and relatively low-cost method
for identifying those at increased risk of reduced EF.
Earlier diagnosis of a previously unrecognized low EF
would allow for the earlier initiation of therapies
proven to improve quality of life, decrease hospitali-
zations, and prolong survival.22

In our study, 210 (7.1%) of patients were found to
have an EF #40%, consistent with prevalence rates
from previous studies involving higher risk
TABLE 3 Performance Metrics in Patients With Specific Cardiac Cond

Recordings Sensitivity Spec

Permanent atrial fibrillation 74 100.0 (71.5-NA) 50.0 (3

Left bundle branch block 155 93.9 (79.8-99.3) 28.2 (19

Pacemaker 278 87.3 (76.5-94.4) 41.1 (33

Values are n or % (95% CI).

Abbreviations as in Table 2.
populations.23-25 The real-world implementation
of the technology in this population demonstrated
discriminatory capabilities comparable to other
commonly utilized screening tests, such as mammog-
raphy for breast cancer and cervical cytology for cer-
vical cancer.1 An “augmented” logistic regression
model including age, sex, presence of a pacemaker,
and body mass index, in addition to low EF AI output,
increased the AUROC from 0.85 to 0.87.

Arguably, there are several potential EF cutoff
thresholds that could be of value when screening a
population, with other solutions selecting EF of 35%
and still others EF of 50%.1,26 We selected EF #40%
after input from clinical experts and regulatory
agencies. Also, this matches the American Heart As-
sociation/American College of Cardiology definition
of heart failure with reduced EF, making it immedi-
ately actionable with strong evidence for the benefit
of multiple guideline-directed medical therapies.27

The operating point of the US Food and Drug
Administration-cleared low EF prediction model
studied here was selected to optimize the sensi-
tivity and specificity. When implemented in the
setting of the current study, sensitivity and speci-
ficity were satisfactory, at w78% for both. With the
low prevalence of individuals having an EF #40%,
this resulted in a PPV of only w20%. Of note, one in
4 patients with a false positive low EF alert was
found to have mildly reduced EFs between 40% and
50%. The NPV of the model was excellent at 98.0%.
As more knowledge is gained through widespread
implementation, consideration of the risk charac-
teristics of the population being screened and the
goals of screening will play a critical role in opti-
mizing the technology further.
uction Disorders

ificity PPV NPV Diagnostic Yield

5.8-64.2) 29.7 (15.9-47.0) 100.0 (86.8-NA) 85.1 (75.0-92.3)

.7-37.9) 29.5 (21.0-39.2) 93.5 (78.6-99.2) 87.7 (81.5-92.5)

.8-48.8) 34.8 (27.4-42.8) 90.0 (81.2-95.6) 85.6 (80.9-89.5)



TABLE 4 Performance Metrics Across Exploratory Subgroup Analyses

Recordings Sensitivity Specificity PPV NPV Diagnostic Yield

Biological sex

Male 1,451 79.5 (71.0-86.4) 74.4 (71.8-76.8) 23.5 (19.4-28.0) 97.3 (96.1-98.3) 89.5 (87.8-91.1)

Female 1,509 73.8 (60.9-84.2) 81.9 (79.7-83.9) 15.8 (11.8-20.6) 98.5 (97.6-99.2) 91.8 (90.3-93.1)

Age (y)

18-30 94 100 (15.8- nan) 87.1 (78.0-93.4) 15.4 (1.9-45.4) 100 (95.1-nan) 92.6 (85.3-97.0)

31-50 400 68.8 (41.3-89.0) 87.0 (83.1-90.4) 19.3 (10.0-31.9) 98.4 (96.3-99.5) 92.7 (89.8-95.1)

51-70 1,274 73.6 (61.9-83.3) 81.6 (79.2-83.9) 20.9 (16.0-26.4) 97.9 (96.8-98.7) 91.4 (89.8-92.9)

>70 1,192 81.8 (72.2-89.2) 70.7 (67.7-73.6) 20.2 (16.1-24.7) 97.7 (96.3-98.7) 89.0 (87.1-90.7)

Race

Black/African American 748 72.2 (58.4-83.5) 78.6 (75.2-81.8) 22.7 (16.6-29.7) 97.0 (95.1-98.3) 90.4 (88.0-92.4)

White 2,011 81.7 (73.1-88.4) 77.4 (75.4-79.4) 18.6 (15.2-22.4) 98.5 (97.7-99.1) 91.0 (89.7-92.3)

Other 147 64.3 (35.1-87.2) 85.3 (77.6-91.2) 34.6 (17.2-55.7) 95.2 (89.1-98.4) 88.4 (82.1-93.1)

Asian 21 100.0 (2.5-NA) 88.2 (63.6-98.5) 33.3 (0.8-90.6) 100.0 (78.2-NA) 85.7 (63.7-97.0)

American Indian or
Alaska Native

28 - 92.3 (74.9-99.1) 0.0 (NA-84.2) 100.0 (85.8-NA) 92.9 (76.5-99.1)

Values are n or % (95% CI).

Abbreviations as in Table 2.

TABLE 5 Rates of Comorbidities in the True Negative Vs False
Positive Cohorts

True
Negatives
(n ¼ 1,963)

False
Positives
(n ¼ 543) P Valuea

EF: 41%-49% 133 (6.8%) 131 (25%) <0.001

Permanent AF 26 (1.3%) 26 (4.8%) <0.001

AF 126 (6.4%) 108 (19.9%) <0.001

LBBB 29 (1.5%) 74 (13.6%) <0.001

Pacemaker 72 (3.7%) 103 (19.0%) <0.001

Wide QRS complexb

(>120 ms)
247 (12.6%) 266 (49.0%) <0.001

Values are n (%). aChi-squared test. bEither in addition to LBBB and pacemaker or
isolated.

AF ¼ atrial fibrillation; LBBB ¼ left bundle branch block; other abbreviation as in
Table 1.
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There is still a great deal to learn from the
situation where the model predicts a low EF but
echocardiography finds an EF of >40%. Beyond the
fact that many have an EF between 40 and 50%,
longitudinal follow-up in some studies of false posi-
tive patients has found a 4-fold increased risk of
developing a low EF over the ensuing years relative to
those with a true negative finding.3 In addition, it will
be important to more thoroughly explore other clin-
ical features that influence the performance of the
model, such as underlying atrial fibrillation, presence
of a pacemaker, or left bundle branch block, as iden-
tified in this study, in order to better optimize its
performance.

Additionally, the usage of PCG for the detection of
low EF in this study is new. The PCG model that is
part of the final ensemble used for this study, by
itself, is less predictive for low EF compared to the
ECG model alone. However, PCG models based on
new neural network architectures have been shown
to have performance closer to ECG models.12 Under-
standing what features of the PCG and/or ECG are
triggering predictions for low EF is the subject of
future work. To make this possible, new machine
learning (ML) approaches and analysis methods are
required.

Currently, approximately 50 cardiovascular AI/ML
medical devices have received US Food and Drug
Administration clearance.28 Despite the increased
focus of the scientific research community on health
care-related AI research, there is a paucity of data
available from prospective validation studies for US
Food and Drug Administration-cleared AI/ML
cardiovascular devices.29 Previous algorithms have
shown promising performance in detecting LVSD,
with area under the curve values ranging from 0.83 to
0.97. The majority of these studies were based on 12-
lead ECGs obtained as part of routine clinical care.1,30

More recent studies have explored reduced-lead ECG
(ie, single-lead) approaches. For example, Khunte
et al31 reported a novel strategy adapting AI for noisy
single-lead ECGs obtained from wearable and
portable devices, achieving an AUROC of 0.87 for the
detection of EF <40% on noise-augmented ECGs.
Another study demonstrated the feasibility of
detecting EF #40% using single-lead ECGs from
smartwatches, achieving an AUROC of 0.89.32 Addi-
tionally, Bachtiger et al14 validated the use of AI
applied to single-lead ECGs recorded with an ECG-
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enabled digital stethoscope, an earlier version of the
device used in this study, achieving an AUROC of 0.85
in a multicenter real-world clinical setting. There is
further promise for the application of these technol-
ogies in unique populations, such as those with per-
ipartum cardiomyopathy (PPCM). A study conducted
in Nigeria, which has the highest reported incidence
of PPCM worldwide, demonstrated that AI-guided
screening with a digital stethoscope significantly
improved the diagnosis of pregnancy-related cardio-
myopathy. In that study, the AI paired with a digital
stethoscope had an AUROC of 0.98 for detecting
EF <50% and 0.99 for detecting EF <40%, doubling
the number of diagnosed cases compared to usual
care.33,34 Interestingly, a significant increase in PPCM
diagnosis was only observed for the AI-enabled sin-
gle-lead ECG digital stethoscope model and not the
12-lead-based algorithm that was simultaneously
studied.34 This was perhaps because the selected
cutoff for determination of the primary outcome,
where LVSD was defined as LVEF <50%, was not in
line with the categorization used during the 12-lead
model derivation (trained to detect an LVEF #35%).1

The potential for AI-guided screening using digital
stethoscopes in lower-income countries, where ac-
cess to advanced imaging modalities is limited,
highlights the broader applicability and impact of this
technology for early detection and management of
cardiac conditions.35 Recent work has suggested that
combining this tool with AI-guided echocardiographic
imaging can lead to screening solutions at scale.35

STUDY LIMITATIONS. Despite the promising results
of this study, there are several limitations that need
to be acknowledged. Firstly, while the discriminatory
power, sensitivity, and specificity of the algorithm
were good, there is substantial room for improve-
ment. We believe that the addition of multiple ECG
leads and/or the addition of clinical characteristics or
other biomarkers such as BNP and NTproBNP could
further optimize the identification of individuals with
an undiagnosed low EF by potentially both improving
sensitivity and PPV. Another limitation, shared by
almost all ML models, is that the exact features of the
ECG and PCG leading to the prediction of a low versus
normal EF are not readily identifiable. In addition, the
accuracy of the ground truth EF data from echocar-
diography and potential biases therein can influence
the performance and reliability of the algorithm,
although the influence of any variability in EF
determination would likely only impact those with
EFs close to (eg, �5%) 40%. Furthermore, as the study
population was comprised of patients already
referred for an echocardiogram, the generalizability
of our findings to the broader population may be
limited. Finally, longitudinal studies examining
patient outcomes are required to assess the clinical
utility and cost-effectiveness of the diagnostic tool.
Such studies would provide valuable insights into the
long-term effectiveness and impact on patient man-
agement strategies.

CONCLUSIONS

In conclusion, our study demonstrates the potential
of a CNN model using single-lead ECG and PCG inputs
collected with a digital stethoscope as a noninvasive
tool for the detection of EF #40%. The algorithm
showed good performance, with sensitivity and
specificity comparable to other common medical
screening tests. While our findings highlight the
promise of this technology for improving detection
rates, further research is needed to evaluate its
impact on clinical outcomes and cost-effectiveness.
Future work will focus on adapting the model for
3-lead input and optimizing algorithm performance
using transformer models.
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PERSPECTIVES

COMPETENCY IN PATIENT CARE AND

PROCEDURAL SKILLS: The CNN model using a digital

stethoscope enables earlier detection of patients with

reduced EF (EF # 40%), facilitating timely intervention

and management of left ventricular systolic dysfunction.

This technology provides a noninvasive and accessible

method for screening, which can be easily integrated into

various clinical settings, including primary care and

remote healthcare environments. The ability to identify

at-risk patients early has the potential to reduce down-

stream healthcare costs associated with late-stage heart

failure treatment.

TRANSLATIONAL OUTLOOK: For successful clinical

translation, several factors need to be addressed. Further

research is necessary to streamline the integration of this

CNN model into existing clinical workflows, ensuring it

complements current diagnostic procedures without

causing disruptions. Additionally, validating the algo-

rithm’s performance across diverse populations and

different healthcare settings is crucial to ensure its

generalizability and effectiveness. Addressing the clinical

significance of false positives, particularly those with EF

between 41% and 49%, will help refine the algorithm and

enhance its predictive accuracy. Providing adequate

training for healthcare providers to use this technology

effectively will be essential for widespread adoption.

Lastly, conducting longitudinal studies to assess the

impact of early detection using this CNN model on long-

term patient outcomes, including morbidity and mortality

rates, will be vital in demonstrating its overall clinical

utility.
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