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Caenorhabditis elegans is the only animal for which a detailed neural connectivity diagram has
been constructed. However, synaptic polarities in this diagram, and thus, circuit functions
are largely unknown. Here, we deciphered the likely polarities of seven pre-motor neurons
implicated in the control of worm’s locomotion, using a combination of experimental and
computational tools. We performed single and multiple laser ablations in the locomotor
interneuron circuit and recorded times the worms spent in forward and backward
locomotion. We constructed a theoretical model of the locomotor circuit and searched
its all possible synaptic polarity combinations and sensory input patterns in order to find
the best match to the timing data. The optimal solution is when either all or most of the
interneurons are inhibitory and forward interneurons receive the strongest input, which
suggests that inhibition governs the dynamics of the locomotor interneuron circuit. From
the five pre-motor interneurons, only AVB and AVD are equally likely to be excitatory,
i.e., they have probably similar number of inhibitory and excitatory connections to distant
targets. The method used here has a general character and thus can be also applied to
other neural systems consisting of small functional networks.
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INTRODUCTION
Caenorhabditis elegans nematode worms possess a very small ner-
vous system composed of only 302 neurons connected by about
5000 chemical synapses and 3000 gap junctions (White et al.,
1986). Because of its smallness a precise map of neural connec-
tions was possible to construct (White et al., 1986; Chen et al.,
2006). This places C. elegans in a unique position among all other
animals (Varshney et al., 2011), for which we have at best only
rudimentary connectivity data to test various concepts regarding
neural wiring and function (Cherniak, 1994; Karbowski, 2001,
2003; Chklovskii, 2004; Chen et al., 2006; Kaiser and Hilgetag,
2006). However, despite this achievement we still have a very lim-
ited knowledge about the nature of most of the worm’s synaptic
connections, i.e., whether they are excitatory or inhibitory.

The simplicity of the C. elegans nervous system does not pre-
clude these worms from executing various non-trivial behaviors
such as locomotion, feeding, mating, chemotaxis, etc. (Hobert,
2003; de Bono and Maricq, 2005). To understand the neural basis
of these behaviors requires some information not only about the
pattern and strength of the connections but also about the type
of their synapses. The same neural circuit can perform different
functions depending on the signs of synaptic polarities it con-
tains. Specifically, circuits in which excitatory synapses dominate
can sometimes become epileptic. On the other hand, networks
with only inhibitory connections could be silent, and therefore
in many situations useless. Thus, it may seem that some sort
of an intermediate regime is necessary for a proper functioning

of the nervous system (van Vreeswijk and Sompolinsky, 1996).
For example, it was proposed that mammalian cortical networks
operate in a dynamic state in which excitation is effectively bal-
anced by inhibition (Haider et al., 2006; Vogels et al., 2011),
although anatomical number of excitatory connections domi-
nates over inhibitory in the cerebral cortex (DeFelipe et al., 2002).
For nematode worms, a similar issue has been addressed only
sporadically. On a modeling level, in the context of a tap with-
drawal circuit (Wicks et al., 1996), and experimentally, studying
genes that influence the ratio of excitatory to inhibitory signaling
(Jospin et al., 2009). We think that this topic deserves more atten-
tion both theoretical and experimental, if we are to understand
the functioning of worm’s circuits (Gray et al., 2005; Sengupta
and Samuel, 2009; Ha et al., 2010).

Movement direction in C. elegans is governed by five dis-
tinct locomotory command interneurons (AVB, PVC, AVA, AVD,
AVE), each in two copies (left and right). All of these 10 interneu-
rons directly connect a downstream group of dorsal and ventral
body wall excitatory motor neurons (Chalfie et al., 1985). The
topology of connections between the command interneurons is
well known (White et al., 1986; Chen et al., 2006), however,
their synaptic polarities are not. Conventional thinking is that
AVB and PVC control forward motion, while AVA, AVD, AVE
control backward motion (Chalfie et al., 1985). This reason-
ing is based on the fact that the former interneurons connect
mainly motor neurons of type B [experimentally shown to be
critical for forward locomotion (Haspel et al., 2010)], whereas the
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latter interneurons connect mostly type A motor neurons [rul-
ing the backward motion (Haspel et al., 2010)]. However, this
simple locomotory picture, relying on a single neuron function
doctrine may turn out to be too simplistic. Indeed, many laser
ablation experiments show that removal of both AVB and PVC
reduces forward motion, but does not abolish it completely (see
below). Similarly, worms lacking the “backward” interneurons
AVA, AVD, and AVE exhibit a comparable frequency of reversals
as intact wild type (WT) worms (Piggott et al., 2011). Moreover,
the major backward interneuron AVA makes also connections
(both synaptic and gap junctions) with the forward B motor neu-
rons (Chen et al., 2006). Thus, perhaps the decision to move in
a particular direction is generated by a collective activity of all
command interneurons, rather than by an activity of a particular
interneuron or a particular connection.

Our aim is to investigate the problem of decision making for
movement direction in C. elegans on the level of its interneu-
ron network. The main question we pose is how two antagonistic
behaviors, i.e., forward and backward motions, can be controlled
by the same circuit of mutually coupled pre-motor interneurons.
A strictly related to this question is the problem of synaptic polar-
ities of these interneurons and the input pattern they receive.
Specifically, by applying structural perturbations to the circuit we
want to determine, using mathematical modeling, which combi-
nation of synaptic polarities (together with an input pattern) gives
the best match to the experimentally observed locomotory out-
put of C. elegans. This knowledge allows us to answer a question
about a relative influence of inhibition and excitation in the com-
mand interneuron circuit. Moreover, this approach provides an
insight about a degree of interneuron collectiveness in choosing
the direction of motion.

RESULTS
THE COMMAND INTERNEURON CIRCUIT FOR C. elegans LOCOMOTION
To simplify data analysis and mathematical modeling we grouped
the left and right members of each locomotor circuit neuron
as one model neuron. Thus, in our circuit controlling worm’s
motion there are five command interneurons, one distinguished
upstream polymodal sensory interneuron called ASH, and a mod-
ulatory neuron DVA (Figure 1A). A recent study (Li et al., 2006)
indicates that DVA plays a role of a sensory neuron in locomotion.
We included this neuron explicitly in the circuit, since it has direct
connections with body wall motor neurons (Chen et al., 2006),
similar to five command interneurons. Because of this similarity,
we want to investigate whether DVA can serve additionally as a
command interneuron.

The neurons in the circuit are modeled as a single passive
compartment with leak conductance. Connections between neu-
rons are either by chemical synapses (of unknown polarity) or
by electric synapses known as gap junctions. Chemical synapses
transmit signals using graded transmission. The strength of the
connection between two arbitrary neurons is proportional to the
number of anatomical contacts between them determined from
the empirical data (Chen et al., 2006). Additionally, each pre-
motor interneuron receives a constant in time excitatory input
from upstream (mostly head) neurons, which can be either weak
or strong (this is variable in the model). Overall, our model

FIGURE 1 | Schematic diagram of the interneuron locomotory circuit.

(A) Intact circuit. ASH neuron is an upstream neuron that provides synaptic
input to the locomotory interneurons. The output coming from the six
neurons (five interneurons and DVA) feeds the activities of motor neurons,
represented by Ef (controlling forward motion) and by Eb (controlling
backward motion). Synaptic connections are shown as solid arrows (blue),
and gap junctions are represented by dashed lines (red). The magnitude of
an arrow and the width of a dashed line are indicators of the strength of
synaptic and gap junction connections, respectively. (B) An example of an
ablated circuit, in which ASH and AVB neurons are removed. Note that this
leads to the removal of all connections (synaptic and electric) coming out
from these neurons. Such ablations not only change the circuit architecture
but also modify its activity output.

captures long-term averages in neural activities that are asso-
ciated with average locomotory output in C. elegans. All the
assumptions made in the model and equations describing activ-
ities of all neurons are presented in Materials and Methods and
in Supplementary Information. The main parameters used in the
model are described in Table 1.

In an intact circuit for WT worms fluctuations in interneuron
activities control forward and backward motion, and the distri-
bution of these activities determines the relative proportion of
forward and backward motion (roughly three to one). We wanted
to perturb the system and investigate its corresponding output
by performing laser ablations of selected neurons in the loco-
motory circuit. We reasoned that a gradual removal of neurons
from this circuit (Figure 1B; see Materials and Methods) would
not only affect its physical structure, but also would redistribute
the remaining neurons activities, which in turn, should mod-
ify the worm’s locomotory behavior. In particular, the pattern
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of interneuron activities in the circuit should change, altering
the ratio of times spent in forward and backward motion. Thus,
associating experimental average times of forward and backward
locomotion for every ablation type with changes in the average
activity levels of the circuit model for fixed sensory inputs can
allow us to predict synaptic polarities of the interneurons.

EXPERIMENTAL RESULTS
We performed single, double, triple, and quadruple ablations in
the interneuron circuit. In total, we generated 17 types of ablation
and recorded corresponding mean times the worms spent in for-
ward (Tf ) and backward (Tb) motion, as well as in stopped phase

Table 1 | The main parameters used in the model.

Symbol Value or range Description

qs 0.03–0.6 nS (optimized) Maximal conductance of a single
synapse

qe 0.03–0.5 nS (optimized) Conductance of a single gap
junction

θ 45 mV (fixed) Renormalized threshold for
synaptic activation

γ 0.15 mV−1 (fixed) Steepness of synaptic activation

σ 4–12 mV (variable) Amplitude of strong input

zi 0 or 1 Binary variable indicating the
presence of strong input

κ 0.2–0.75 (variable) Excitation level of ASH neuron

η 0.1–2.0 mV (optimized) Noise in the system

(Ts). These experimental results are presented in Table 2. From
all the ablations executed, only removal of ASH and PVC neurons
increase the time spent in forward locomotion in relation to WT.
This is an indication that these particular interneurons have a def-
initely negative influence on the forward direction, and for that
reason are likely to be inhibitory (see below). All other removals
have a detrimental effect on the duration of forward motion, even
those traditionally associated with backward motion (AVA, AVD).
In particular, the ablation of AVA has the most dramatic effect
on Tf , leading to its 10-fold reduction in comparison to WT,
although the reversal frequency increases only mildly by a factor
of 2. Moreover, the AVA ablated worms, including their multi-
ple ablations, spent a lot of time not moving (stopped phase),
far more than WT and worms with other types of ablation. For
instance, for the combined ablation ASH + AVA + AVB, we find
the largest stopped mean time of 1.16 s.

Worms with multiple ablations reverse roughly as frequently as
worms with single ablations (Table 2). Generally, the frequency of
direction reversals does not correlate well with the average time
worms spent in forward motion (Table 2). For example, worms
with killed ASH reverse approximately as often as worms with
removed AVD, despite the fact that ASH worms spent three times
more time in forward motion. Similarly, worms with almost equal
Tf (about 0.9 s), i.e., AVB + PVC and AVA + AVB + PVC, differ
in reversals by a factor of 2.5.

An interesting result is that ablating the modulatory neuron
DVA causes a sharp decline in the forward motion timing in com-
parison to WT, and a two-fold increase in reversals (Table 2).
Also, the combined ablations of DVA with PVC and AVB show
a similar property. This clearly suggests that this neuron has a

Table 2 | Experimental data of the impact of neuron ablation on C. elegans locomotion.

Ablation type Forward time Backward time Stopped Reversals

Tf (s) Tb (s) time (s) (min−1)

Mock ablated (WT, N = 43) 8.98 ± 0.57 2.80 ± 0.27 0.26 ± 0.01 5.29 ± 0.27

ASH (N = 14) 12.6 ± 1.67 0.93 ± 0.17 0.27 ± 0.01 3.79 ± 0.80

AVA (N = 11) 0.71 ± 0.09 0.53 ± 0.04 0.60 ± 0.05 10.3 ± 0.56

AVB (N = 8) 2.26 ± 0.40 2.14 ± 0.23 0.38 ± 0.02 6.10 ± 0.64

AVD (N = 4) 4.23 ± 1.80 3.12 ± 0.36 0.31 ± 0.04 3.50 ± 0.31

DVA (N = 22) 1.51 ± 0.18 1.23 ± 0.08 0.44 ± 0.02 10.0 ± 0.57

PVC (N = 12) 12.0 ± 1.81 1.89 ± 0.39 0.29 ± 0.02 5.46 ± 0.74

ASH + AVA (N = 7) 1.91 ± 0.42 0.85 ± 0.20 0.52 ± 0.06 5.18 ± 0.90

ASH + AVB (N = 12) 2.05 ± 0.47 2.04 ± 0.43 0.42 ± 0.06 6.92 ± 1.08

AVA + AVB (N = 9) 0.56 ± 0.14 0.46 ± 0.06 0.89 ± 0.17 10.1 ± 1.36

AVA + PVC (N = 11) 4.09 ± 0.91 0.67 ± 0.14 0.37 ± 0.04 9.78 ± 0.71

AVB + PVC (N = 5) 0.91 ± 0.24 1.19 ± 0.19 0.44 ± 0.08 15.0 ± 3.52

DVA + PVC (N = 19) 2.18 ± 0.21 1.35 ± 0.08 0.40 ± 0.02 11.6 ± 0.57

ASH + AVA + AVB (N = 8) 0.75 ± 0.24 0.52 ± 0.11 1.16 ± 0.26 6.47 ± 0.83

AVA + AVB + PVC (N = 8) 0.93 ± 0.33 0.47 ± 0.12 0.87 ± 0.21 6.10 ± 0.87

AVB + AVD + PVC (N = 5) 1.33 ± 0.31 0.94 ± 0.13 0.49 ± 0.07 11.2 ± 2.00

AVB + DVA + PVC (N = 10) 1.90 ± 0.28 1.03 ± 0.14 0.40 ± 0.21 12.2 ± 1.53

AVA + AVB + AVE + PVC (N = 10) 0.60 ± 0.21 0.39 ± 0.14 1.00 ± 0.12 8.66 ± 1.54

Shown are population average times and standard errors of the mean (SEM) for worms in forward and backward motion, and in stopped phase. The last column

gives population averages of reversal frequencies with their SEM.

Frontiers in Computational Neuroscience www.frontiersin.org October 2013 | Volume 7 | Article 128 | 3

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Rakowski et al. Synaptic polarities of locomotory interneurons in C. elegans

significant influence on the interneuron circuit output, which
could be more than just its sensory modulation.

THEORETICAL RESULTS
In our circuit model there are seven neurons (five pre-motor
interneurons, DVA, and ASH), each of them can be either exci-
tatory or inhibitory. Thus, there are 27 = 128 possible copies of
the circuit associated with synaptic polarities, i.e., the sign of
εi (for i = 1, . . . , 7). Two examples of the polarity copies are:
(1) εASH = −1, εAVB = −1, εPVC = −1, εDVA = −1, εAVA = −1,
εAVD = −1, εAVE = −1 and (2) εASH = 1, εAVB = 1, εPVC = 1,
εDVA = 1, εAVA = 1, εAVD = 1, εAVE = 1, which correspond to all
inhibitory and all excitatory neurons, respectively. Additionally,
each of the six pre-motor neurons (excluding ASH) receives an
upstream sensory input coming mostly form the head, except for
PVC for which it comes predominantly from the tail. The sensory
input is represented by a binary variable zi that can have two val-
ues: 0 for a weak input, and 1 for a strong input (see Equation 7 in
Materials and Methods). Consequently, every polarity copy can be
found in additional 26 = 64 activity or input configurations. This
implies that, in total, our circuit model has 27 · 26 = 8192 distinct
polarity-input configurations.

For each possible configuration (i.e., synaptic polarity and an
upstream input) of the circuit we performed 17 “computer abla-
tions” analogous to the experimental ablations shown in Table 2,
by setting εi = 0 if the neuron with an index i was removed. This
procedure removes all the connections (synaptic and electric)
coming out of this ablated neuron. For each ablation we com-
puted the fraction of time corresponding to forward motion, i.e.,
Tf /(Tf + Tb), using Equation (8). Thus, we generated 18 theo-
retical fractional times associated with every circuit configuration
(17 types of ablation plus WT) and computed their Euclidean dis-
tance (ED) to the experimental values in Table 2 (see Materials
and Methods for a more detailed description). The configuration
with the smallest ED value corresponds to the optimal solution
that predicts synaptic polarities and the pattern of the upstream
input. Our strategy was to vary the level of this input (σ, κ), and

for each level to find optimal values of synaptic and gap junction
conductances (qs, qe), together with the system noise amplitude
(η), which give the best fit of the theoretical Tf /(Tf + Tb) to the
experimental data.

Winning configurations
We find that the best match to the experimental data is achieved
in the case when all seven neurons in the circuit are inhibitory
(Tables 3–5). The winning synaptic polarity configuration is asso-
ciated with the combination number 1, which gives the best
(lowest) ED = 0.363, and the largest correlation with the data
points, which is 0.743 (Table 3). The distribution of winning val-
ues of the upstream input zi is non-homogeneous, and non-zero
only for AVB and PVC neurons, implying that much sensory exci-
tation comes to the neurons controlling directly forward motion
(Table 3). In Figure 2 we display a comparison of theoretical and
experimental values of Tf /(Tf + Tb) across different ablations
for this winning combination of synaptic polarities. In general,
there is a good fit of the theoretical points to the data (correlation
about 0.74).

The second place among all synaptic polarities is taken by
the combination # 17, for which all neurons, except AVB, are
inhibitory. This combination has ED value very close to that
obtained by the winning combination # 1 (Table 3). Moreover,
these two combinations appear the most often among the win-
ners, also for other choices of parameters describing the sensory
input (Tables 3–6). The third place is taken by a combination with
the number 11, in which only two neurons are excitatory: AVD
and DVA. This combination also appears quite often among the
leading polarities, but its ED is in some separation from the two
winning synaptic combinations 1 and 17.

Optimal solution depends both on synaptic and input configurations
The degree of the match between theory and experiment, i.e.,
ED, depends not only on the pattern of synaptic polarities but
also on the pattern of incoming sensory input (zi) to the net-
work (Figure 3). We noticed that we obtained better fits if we

Table 3 | The winning combinations of interneuron polarities (εi) for the upstream input: σ = 8.0 mV and κ = 0.6.

Neuron Rank Inhibitory

likelihood
1 2 3 4 5 6 7 8

ASH −1 −1 −1 −1 −1 −1 −1 −1 1
AVA −1 −1 −1 −1 −1 −1 1 1 3/4
AVB −1 1 −1 1 1 −1 −1 −1 5/8
AVD −1 −1 1 1 −1 −1 −1 −1 3/4
AVE −1 −1 −1 −1 −1 −1 −1 −1 1
DVA −1 −1 1 1 1 1 1 −1 3/8
PVC −1 −1 −1 −1 −1 −1 −1 −1 1

Combination # 1 17 11 27 19 3 35 33
ED 0.3625 0.3651 0.374 0.377 0.380 0.383 0.396 0.409
Corr 0.7433 0.7417 0.722 0.717 0.740 0.746 0.690 0.731

The optimal values of the parameters are: η = 1.05 mV, qs = 0.1 nS, and qe = 0.1 nS. All the combinations receive the same “winning” input: zAVB = 1, zPVC = 1,

and zi = 0 for other interneurons.

The last column provides estimates of probabilities that a given neuron is inhibitory. In Tables 3–6, ED was computed using Equations (8) and (9).
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Table 4 | The winning combinations of interneuron polarities (εi) for the upstream input: σ = 6.0 mV and κ = 0.6.

Neuron Rank Inhibitory

likelihood
1 2 3 4 5 6 7 8

ASH −1 −1 −1 −1 −1 −1 −1 −1 1
AVA −1 −1 −1 −1 −1 −1 −1 −1 1
AVB −1 1 −1 1 −1 1 1 1 3/8
AVD −1 −1 1 1 −1 −1 1 1 1/2
AVE −1 −1 −1 −1 −1 −1 −1 −1 1
DVA −1 −1 1 1 1 1 −1 1 1/2
PVC −1 −1 −1 −1 −1 −1 1 −1 7/8

Combination # 1 17 11 27 3 19 26 10
ED 0.368 0.377 0.394 0.404 0.422 0.424 0.431 0.433
Corr 0.734 0.722 0.687 0.665 0.692 0.669 0.627 0.637

The optimal values of the parameters are: η = 0.85 mV, qs = 0.1 nS, and qe = 0.1 nS. All the combinations receive the same “winning” input: zAVB = 1, zPVC = 1,

and zi = 0 for other interneurons. The last column provides estimates of probabilities that a given neuron is inhibitory.

Table 5 | The winning combinations of interneuron polarities (εi ) for the upstream input: σ = 4.0 mV and κ = 0.6.

Neuron Rank Inhibitory

likelihood
1 2 3 4 5 6 7 8

ASH −1 −1 −1 −1 −1 −1 −1 −1 1
AVA −1 −1 −1 −1 −1 −1 −1 −1 1
AVB −1 1 −1 −1 −1 1 1 1 1/2
AVD −1 −1 1 1 1 1 1 1 1/4
AVE −1 −1 −1 −1 −1 −1 −1 −1 1
DVA −1 −1 1 −1 −1 1 −1 −1 3/4
PVC −1 −1 −1 −1 1 −1 1 −1 3/4

Combination # 1 17 11 9 10 27 26 25
ED 0.414 0.431 0.453 0.461 0.465 0.471 0.476 0.487
Corr 0.644 0.606 0.560 0.613 0.530 0.512 0.485 0.578

The optimal values of the parameters are: η = 0.7 mV, qs = 0.1 nS, and qe = 0.1 nS. All the combinations receive the same “winning” input: zAVB = 1 and zi = 0 for

other interneurons. The last column provides estimates of probabilities that a given neuron is inhibitory.

allowed the interneurons to receive a heterogeneous input from
upstream neurons. A given synaptic polarity configuration can
produce a slightly different locomotory output (slightly variable
ED) depending on how many, and which, interneurons receive a
strong input (Figure 3). However, despite this subtlety the overall
emerging picture is such that the smallest ED values are associated
with configurations dominated by inhibitory connections, while
the largests ED correspond to networks dominated by excitatory
synapses, regardless of the input pattern. Among the configu-
rations with the lowest ED, the most optimal are those with a
moderate number (typically 2 or 3) of interneurons receiving
strong input. The highest value of ED is about 2.0 and it occurs
for synaptic configurations with prevalent excitatory connections,
with only a minor influence of the input pattern (Figure 3). These
results suggest that the ED is much more affected by the pattern
of synaptic polarities than by the input pattern.

Likelihood estimates of interneuron synaptic polarities
To quantify the likelihood of a given synaptic polarity among
leading combinations we associate with each neuron a probability

that it is inhibitory, for each input value σ and ASH activity level
(see last columns in Tables 3–6). This probability is defined here
as a fraction of times the ε = −1 appears in the row for each neu-
ron. One can notice that some of the locomotory interneurons,
such as AVE, AVA, and PVC, are inhibitory with probabilities
that are close to 1, regardless of the input magnitude. The poly-
modal neuron ASH is also in this category. For the rest of the
pre-motor interneurons these probabilities are not that high, but
nevertheless are at least ≥ 0.5. We also computed an average prob-
ability that a given neuron is inhibitory across different input
levels coming to the locomotory circuit (average values for all
Tables 3–6). These average probabilities are: 1 for ASH, 0.875 for
AVA, 0.5 for AVB, 0.5 for AVD, 0.938 for AVE, 0.656 for DVA,
and 0.719 for PVC. Thus, from the whole group of seven neu-
rons investigated here and implicated in locomotion control, only
AVB and AVD have about equal chances to be excitatory and
inhibitory.

One might wonder if these probability estimates hold if
we include more winning combinations, not just eight as in
Tables 3–6. Including 20 leading combinations for the winning
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input values σ = 8 mV and κ = 0.6 (corresponding to Table 3),
gives qualitatively a similar picture. Again, the neurons AVB and
AVD have the highest likelihood of being excitatory, although
inhibitory polarities of these interneurons have the lowest ED val-
ues (Figure 4). Taken together, the above results strongly suggest
that the majority of interneuron connections are inhibitory.

Dependence of ED on model free parameters
The ED between theoretical and experimental fractions of time
spent in forward locomotion depends in a non-monotonic man-
ner on model free parameters: qs, qe, σ, κ, and η. The first four
parameters are neurophysiological in nature and determine the
overall balance between currents flowing in the interneuron net-
work. The last parameter, η characterizes a shape of the transfer

FIGURE 2 | Comparison of the theory with the data for relative times

spent in forward locomotion across different ablations. The theoretical
values are for the winning polarity combination # 1, corresponding to all
inhibitory neurons. Correlation between theoretical points (red triangles)
and experimental (blue circles) is relatively high (R = 0.743) and statistically
significant (p = 0.0004). The error bars for the experimental points were
computed from SEM values of Tf and Tb given in Table 2. The optimal
values of the free parameters are given in Table 3.

function between neural activities and behavioral locomotory
output, or in other words it characterizes a network noise level.

In Figure 5 we show a dependence of ED on synaptic and elec-
tric conductances (qs and qe) in the system. In general, ED has
a minimum for a narrow range of these conductances, indicat-
ing that an optimal solution exists for this range. A qualitatively
similar picture emerges also for the rest of the free parameters.
Typically, the parameters controlling the strength of the upstream
input, i.e., σ and κ, should be in some intermediate range to reach
a minimal value of ED. For instance, the winning polarity com-
binations for σ = 4 and σ = 12 mV have larger ED than that for
σ = 6 or 8 mV (Tables 3–6). The same is true for the value of κ,
characterizing ASH activity (see Materials and Methods), with the
optimal κ = 0.6 for each σ level.

In Figure 6 we show ED as a function of noise level η. Again,
either too strong or too weak η increases ED, and there is an
optimal value of this parameter for which ED has a minimum.

DISCUSSION
THE MAIN FINDINGS
Using a combination of experimental (laser ablations) and com-
putational (circuit model and optimization) tools we were able to
decipher the likely synaptic signs of the interneurons composing
the small network commanding C. elegans locomotion (Chalfie
et al., 1985; White et al., 1986). It turns out that probably most
of these neurons, i.e., synapses they sent, are inhibitory. In par-
ticular, the average probabilities that a particular interneuron is
inhibitory are: 0.875 for AVA, 0.5 for AVB, 0.5 for AVD, 0.938
for AVE, 0.719 for PVC, and 0.656 for DVA. These numbers sug-
gest that although some of the connections coming out of these
neurons might be excitatory, the majority of the connections are
clearly inhibitory.

Because of a suppressing nature, the command interneu-
ron circuit must receive a sufficient amount of excitation from
upstream (in large part sensory) neurons to be functional, i.e., to
appropriately activate downstream motor neurons. Our compu-
tational results indicate that the behavioral data are best explained

Table 6 | The winning combinations of interneuron polarities (εi ) for the upstream input: σ = 12.0 mV and κ = 0.6.

Neuron Rank Inhibitory

likelihood
1 2 3 4 5 6 7 8

ASH −1 −1 −1 −1 −1 −1 −1 −1 1

AVA −1 −1 1 1 −1 −1 −1 −1 3/4

AVB 1 −1 1 −1 1 −1 −1 1 1/2

AVD 1 1 1 1 −1 −1 −1 −1 1/2

AVE −1 −1 −1 −1 1 1 −1 −1 3/4

DVA −1 −1 −1 −1 −1 −1 −1 −1 1

PVC 1 1 1 1 1 1 −1 −1 1/4

Combination # 26 10 58 42 22 6 1 17

ED 0.383 0.386 0.390 0.392 0.393 0.394 0.397 0.398

Corr 0.715 0.708 0.694 0.688 0.691 0.686 0.687 0.685

The optimal values of the parameters are: η = 0.85 mV, qs = 0.1 nS, and qe = 0.3 nS. All the combinations receive the same “winning” input: zAVB = 1, zPVC = 1,

and zi = 0 for other interneurons. The last column provides estimates of probabilities that a given neuron is inhibitory.
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FIGURE 3 | Dependence of the Euclidean Distance (ED) on the patterns

of synaptic polarities and input strength. Neurons receiving a strong input
are marked in orange. Inhibitory neurons are represented in red, while
excitatory in blue. The smallest (optimal) value of ED is pinpointed by a pink

arrow. Note that configurations with small ED are generally associated with
mostly inhibitory connections and a moderate input strength (left part of the
map), whereas large ED values occur for mostly excitatory configurations
(right part of the map). The optimal parameters are the same as in Figure 2.

FIGURE 4 | Distribution of synaptic polarities for each interneuron. The
first 20 polarity combinations with the smallest Euclidean distance (ED) are
shown, and they are associated with the optimal parameters given in Table 3.
Note that the interneurons ASH, AVA, AVE, and PVC are inhibitory with a high

probability. There are some non-zero likelihoods that AVB, AVD, and DVA
neurons are excitatory (especially AVB and AVD), although the smallest ED
values are associated with negative polarities. The optimal parameters are
the same as in Figure 2.
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FIGURE 5 | Dependence of ED on synaptic and electric conductances.

ED is optimal (minimal) for some range of values of qs and qe. Note that the
changes in synaptic conductance (horizontal direction) are more critical for
ED than the changes in qe (vertical direction). The optimal values of other
parameters are: σ = 8.0 mV, κ = 0.6, and η = 1.05 mV.

FIGURE 6 | Dependence of ED on the system noise amplitude η. ED has
a minimum for some optimal η, and this is essentially independent of the
synaptic polarity configuration. Shown are synaptic configurations number
1 (solid line), 17 (dashed line), and 11 (dotted line). The optimal values of
other parameters are: σ = 8.0 mV, κ = 0.6, and qs = qe = 0.1 nS.

if the command circuit receives a mixed, heterogeneous input
[denoted by Xi in our model; Equations (6) and (7)]. The best fit
to the data is obtained if the largest excitation comes to forward
interneurons AVB and PVC (Table 3; Figure 3). In this sense,
the existence of sensory stimulation is an important factor for
directional motion generation, which is in general agreement
with the experimental findings (Zheng et al., 1999; Piggott et al.,
2011).

ROLE OF INTERNEURON GAP JUNCTIONS IN LOCOMOTION
How are downstream motor neurons activated given an
inhibitory nature of synapses in the pre-motor interneuron cir-
cuit? This probably occurs due to strong gap junction couplings
between two major interneurons, AVB and AVA, and the down-
stream motor neurons of type A and B. Our results suggest
that the worm moves forward because AVB receives a stronger

upstream input than the “backward” interneurons. AVB then
excites downstream B motor neurons via strong gap junctions.
The chemical synapses from AVB to B are weak and thus non-
significant (Table 7). Therefore the sign of these synapses is
irrelevant for forward motion, and AVB does not necessarily have
to be excitatory.

The issue with backward motion is more subtle. Recent cal-
cium imaging studies show that AVA is active during backward
movement (Chronis et al., 2007; Faumont et al., 2011). How can
one explain this? The likely answer lies again in the strong gap
junction connections between AVA and A motor neurons, and
between AVB and B motor neurons (Table 7). Specifically, during
backward motion AVA, due to its large sensory input, synaptically
inhibits other interneurons including AVB, but at the same time
excite downstream A motor neurons via strong electric coupling.
Thus AVB sends less excitation to B motor neurons via its strong
gap junctions than does AVA to A neurons. Consequently, the
activity of A prevails over the activity of B neurons (i.e., Eb > Ef in
our model), and the worm moves backward, even with inhibitory
synapses in the locomotor circuit.

RELATIVE IMPORTANCE OF THE PATTERNS OF SYNAPTIC POLARITY
AND SENSORY INPUT ON THE RESULTS
Our results indicate that locomotory output of the interneuron
circuit depends on its synaptic polarities as well as on sensory
input pattern. This can be seen in Figure 3, where the ED char-
acterizing the degree of the match between the theory and the
data is displayed as a function of synaptic and input configu-
rations. From these two main factors affecting ED, the synaptic
polarity pattern seems to be a more important determinant. This
is because the lowest values of ED are generally associated with
circuit configurations in which synaptic inhibition dominates,
whereas the highest ED’s are related to mostly excitatory connec-
tions (Figure 3). On the other hand, the sensory input pattern
does not exhibit such a simple general trend. More precisely,
increasing the amount of strong input in the network does not
lead to an explicit decrease (or increase) of ED, but rather to its
fluctuations. Instead, ED assumes the smallest values for a mod-
erate number of interneurons receiving strong input, which is
usually 2 or 3 (Figure 3).

PROPERTIES OF ASH AND AVB NEURONS STRONGLY AFFECT THE
RESULTS
From all neurons present in our locomotory circuit, two neurons
ASH and AVB are particularly important for the network perfor-
mance. This is strongly related to the question of specificity in
synaptic polarity and input pattern. The map in Figure 3 shows
that the synaptic polarity of ASH is strongly correlated with the
level of ED. In most cases, synaptic configurations in which ASH
is inhibitory decrease ED, and increase it if ASH is excitatory. The
exceptions are configurations with small inputs, where the oppo-
site takes place. Thus, for the most part the synaptic polarity of
ASH should be inhibitory in terms of the network optimality.

AVB neuron, which provides the main signal to the down-
stream motor neurons controlling forward locomotion, is also
critical for the optimal solutions. The strength of the sensory
input this neuron receives strongly correlates with ED (Figure 3).
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Table 7 | Connectivity matrix for the command interneuron circuit.

Postsynaptic Presynaptic neurons

neuron
ASH AVA AVB AVD AVE DVA PVC F B

AVA 1.75 – 6.75 15.75 10.5 2.0 5.0 – 0.25

– – – – – – (2.5) (3.5) (25.5)

AVB 2.25 0.5 – 0.25 – 0.5 7.75 – –

– – – – – (1.0) – (13.75) (0.5)

AVD 3.0 1.0 0.75 – 0.25 – 3.25 – 0.25

– – – – – – – – –

AVE 0.75 1.0 0.75 – – 7.0 1.25 – –

– – – – – – – – –

DVA – – – – – – 2.0 0.5 –

– – (1.0) – – – (0.5) (0.5) –

PVC – 7.0 – 0.25 0.25 2.0 – 0.25 1.25

– (2.5) – – – (0.5) – (0.75) (0.75)

F – 2.5 0.25 0.25 0.25 6.5 – – –

– (3.5) (13.75) – – (0.5) (0.75) – –

B – 41.75 1.5 7.0 8.25 1.0 1.0 – –

– (25.5) (0.5) – – – (0.75) – –

Shown are average anatomical number of synapses (Ns, ij ) and gap junctions (Ne, ij ) (in the brackets below synaptic contacts) between postsynaptic neuron i and

presynaptic neuron j. Symbols F and B denote forward and backward motor neurons, respectively.

Generally, strong input in AVB decreases ED, whereas weak input
in AVB increases ED, and this effect is essentially independent on
synaptic polarity configurations (Figure 3). This suggest that on
average AVB should receive a strong excitatory input coming from
upstream neurons.

If we combine the action of both ASH and AVB we obtain an
interesting picture. ED values are the smallest for cases in which
ASH is inhibitory and AVB receives a strong input (Figure 3). In
an opposite case, when ASH is excitatory and AVB gets a weak
input, ED values are the largests.

DEPENDENCE OF NETWORK PERFORMANCE ON MODEL FREE
PARAMETERS
Performance (ED) of the interneuron circuit depends also on sev-
eral neurophysiological parameters and on the level of noise in the
system. Generally, these parameters require fine-tuning to obtain
the best fit between the theory and the data. Synaptic conduc-
tance qs and gap junction conductance qe determine the relative
strength of synaptic and electric connections. Optimal values of
these parameters that give the best model performance are always
in a physiological range, and yield very similar values ∼0.1 nS.
However, ED is more sensitive to changes in synaptic conductance
qs than to changes in qe (ED has a broad minimum as a func-
tion of qe; Figure 5), which suggests that precise values of synaptic
conductance are more important.

ED has always a minimum as a function of noise ampli-
tude, regardless of the values of other parameters (Figure 6). This
optimal value of noise is in the range 0.7–1.1 mV (Tables 3–6),
which seems to agree with the magnitude for voltage fluctua-
tions obtained from electrophysiology (Piggott et al., 2011). The
optimality of the system performance for some finite level of

noise resembles a phenomenon known as a stochastic resonance,
which is a ubiquitous mechanism in many physical and biological
systems (McDonnell and Abbott, 2009).

The circuit performance not only depends on the pattern of
the sensory input (see above), but also on the strength of this
input (Tables 3–6). There exists some optimal level of upstream
excitation for which ED has a minimum. Either increase or
decrease of this level has a negative influence on the system per-
formance. This non-monotonic dependence can be explained in
the following way. When the incoming sensory input is too strong
its contribution to an interneuron voltage is much bigger than the
contributions coming from synaptic and gap junction couplings.
Thus manipulation of parameters associated with connectivity
does not change the network output, and one cannot improve
the system performance. On the other hand some minimal input
is required to stimulate the network, so the signal flows to the
motor neurons.

The level of excitation in ASH neuron, controlled by κ, can be
also viewed as a measure of an additional input coming to the
interneuron circuit. Therefore, a non-monotonic dependence of
ED on κ should not be a surprise, which is what we observe in our
computational analysis.

ASYMMETRY IN FORWARD AND BACKWARD INTERNEURON
ACTIVITIES DETERMINE THE LIKELY DIRECTION OF MOTION
Our results indicate that a decision to move in a particular direc-
tion can be made on a small circuit level composed of the six
pre-motor interneurons (including DVA). Specifically, the output
from these interneurons is fed to the two types of body wall motor
neurons (B and A) controlling forward and backward motions,
whose relative asymmetric activities (Ef and Eb in our model)
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determine the likely direction of worm’s movement. This simple
decision making mechanism can explain 74% of the correlations
between the experimental data and computational results (see
Table 3). Moreover, this behavioral picture is consistent with the
findings in a recent experimental study (Kawano et al., 2011),
in which it is shown that the imbalance between activities of
A and B motor neurons is a likely scenario for the selection of
worm’s motion direction. However, in contrast to these authors
the imbalance between A and B neurons in our model is caused
not so much by a strong AVA-A gap junction coupling, but by
the asymmetric upstream excitatory input to command interneu-
rons (in the winning combinations, AVB and PVC neurons receive
much stronger upstream excitation than the rest of the circuit).

QUALITATIVE INTERPRETATION OF ABLATION DATA
The interesting experimental result concerning single-neuron
ablations is that removal of certain interneurons causes an
increase in forward motion timing, while removal of others leads
to its dramatic decrease. Specifically, only killings of ASH and
PVC neurons increase significantly the time Tf spent in forward
locomotion. In relation to ASH, this suggests an important role
of the sensory input. There are two surprises here. First, PVC
was thought as promoting forward locomotion (Chalfie et al.,
1985). Second, given that the sensory ASH neuron makes only
weak or intermediate synaptic connections with the command
interneurons (with all “backward” interneurons and AVB; see
Table 7), it should not have such a strong influence on the motion
characteristics. The solution of these puzzles is that PVC and
ASH are probably inhibitory, i.e., the strongest synapses con-
necting these neurons with other postsynaptic targets should
be inhibitory. Additionally, ASH should be highly depolarized
in order to significantly downregulate the locomotory (mostly
backward) interneurons via its synapses. Recent calcium imaging
indicates that ASH to AVA synapse is likely excitatory (Chronis
et al., 2007). This experimental result does not necessarily con-
tradict our result regarding the negative ASH polarity. Indeed,
our results concern only an average total polarity of a given neu-
ron, and it is possible that some of its weak synapses can have
a reverse polarity in relation to the strongest. In fact, the ASH
to AVA synapse is relatively weak (third in strength out of four
coming out of ASH; see Table 7), and it could be dominated by
stronger inhibitory synapses to other neurons.

Removal of AVA interneuron causes a large reduction in Tf ,
despite the fact that this neuron belongs to the “backward” loco-
motory circuit, and one might naively expect that it effectively
prohibits forward motion. Moreover, single and multiple abla-
tions associated with AVA cause an increase in stopped time
(Table 2). This suggests that removal of AVA decreases a differ-
ence between activities of forward and backward motor neurons,
i.e., Ef − Eb may become comparable with a threshold for move-
ment initiation � (see Supplementary Information). This in turn
may suggest that when AVA is absent, backward motor neurons
are more active. Taken together, these results imply that the overall
synaptic effect of AVA is most likely inhibitory.

The ablation results for the DVA neuron indicate that it plays a
more significant role in the locomotory circuit than just its passive
modulation. From Table 2 it is evident that killing DVA has one of

the biggest impacts on Tf . Based on this, we hypothesize that DVA
might serve also as a command neuron in generation of forward
locomotion, which is a novel function for this neuron.

The case with multiple ablations is more complicated. These
type of ablations do not have an additive property, i.e., removal of
more neurons does not necessarily lead to a progressive drop in
the forward motion timings. For example, double AVB and PVC
ablation has Tf = 0.91 s, but additional removal of AVD actually
increases Tf to 1.33 s (Table 2). The latter may seem paradoxi-
cal, however, one has to remember that backward neurons do not
act in isolation, but participate in the whole interneuron network
activity, and thus indirectly also influence the forward motor neu-
rons. Apart from that, interneurons interact among themselves
both synaptically (non-linear in nature) and via gap junctions
(bidirectional in nature). This may additionally mask a single
interneuron contribution to the locomotory output of the circuit.
As a result it is very difficult to predict in advance the effect of any
particular ablation on worm’s locomotory characteristics in the
case of multiple ablations. For this, one needs to perform detailed
computations on a network level, as was executed in this study.

COLLECTIVE, MUTUALLY INHIBITORY INTERACTIONS BETWEEN
COMMAND INTERNEURONS UNDERLIE C. elegans DIRECTION OF
LOCOMOTION
These ablation results suggest that a picture in which a single neu-
ron or a single connection control a specific behavior, advocated
in several former studies (Chalfie et al., 1985; Gray et al., 2005),
may be oversimplified. Instead, our findings support the idea that
behavioral (locomotory) output depends to a large degree on a
collective activity of neurons comprising the “functional circuit”
(Zheng et al., 1999). That is, the same neuron can participate
to some extent in opposite behaviors. Obviously, some neurons
or connections in the functional circuits may be more dominant
than others for a particular behavior, but the presence or absence
of a particular neuron in the circuit is generally not critical for its
operation. This partial redundancy in neural function is probably
evolutionary driven to ensure a robust circuit performance.

Similarly, none of the interneuron ablations, either single or
multiple, abolishes the worm’s movement or body oscillations
completely. This clearly indicates that none of the interneurons
alone is a Central Pattern Generator, which again speaks in favor
of collective rather than individual interneuron dynamics as a
determinant of locomotion.

Our main result that the pre-motor interneuron circuit has
mainly inhibitory synapses is qualitatively similar to two ear-
lier (Wicks et al., 1996; Zheng et al., 1999) and one recent (Qi
et al., 2012) study. Wicks et al. (1996) investigated computation-
ally a tap withdrawal circuit in C. elegans and predicted that most
interneurons composing it were inhibitory (Wicks et al., 1996).
That study concluded that PVC and AVD interneurons were prob-
ably excitatory. Our results suggest that AVD is equally likely to
be inhibitory as excitatory, whereas PVC with high probability
should be inhibitory. The possible sources of the discrepancy can
be that Wicks et al. (1996) used an older incomplete connec-
tivity data for the pre-motor interneurons (White et al., 1986),
did not include AVE neuron, and used a little different set of
neurons in their analysis. In another study, Zheng et al. (1999)
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hypothesized that the locomotory interneuron circuit should act
as an inhibitory switch in order to explain qualitatively data
on motion direction transitions. A recent experimental work
(Qi et al., 2012) also suggests that the pre-motor interneurons
should use inhibition as a main synaptic signaling.

An interesting question is which neurotransmitters mediate
inhibitory interactions between interneurons. The most likely
neurotransmitter between interneurons is glutamate. In mam-
malian brains, it is known to be exclusively an excitatory signal,
since AMPA and NMDA postsynaptic receptors conduct mostly
Na+ and K+ with an effective reversal potential around 0 mV.
However, in C. elegans the situation is more complicated because
locomotor interneurons contain apart from these receptors, also
GluCl postsynaptic receptors (Brockie and Maricq, 2006). These
channels are gated by Cl− (with large negative reversal poten-
tials), and therefore mediate inhibition to postsynaptic cells
(Brockie and Maricq, 2006). Specifically, the currents associated
with GluCl receptor have been observed in the AVA interneu-
ron (Mellem et al., 2002), and they may also exist in other
interneurons.

Given these two types of postsynaptic receptors, it is possible
that a single interneuron can have both excitatory and inhibitory
synapses on distinct postsynaptic targets. In this case, the synaptic
polarities associated with each neuron in our study have an aver-
age character. More precisely, the determined probabilities that
a given neuron is inhibitory are the fractions of inhibitory con-
nections that the neuron makes with other postsynaptic neurons.
Thus, for example, the inhibitory probability 0.5 found for AVB
indicates that this neuron sends out about 50% inhibitory and
50% excitatory synapses.

OUR COMPUTATIONAL MODEL AND ITS EXTENSION
The theoretical approach in this paper blends a traditional neural
network modeling with a probabilistic method for relating net-
work activity to behavioral data. In particular, we envision the
nematode locomotion as a three state system, one state for for-
ward, second for backward motion, and third state for no motion.
In this system there are transitions between the states that are
caused by intrinsic relative activities of A and B motor neurons
(Eb and Ef ), as well as by the system noise (η in Equation 8). Note
that many ablations in Table 2 have the ratio Tf /Tb close to unity,
which in terms of our model implies that (Ef − Eb)/η � 1, i.e.,
for these ablations a stochastic influence of the environment is
bigger than the relative activities of A and B motor neurons. This
is interesting and shows that sensory noise gains in importance as
we remove more neurons from our circuit. This may also suggest
that some of the interneurons act as filters for the environmental
noise.

Our combined approach allows us to achieve a concrete goal,
which is the prediction of synaptic polarities for the well defined
locomotory interneuron circuit and the determination of the
likely sensory input pattern. This prediction does not depend on
a precise form of the transfer function between neural activa-
tion and locomotory output (compare Equations 15 and 16 in the
Supplementary Information). In this sense our results are robust.

The knowledge of the probable synaptic polarities of the
command interneurons may have a positive impact on future

modeling studies of C. elegans locomotion. We hope, that this
will enable more realistic simulations of the neuronal dynamics
that can extend the scope of testable predictions of the current
locomotory models (Karbowski et al., 2006, 2008; Bryden and
Cohen, 2008). Our method of determining synaptic polarities,
which combines structural perturbations with the computational
modeling, is sufficiently general that can be also applied to
other small functional neural systems in which synaptic polar-
ities are unknown. However, it is important to keep in mind
that our model, as every model describing biology, is sub-
ject to several assumptions (see the list in the Materials and
Methods), and clearly has some limitations. The model does not
include several subtle neurophysiological features. For example,
a possibility that an individual neuron might release multiple
neurotransmitters of similar importance, or that neuromodu-
lators might provide an extra synaptic input throughout the
network. These features can be addressed in future more detailed
investigations.

MATERIALS AND METHODS
The ethics statement does not apply to this study.

COLLECTION OF EXPERIMENTAL DATA
Strain maintenance
For our automated locomotion analysis, we cultured C. elegans
at 20◦C on NGM plates seeded with the OP50 using standard
methods (Brenner, 1974).

Automated worm tracking and data extraction
Worms tested by automated tracking were continuously cultured
on E. coli OP50. For assaying various parameters of locomotion,
10 cm non-seeded NGM plates were used. These NGM plates
used for recordings were equilibrated to 20◦C for 18–20 h. After
ablations of individual neurons, the worms were placed on plates
with E.coli as a food source to recover. Ablated worms and mock
controls were tested within 72 h of the L4 molt. They were then
transferred to assay plates containing no food. After 5 min of
acclimatization on these plates, the worms were video taped for
5 min. Data presented in this paper represent the locomotory
behavior of worms when they were exhibiting “area restricted
search behavior”. Data extraction and processing was done using
image processing and analysis software as previously described
(Cronin et al., 2005). From each video recording of 5 min, we
used the middle 4 min, and used the software to derive val-
ues for times in forward and backward locomotion, as well as
reversal frequencies. In our software, we used a velocity thresh-
old for motion detection. Specifically, if the nematode velocity
was below 0.05 mm/s, we classified this as stopped time or “no
motion”. Every change of velocity direction that was above this
value was classified as a reversal. The average time spent in the
stopped phase is Ts. The time Tf the worm spent in forward
motion is defined as an average duration of time counted from
a moment of moving forward to stopping. Similarly, the time Tb

spent in backward motion is an average of times from the ini-
tiation of backward movement to stopping. Generally, because
of many reversals, the sum of the times Tf , Tb, and Ts is much
smaller than the recording time of 4 min. The numerical values
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of Tf , Tb, Ts provided in this paper are population averages. All
incubations and recordings were done in a constant temperature
room at 20◦C.

Laser ablations
For all species tested, we used the L1 larva stage for our ablations.

DESCRIPTION OF THE COMMAND INTERNEURON CIRCUIT MODEL
List of the assumptions used to construct the model
We make the following major assumptions in the theoretical
model:
(1) In the interneuron circuit left and right members of each
interneuron are grouped as one interneuron.
(2) Synaptic and gap junction strengths between any two neurons
are proportional to the anatomical number of synapses and gap
junctions between them.
(3) Pre-motor neurons do not generate sodium-type action
potentials but their activities are graded, as C. elegans genome
lacks molecules coding for voltage-activated sodium channels
(Bargmann, 1998). This assumption is also consistent with elec-
trophysiological observations in C. elegans and related nematodes
(Davis and Stretton, 1989; Goodman et al., 1998).
(4) Each neuron releases a single neurotransmitter, or equiva-
lently, there exists a dominant neurotransmitter type for each
neuron. Thus, with each neuron in the command circuit we can
associate a single dominant synaptic polarity.
(5) Worm’s movement direction is determined by a relative imbal-
ance in the activities of excitatory motor neurons of type A and B,
which is in agreement with recent experimental observations
(Kawano et al., 2011).
(6) Behavioral output of the worm can be formally described in
terms of a three-state model. The three states correspond to for-
ward motion, backward motion, and stopped period. Each state
has its probability of occurrence, which for forward and backward
states is given by an exponential function of a difference between
activities of type A and B motor neurons (see below).

Derivation of the model equations
Equations describing interneuron circuit responsible for
forward–backward motion transitions are given below. This is
a non-linear model based on synaptic connectivity data from
www.wormatlas.org [updated version of White et al. (1986)
wiring diagram from Chen et al. (2006)].

We start with a standard membrane equation describing the
graded dynamics of neuron with an index i (Ermentrout and
Terman, 2010):

CS
dVi

dt
= −gLS (Vi − Vr) −

∑
j

gs, ijH0
(
Vj

) (
Vi − Vs, j

)

−
∑

j

ge, ij
(
Vi − Vj

)
(1)

where Vi is the voltage of neurons i, C is the membrane capac-
itance per surface area, S is the total surface area of neuron i,
Vr is the resting voltage, gL is the total membrane ionic con-
ductance per surface area that is composed mainly of a constant

leak current (typical K+ channel conductance is much smaller
for voltages close to Vr), ge, ij is the gap junction conductance
between neurons i and j. The symbol gs, ij denotes synaptic
conductance coming from j presynaptic neuron with synap-
tic reversal potential Vs, j. The function H0(Vj) is a non-linear
sigmoidal function characterizing synaptic transmission, and is
given by

H0
(
Vj

) = 1

1 + exp
[−γ

(
Vj − θ0

)] , (2)

where θ0 is the voltage threshold for synaptic activation, and γ is a
measure of steepness of the activation slope. Generally, the synap-
tic input strongly depends on γ. We set its value at 0.15 mV−1 fol-
lowing an earlier analysis (Wicks et al., 1996) (Table 1). This par-
ticular value yields realistic synaptic currents that cause changes
in voltage membrane by at most several mV, which agrees with
known neurophysiology in other animals (Koch, 1998).

Our goal is to write Equation (1) in a more convenient form for
the investigation of synaptic polarities. We assume that the resting
potential Vr (when no synaptic or gap junction input is present)
for C. elegans interneurons is −40 mV, which agrees with earlier
suggestions (Wicks et al., 1996), and it is close to a recent mea-
surement (≈ −50 mV) in AIB neuron (Piggott et al., 2011). We
want to re-define the voltage in Equation (1) as a deviation from
its resting value, i.e., we introduce �Vi ≡ Vi − Vr . Let’s denote
by Vex the reversal potential for excitatory, and by Vin the rever-
sal potential for inhibitory synapses. The value of Vex is around
0 mV (the current in excitatory synapses is mediated by Na+,
K+, and partly by Ca++). The value of Vin was reported between
−70 mV (Purves et al., 2008) and −90 mV (Koch, 1998) (the cur-
rent in inhibitory synapses is mediated by Cl−). As an average
for Vin we take −80 mV. Consequently, we obtain for excita-
tory synapses Vi − Vex = �Vi + Vr − Vex = �Vi − 40, and for
inhibitory Vi − Vin = �Vi + Vr − Vin = �Vi + 40. The result-
ing average numerical factors in both expressions have identical
absolute values. Thus we can use an approximation: Vi − Vs,j ≈
�Vi − εjA, where A = 40 mV, and εj characterizes the synaptic
polarity of the presynaptic neuron j. The value of εj is either 1 for
excitatory synapses or −1 for inhibitory. Taking the above into
account and dividing both sides of Equation (1) by gLS, we can
rewrite this equation as

C

gL

d(�Vi)

dt
= −

⎡
⎣1 +

∑
j

gs, ijH0
(
Vj

)
gLS

⎤
⎦�Vi +

∑
j

εjA
gs, ij

gLS
H0

(
Vj

)

−
∑

j

ge, ij

gLS

(
�Vi − �Vj

)
. (3)

We can determine the strengths of synaptic and gap junc-
tion connections between any i and j interneurons by their
anatomical numbers Ns, ij, Ne, ij, and maximal elementary con-
ductances qs, qe, i.e., gs, ij = Ns, ijqs, and ge, ij = Ne, ijqe. The data
for Ns, ij and Ne, ij are available from the data set in Chen
et al. (2006) (see Table 7). A typical range of conductances
for chemical and electrical synapses is known from neurophys-
iology of other animals (Koch, 1998). The leak conductance
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gL is taken as g−1
L = 150 k�· cm2 (Wicks et al., 1996), which

comes form the neurophysiological measurements in a related
larger nematode Ascaris (Davis and Stretton, 1989). The sur-
face area S of all interneurons is very similar and around 15 ·
10−6 cm2 (White et al., 1986; Wicks et al., 1996), so we obtain
gLS = 0.1 nS, of which the inverse (i.e., 1010 �) is comparable
to an experimental measurement of the total input resistance
∼ 0.5 · 1010 � (Goodman et al., 1998). Consequently, we can
estimate the ratios present in Equation (3) as: Ags, ij/(gLS) =
400Ns, ijqs, and ge, ij/(gLS) = 10Ne, ijqe, where qs, qe are expressed
in nS. We checked that the term

∑
j gs, ijH(Vj)/(gLS), which is

associated with �Vi is generally much smaller than 1, since
H(Vj) � 1 for voltages not far away from Vr . Consequently,
this term is neglected, which simplifies significantly the result-
ing equations for interneurons (see below and the Supplementary
Information). Thus, we can write Equation (3) in an approximate
form as:

τ
d(�Vi)

dt
≈ −�Vi +

∑
j

εjwijH
(
�Vj

)

−
∑

j

gij
(
�Vi − �Vj

)
, (4)

where τ = C/gL is the membrane time constant, wij is the synap-
tic coupling wij = 400qsNs, ij, and gij is the gap junction coupling
gij = 10qeNe, ij. The function H(�Vj) in Equation (4) differs from
the original function H0(Vj) only by a substitution θ0 → θ, where
θ = θ0 − Vr , i.e.,

H(�Vj) = 1

1 + exp
[−γ

(
�Vj − θ

)] . (5)

It is important to keep in mind that synaptic polarities in
Equation (4) are determined simply by the signs of εj coefficients.

Activity equations for interneurons
Equations describing activities of the interneurons in the
locomotory circuit are presented in the Supplementary
Information. They are similar in form to Equation (4) with
an additional inclusion of the heterogeneous excitatory sensory
input Xi, i.e.,

τ
d(�Vi)

dt
= −�Vi +

∑
j

εjwijH
(
�Vj

)

+
∑

j

ε2
i ε2

j gij
(
�Vj − �Vi

) + Xi, (6)

where the subscripts i, j are labels for our circuit neurons. The
parameter εi denotes synaptic polarity of the neuron i, and
it assumes value 1 (if the neuron is excitatory), value −1 (if
inhibitory), or 0 (if the neuron is absent because of the abla-
tion). Ablations in the circuit remove also electric connections
if a neuron on either side of this coupling is killed. To include
this effect we rescale the gap junction couplings by ε2

i ε2
j factors.

The square in the epsilon assures that we do not get unphysical

negative values for gap junction conductance. We assume that the
excitatory sensory input Xi coming from the upstream neurons to
the interneuron i is constant in time and represented by

Xi = x0 + σzi, (7)

where x0 = 2.0 mV, σ is a variable parameter characterizing the
strength of a strong input that is constant in time, and zi is
the binary variable either 0 (weak input) or 1 (strong input).
Thus neurons can receive only two types of the input: either
weak (x0) or strong (x0 + σ). The “input” parameter zi, similar
to εi, is unknown. We want to find their optimal values for each
interneuron.

The above pre-motor interneurons make synaptic and gap
junction connections with downstream excitatory motor neu-
rons. Two separate groups of these motor neurons generating
forward and backward motion, called B and A, respectively,
directly connect locomotory muscles. The activities of excitatory
motor neurons (Ef and Eb for forward and backward motion,
respectively) have a similar form to that of the interneurons and
are given in the Supplementary Information. Generally, activ-
ity equations for interneurons and motor neurons are of similar
kind to those used before in Karbowski et al. (2008) for analyzing
forward locomotion.

We solve Equations (6, 7) using a second order Runge–Kutta
method. We are interested only in the steady-state activities of
the interneurons and motor neurons. One can think about these
activities as temporal averages over sufficiently long periods of
time driven by a constant bias input. This simplifying step sig-
nificantly enhances the feasibility of the analysis. The steady-state
values of motor neuron activities, Ef and Eb, are inserted in
Equation (8); see below. All the results presented were obtained by
choosing initial conditions corresponding to resting voltages, i.e.,
�Vi = 0 for each neuron. We also tried random initial conditions
in which neurons start with voltages uniformly distributed in the
range −10 to 10 mV. In both cases the steady-state values are the
same, which means that steady-state activities are independent of
initial conditions, at least in that range.

Theoretical ablations
Ablations or removals of neurons in the model are performed by
setting εneuron = 0. For example, if we remove neuron AVB, then
we put εAVB = 0 in all equations for neural activities.

Values of the connectivity matrix
The strength wij of synaptic input to neuron i coming from neu-
ron j is given according to Equation (4) by the expression wij =
400qsNs, ij, where Ns, ij is the number of synaptic contacts of neu-
ron i with presynaptic neuron j. The number Ns, ij is determined
as an arithmetic mean for the right- and left-hand side interneu-
rons. As an example, the right AVB neuron receives an input
from both right and left PVC neurons, of which we take an arith-
metic mean. Similarly, the left AVB neuron receives an input from
both right and left PVC, of which we again take an arithmetic
mean. Next, we take an arithmetic mean of these two arithmetic
means, and obtain a single value representing average number of
synaptic contacts between presynaptic PVC and postsynaptic AVB
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(Ns,AVB,PVC). The strength of gap junction gij between neurons i
and j is given by an analogous formula gij = 10qeNe, ij, where Ne, ij

is the number of gap junction contacts between i and j (arithmetic
mean of right and left interneurons). Empirical data for Ns, ij and
Ne, ij were taken from the database in Chen et al. (2006) and are
presented in Table 7. Parameters qs and qe were taken in the range:
qs = 0.03 − 0.6 nS and qe = 0.03 − 0.5 nS (Koch, 1998).

ASH neuron
From all upstream neurons we selected explicitly ASH neuron
because of its polymodal sensory role. Specifically, it has been
implicated in avoidance responses (Kaplan and Horvitz, 1993),
which are associated with the modulation of locomotion. We
do not write an explicit equation for ASH dynamics, because it
receives a massive input form many other head neurons, of which
we have no knowledge. Instead, we make computations for four
different levels of ASH activity that we set by hand. We choose
ASH = κθ, where κ = 0.2, 0.4, 0.6, or 0.75. The value of the
normalized threshold θ is set to 45 mV.

Relationship to the behavioral data
From the experimental part we have average times the worms
spent in forward and backward locomotion, which we denote as
Tf and Tb, respectively. These average times should be somehow
related to the average activities of the two type of motor neurons,
Ef and Eb. The precise relationship between them is unknown due
to the lack of direct physiological data. However, one can expect
that domination of Ef over Eb should favor forward motion and
its duration, and vice versa.

We can make some progress by using an analogy with statis-
tical physics (Gardiner, 2004), and treating worm’s locomotory
behavior as a three state system influenced by both determin-
istic and stochastic factors. These three states correspond to
forward movement, backward movement, and stopped time (no
motion). There could be transitions between the states driven
by sensory input from the environment (either deterministic or
stochastic). However, we do not model such transitions. We are
interested only in long-term “average” or steady states activities
of the system. Our model is motivated in large part by exper-
imental results of Kawano et al. (2011). In that study it was
shown that C. elegans motion direction is determined by a rel-
ative activity of A and B motor neurons. In particular, it was
suggested (Kawano et al., 2011) that when forward motor neu-
rons are much more active than backward (i.e., Ef 	 Eb), then
there should be a high probability of finding the worm in the
forward motion. Conversely, if the activity of backward motor
neurons dominates over the activities of their forward counter-
parts (i.e., Eb 	 Ef ), then there is a high chance that the worm
moves backward. Thus, it appears that the sign of Ef − Eb plays a
key role in the choice of worm’s motion direction. Moreover, one
can expect that when the activities of both types of motor neu-
rons are comparable (equal or almost equal), then C. elegans likely
does not move.

We relate the behavioral observables, i.e., the fraction of
time spent in forward motion, with the motor neuron activities
using a transfer function known as a sigmoidal logistic function.

Specifically, we propose

Tf(
Tf + Tb

) = 1

1 + exp
[(

Eb − Ef
)
/η

] , (8)

where η is the noise in the system. This parameter also deter-
mines the shape of the transfer function. This type of function
is a standard tool often used in many computational stud-
ies in neuroscience, and this is the primary transfer function
used in this study. Note that for cases in which activities of
A motor neurons dominate, i.e., (Eb − Ef )/η 	 1, the time
spent in forward motion is relatively short, i.e., Tf /Tb � 1. The
derivation of Equation (8) is presented in the Supplementary
Information.

The goal
We want to determine which combination of neuron polari-
ties: εASH, εAVB, εPVC, εDVA, εAVA, εAVD, εAVE, together with
their corresponding upstream inputs zi, yields the best fit to the
experimental values of Tf /(Tf + Tb).

Comparison of the theory with the data
In our model there are 8192 distinct combinations of synaptic
polarities εi and the upstream inputs zi, i.e., different config-
urations in which the circuit can be found. For each circuit
configuration, we perform 17 interneuron ablations in our com-
puter model, and compute theoretical values of Tf /(Tf + Tb) for
each ablation. Next, we compute an ED of these values to the
experimental values given in Table 2. The ED serves as a sys-
tem performance (the lower ED the better), and it is computed
according to the expression:

ED =
[

18∑
a = 1

(Rth − Rex)
2
a

]1/2

, (9)

where R = Tf /(Tf + Tb) ≡ (Tf /Tb)
[
1 + Tf /Tb

]−1
, and the

subscripts th and ex refer to theoretical and experimental val-
ues of R. The subscript a refers to the ablation number, in the
same order as in Table 2. In particular, a = 1 corresponds to the
mock ablation, i.e., WT. All the results presented in Tables 3–6
were generated by using Equation (8) for the parameter Rth.
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