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Abstract

Background: Understanding cellular and molecular heterogeneity in glioblastoma (GBM), the most common and
aggressive primary brain malignancy, is a crucial step towards the development of effective therapies. Besides the
inter-patient variability, the presence of multiple cell populations within tumors calls for the need to develop
modeling strategies able to extract the molecular signatures driving tumor evolution and treatment failure. With the
advances in single-cell RNA Sequencing (scRNA-Seq), tumors can now be dissected at the cell level, unveiling
information from their life history to their clinical implications.

Results: We propose a classification setting based on GBM scRNA-Seq data, through sparse logistic regression, where
different cell populations (neoplastic and normal cells) are taken as classes. The goal is to identify gene features
discriminating between the classes, but also those shared by different neoplastic clones. The latter will be approached
via the network-based twiner regularizer to identify gene signatures shared by neoplastic cells from the tumor core
and infiltrating neoplastic cells originated from the tumor periphery, as putative disease biomarkers to target multiple
neoplastic clones. Our analysis is supported by the literature through the identification of several known molecular
players in GBM. Moreover, the relevance of the selected genes was confirmed by their significance in the survival outcomes
in bulk GBM RNA-Seq data, as well as their association with several Gene Ontology (GO) biological process terms.

Conclusions: We presented a methodology intended to identify genes discriminating between GBM clones, but also
those playing a similar role in different GBM neoplastic clones (including migrating cells), therefore potential targets

for therapy research. Our results contribute to a deeper understanding on the genetic features behind GBM, by
disclosing novel therapeutic directions accounting for GBM heterogeneity.
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Background

Tumor heterogeneity is a major bottleneck in cancer diag-
nosis and therapy, playing a critical role in cancer inva-
sion, metastasis and therapy resistance [1]. Glioblastoma
(GBM), the most common primary brain malignancy in
adults and one of the most aggressive cancers [2], is an
archetypal example of a heterogeneous cancer, exhibit-
ing extensive cellular and molecular heterogeneity, both
within and between tumors [3, 4]. Current treatments
combining surgery with radiotherapy and chemotherapy

*Correspondence: marta.lopes@tecnico.ulisboa.pt

'Instituto de Telecomunicacdes, Instituto Superior Técnico, Universidade de
Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal

Full list of author information is available at the end of the article

programs have shown to prolong survival, however, tumor
recurrence usually occurs within two years [5]. Recur-
rence has been mainly attributed to the diffuse nature of
GBM, with infiltrating neoplastic cells originating from
the tumor core spreading quickly across long distances
within the brain, rendering local therapies ineffective [5].

Transcriptome analysis has been extensively used to
classify tumors into molecular subtypes and to establish
signatures to predict the response to therapy and patient
outcomes [6]. While bulk tumor sequencing is arguably
powerful in classifying GBM subtypes [7], it becomes
clearly ineffective when it comes to identify and character-
ize rare cell populations, e.g., infiltrating neoplastic cells
in GBM patients. Gene expression by bulk cell popula-
tions dilutes the contribution of these rare cells to the
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overall gene expression pattern [8], thus representing a
confounding factor in clinical diagnosis and therapeutic
treatment of patients [9]. With the advances in next-
generation sequencing and single-cell RNA sequencing
(scRNA-Seq) it is now possible to get into the cell level and
tackle intratumoral heterogeneity [3, 5, 10—13]. Not only
cancer cells, but also non-cancerous cells that, together
with the extracellular matrix form the tumor macroenvi-
ronment, can be fully investigated, as they are known to
shape the progression of cancer and are deeply involved in
the patient outcome [6].

Inter- and within-tumor heterogeneity in GBM has been
previously described through scRNA-Seq analysis [3, 5].
In the study by Darmanis at al. (2017) [5], besides a
large degree of heterogeneity between and within four
different tumors, the analysis revealed a population of
infiltrating neoplastic cells originating from the periph-
eral tissue whose transcriptional and genomic variant
profiles resembled tumor core cells. Notably, infiltrating
GBM cells were found to share a consistent gene signature
across highly variable tumors. These findings open new
directions for therapy research, targeting not only neo-
plastic cells in general, but also infiltrating populations of
cells migrating away from the primary tumor, responsible
for recurrence [5].

Alongside the remarkable advances in technology and
biomarker discovery, there is a continuous demand for the
development of statistical and machine learning methods
able to translate the vast amounts of data retrieved by
next-generation sequencing technologies into a clinically
application format [14]. scRNA-Seq datasets comprise
tens of thousands genes and irrelevant information that
render ill-posed models. Sparsity-inducing models are a
common strategy to cope with the high-dimensionality
problem as in scRNA-Seq data. Standard sparsity is usu-
ally enforced through the /; regularizer, i.e., the least
absolute shrinkage and selection operator (LASSO) [15],
which in the presence of strongly correlated variables
may only select one out of the highly correlated set of
variables. Since genes are organized in co-expression net-
works, selecting subnetworks of interrelated genes might
be more appropriate when modeling RNA-Seq data. The
elastic net (EN) regularizer [16], a combination of the /;
and the /5 norms, stands as a valuable alternative to the
LASSO for highly correlated scenarios.

Aiming at the identification of disease gene signatures
in GBM, regularizers can be used in the models loss
function to select the relevant features in the discrimina-
tion between different GBM clones, providing hints on
key drivers on tumor progression and therapy resistance.
Regularizers can also be coupled with prior informa-
tion on the underlying genes network, with the premise
that network information yields more interpretable and
reproducible models [17, 18]. In this context, the twiner

Page 2 of 12

regularizer has been recently proposed to extract com-
mon gene RNA-Seq signatures in cancers with similarities
at the molecular level, by imposing a lower penalty on
genes showing a similar correlation pattern in the genes
correlation networks of the diseases under study. For
instance, it is pertinent to evaluate whether known sub-
networks present in two diseases are indeed selected as
relevant in a classification scheme where the two diseases
are a class against, e.g., a non-disease class. The result is
a shared disease signature between diseases. The twiner
regularizer showed promising results in the identification
of a common gene signature in breast and prostate can-
cer [17], with associations to survival time distributions in
both cancers.

Extending the scope of application of twiner to track
tumor heterogeneity based on scRNA-Seq data seems
particularly promising in biomarker selection in GBM.
The possibility of identifying genes signatures shared by
the different tumor clones, e.g., neoplastic cells from the
tumor core and infiltrating neoplastic cells originated
from the tumor periphery, could unravel putative disease
biomarkers to target multiple neoplastic clones.

We propose a procedure based on a classification set-
ting to discriminate between different cell groups in GBM
tumors, including neoplastic and normal cells from the
tumor core, and neoplastic cell from the tumor periph-
ery. The results obtained are expected to fulfill a three-
fold goal: i) disclose gene signatures in discriminating
between neoplastic and normal cells; and ii) identify puta-
tive molecular drivers that provide infiltrating neoplastic
cells with the capabilities for migrating through a non-
tumor environment; iii) identify shared disease signatures
between different neoplastic tumor clones irrespective of
their tumor location.

The dataset obtained by Darmanis et al. (2017) [5]
will be used in this study, consisting of scRNA-Seq data
obtained from four GBM patients. Binary sparse logis-
tic regression using the EN and the twiner penalties
will be use for the designed classification scenarios.
The gene selected shall be regarded as putative dis-
ease biomarkers in the resolution of GBM hetero-
geneity as well as in the design of multi-clone target
therapies.

Results

Three sparse classification models were built aiming at
extracting gene signatures from scRNA-Seq GBM data
(Fig. 1). The model results regarding the median number
of variables selected and the accuracy measures obtained
for the 1000 bootstrap samples can be found in Table 1.
Overall, a high accuracy was obtained for the three mod-
els, with AUC values > 0.94, a low number of misclas-
sifications and a comparable median number of genes
selected.
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Fig. 1 Schematic representation of the selection of the cell types as classes (1 and 0) to build the datasets to be used in the classification models:
Model | (T-core vs. T-periphery), Model Il (T-periphery vs. N-periphery), and Model Il (T-core/periphery vs. N-periphery)
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Model I was generated by sparse logistic regression
based on the EN penalty to classify cells into neoplastic
astrocytes from the periphery, i.e., infiltrating neoplastic
cells, and the tumor core. The goal was to identify gene
features that discriminate between the two cell popula-
tions, particularly those enabling tumor neoplastic cells
to migrate from the tumor core to the peritumoral space.
Model I presented a higher number of misclassifications
compared to Models II and III, which besides the higher
number of samples cells considered (n 444; Fig. 2)
might be related to the increased difficulty in distinguish-
ing between periphery neoplastic (infiltrating) astrocytes

and tumor core neoplastic astrocytes, showing marked
molecular similarities. A total median number of 83 genes
were selected as relevant in the discrimination between
the two classes, from which 15 were selected in more
than 75% of the 1000 model runs (Table 2). From those,
ATP1A2 and PRODH were always selected. All genes
were up-regulated in neoplastic periphery (infiltrating)
astrocytes, except PCSKIN and TMSBIO, which were
down-regulated.

Model II was designed to disclosing cancer drivers that
make astrocytes from the periphery distinguishable in
neoplastic and normal cells. Similarly to Model I, it was

Table 1 Median accuracy results obtained from the application of Models |, II, and Il to the 1000 bootstrap samples generated (T,
tumor neoplastic astrocytes; N, normal astrocytes; EN, elastic net; NB, Naive Bayes: MSE, mean squared error; AUC, area under the
precision-recall curve; Miscl, misclassifications; Vars, nr. of variables selected)

Miscl MSE AUC
Classes Model Vars
Train Test Train Test Train Test
| - T-core vs. T-periphery EN 83 10 7 0.029 0.047 097 0.94
Il - T-periphery vs. N-periphery EN 85 3 4 0.020 0.037 0.99 0.96
EN 76 2 0.005 0.012 0.997 0.982
) ) Twiner 76 0 2 0.003 0.011 1 0.982
Il - T-core/periphery vs. N-periphery
NBgy 76 5 6 0.009 0.034 0.996 0.979
NBiyiner 76 4 5 0.008 0.028 0.996 0.981
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Fig. 2 Data summary on the number of cells in each category regarding cell type and location

built based on sparse logistic regression with the EN
penalty. A median number of 85 genes were selected in
across the bootstrap samples generated (Table 1). Twenty-
five genes were selected in more that 75% of the 1000
models, from which 5 (ANXAI, EGFR, HTRAI, IFI44L,
and PTGDS) were always selected (Table 2). The majority
of the genes were up-regulated in neoplastic periphery
(infiltrating) astrocytes, except HLA-A, HTRA1, MGLL,
PTGDS, and SPOCK1, which were down-regulated.

A different classification strategy was adopted for Model
II to classify GBM astrocytes into neoplastic (tumor
and periphery) and normal astrocytes, with the goal of

identifying shared molecular signatures between neoplas-
tic astrocytes from different tumor locations, putative
biomarkers to target GBM heterogeneity. Regularization
in the sparse logistic model was enforced via the EN and
the twiner penalties, the later enabling the identifica-
tion of the genes that are similarly correlated in neoplastic
astrocytes from both the periphery and tumor core, and
that play a role in the discrimination between neoplas-
tic (tumor and periphery) and normal astrocytes. Sparse
classification via twiner regularization yielded slightly
better performance regarding the MSE and AUC over the
1000 model runs compared to EN (Table 1; Fig. 3), with

Table 2 Genes selected in more than 75% of the 1000 runs by Models | and Il (T, tumor neoplastic astrocytes; N, normal astrocytes);
bold and gray coloured genes are up- and down-regulated, respectively, in neoplastic periphery astrocytes (T-periphery) against
neoplastic tumor core astrocytes (Model I) and normal periphery astrocytes (Model Il); genes marked with an asterisk are genes that

were selected in the 1000 model runs

Model | - T-core vs. T-periphery

*ATP1A2 CLDN10 ECHDC2 FGFR3 GRM3
HERC6 HIF3A HSPB8 NPL
PPM1K +*PRODH SCG3 SPARCL1

Model Il - T-periphery vs. N-periphery
ADAMTS3 ADAMTSL1 *ANXA1 COL28A1 CRNDE
*EGFR EMP1 F2R GNG5 HES6

HOXB3 HSPB6 ID3

*IFI44L IGFBP2 IQCE LINC00475
PSPH SEC61G VIM
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a median increased performance in MSE of 29% in the
training set and 11% in the test set. The same median
number of variables was selected by the two modeling
approaches, i.e., 76 variables.

For model comparison with a benchmark method, the
set of variables selected by EN and twiner were used
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in the NB classifier. For these model scenarios, a slightly
0.03 decreased accuracy was obtained for the NB classifier
(Table 1).
A total of 39 genes were selected by twiner in more
0.02 that 75% of the runs, from which 26 genes were selected
g in common with EN (Fig. 4). Thirteen genes were exclu-
sively selected by twiner, showing a comparatively
0.01 lower weight regarding the genes selected by EN, thus
confirming the ability of twiner to select genes with
a similar role in the correlation networks of neoplas-
0.00 . . . A tic cells from the periphery and tumor core. Regarding
EN test EN train Twiner test  Twiner train . . . .
Model the genes included in the twiner signature, the follow-
ing 8 genes were always selected: APOD, CDRI, EGFR,
1.00 HTRAI1, IGFBP2, MGLL, PTGDS, and SEC61G, some pre-
? T viously selected by Model II, also classifying GBM cells
into neoplastic (from the tumor periphery) and normal
0.98 astrocytes.
o After gene selection, the correlation networks for
2 the three astrocyte cell populations evaluated through
0.96 twiner were obtained (Fig. 5), as a means to disclose
the biological interrelationships within the gene signa-
ture extracted. For simplicity in graphical representation,
0.94 only correlations above 0.2 are displayed. Blue lines rep-
EN test ENtrain  Twinertest Twiner train resent positive correlations between genes, whereas red
Model lines stand for negative correlations, with the thickness
Fig. 3 Accuracy measures obtained for the 1000 sparse logistic indicating the strength of the correlation. It can be noticed
regression models generated via EN and the twiner regularization that despite the differences encountered for tumor core
(MSE, mean squargd e.rror; AUC, area undferthe curve),fo‘rthe tfain and periphery neoplastic astrocyte cell populations, the
and test sets, considering the ‘T-core/periphery vs. N-periphery’ case . . .
study (Model I1) gene correlation network obtained for the tumor periph-

ery normal cell population, as expected, is markedly dif-
ferent from the other two networks. The gene networks
obtained, along with their similarities and contrasts, shall
now be matter for further investigation regarding their
role in GBM.

The biological relevance of the genes signatures
obtained through EN and twiner was verified on a
survival dataset from a RNA-Seq bulk GBM population
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Fig. 4 Weights of the variables (genes) selected by sparse logistic regression via EN and twiner regularization, considering the T-core/periphery
vs. N-periphery’ case study (Model Ill); the variables are colored differently whether they are selected exclusively by EN (blue) or twiner (red), or
selected in common by the two methods (gray)
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Fig. 5 Correlation networks of the genes selected by Model Ill, in the three cell categories used (a, T-core, tumor core neoplastic astrocytes; b,
T-periphery, tumor periphery neoplastic astrocytes; ¢, N-periphery, tumor periphery normal astrocytes) considering the variables selected by sparse
logistic regression based on the twiner regularizer (gray coloured genes are genes selected in common by EN and twiner; red coloured genes
are genes exclusively selected by twiner); blue lines represent positive correlations between genes, whereas red lines stand for negative
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from the TCGA. For the three case studies evaluated,
the survival curves obtained (Fig. 6) for Model I (T-core
vs. T-periphery) and II (T-periphery vs. N-periphery) via
EN, and Model III (T-core/periphery vs. N-periphery)
via twiner show a statistically significant separation
between high- and low-risk patients.

A further GO enrichment analysis on the genes selected
by Model III via twiner enabled the association of the
genes present in the gene set with biological process GO
terms (Fig. 7). From the list of 273 GO terms enriched,
the top 25 given by the percentage of genes in the gene set
associated to the term are listed, and sorted by increased
false discovery rate (from top to bottom). From the genes
selected, known markers in glioma and GBM, namely
SOX9 and EGEFR [5, 19-21], are here associated to astro-
cyte development and differentiation.

Therefore, twiner enabled the selection of genes with
a similar behaviour in the gene networks of neoplastic
cells from tumor core and infiltrating neoplastic cells from

the periphery through an accurate classification of GBM
cells. Their relevance in GBM is supported by their sig-
nificance in survival outcomes, and their association with
relevant GO terms.

Discussion

After model evaluation and gene selection, an attempt
to biologically interpret the association between the
gene signature obtained and GBM based on previous
reports was made. Among the genes selected by Model I,
discriminating between tumor core and periphery neo-
plastic astrocytes, 3 genes up-regulated in GBM infiltrat-
ing tumor cells with functions involving the invasion of
the interstitial matrix were also pointed by Darmanis et al.
(2017) [5], namely: ATP1A2, a NAT/KT ATPase involved
in size regulation; PRODH, related to proline catabolism
and might contribute to increase ATP energy demands of
migrating cells; and FGFR3, inducing increased infiltrat-
ing cell expression of cell survival signaling [5].
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Fig. 6 Kaplan-Meier survival curves obtained for bulk GBM RNA-seq data based on the variables selected by a Model | and b Model Il via EN, and ¢
Model lll via twiner, showing significance given by the p-value for the three case scenarios in the separation between high (purple) and low (gray)
risk patients (T-core, tumor core neoplastic astrocytes; T-periphery, tumor periphery neoplastic astrocytes; N-periphery, tumor periphery normal

Among the genes always selected by Model II, discrim-
inating between tumor periphery neoplastic astrocytes
and normal tumor periphery astrocytes, the epidermal
growth factor receptor (EGFR), up-regulated in neoplastic
periphery astrocytes over normal periphery astrocytes, is
a previously reported significantly mutated gene in GBM
[20, 21].

Annexin 1 (ANXAI) is a member of the annexin super-
family of Ca2+ and phospholipid binding proteins, asso-
ciated to the regulation of phospholipse A2 activity and
negative regulation of interleukin-8 secretion in our GO
analysis (Fig. 7), and up-regulated in neoplastic periph-
ery (infiltrating) astrocytes (Table 2). ANXA1 was shown
to promote GBM tumor growth and progression and is
more highly expressed in poorly differentiated human pri-
mary gliomas compared with lower grade tumors [22].

A hypomethylation signature consistently predicting poor
prognosis in GBM was found to be closely associated with
the transcriptional status of an EGFR/VEGFA/ANXA1-
centered gene network [23]. ANXA1 was also found to
be correlated with IGFBP2 (insulin-like growth factor-
binding protein 2), a circulating biomarker for cancer
diagnosis and a potential immunotherapeutic target, also
belonging to the gene signature identified by Model II.
IGFBP2 was also found up-regulated in high-grade glioma
and GBM and downregulated in IDH mutant glioma [24].

The serine protease HTRA 1, down-regulated in neoplastic
periphery (infiltrating) astrocytes in our analysis, is a
binding partner of the macrophage migration inhibitory
factor (MIF), both present in astrocytes, and whose functional
binding modulates astrocytic activities in development
and disease of the central nervous system (CNS) [25].
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Fig. 7 Percentage of the genes exclusively selected by twiner in the gene set associated to the GO terms found by GO analysis, sorted by

Regarding the genes selected by Model III via the EN
and twiner regularizers, classifying cells into neoplas-
tic (tumor core and periphery) and normal periphery
astrocytes, not surprisingly many genes were selected in
common with Model II (Table 2; Fig. 4), also classifying
cells into neoplastic and normal astrocytes. By accounting
for the periphery neoplastic astrocytes in the neoplastic
class, Model III was intended to extract gene signatures
shared by tumor core and periphery astrocytes. The nov-
elty introduced by twiner regularization, on the other
hand, aimed at extracting genes with a similar correla-
tion pattern across the two neoplastic astrocyte popu-
lations (periphery and tumor core), that would not be
selected otherwise. Beside improved model performance,
this brings an obvious interpretability advantage in which
concerns tumor heterogeneity over sparse classification
via EN.

Therefore, particular attention will be given to the
genes exclusively selected by Model III via the twiner
regularizer, i.e., less penalized genes in the feature selec-
tion procedure, and expected to provide insight to therapy

research on putative targets for multiple neoplastic clones.
CHCHD?2 shows a particularly lower weight (Fig. 4),
meaning that its correlation pattern across tumor core
and periphery neoplastic astrocytes is more similar com-
pared to the other genes, therefore being less penalized in
sparse classification, and indeed being selected as relevant
in the distinction between neoplastic (tumor core and
periphery) and normal periphery astrocytes. Coamplifica-
tion of CHCHD?2 and the well-known GBM marker EGFR,
also included in the gene signature, has been reported in
glioma [26, 27].

The transcriptomic factor SOX9 was also exclusively
selected by twiner. It is involved in brain development
and lineage specification, and has a established oncogenic
role in gliomas [5, 19].

PSAP, which together with CHCHD2 presented the
lowest weights (Fig. 4), has been pointed as a target for
glioma treatment, by promoting glioma cell proliferation
via the TLR4/NF-«B signaling pathway [28]. PREXI and
ABHD?2 have also shown to promote tumor invasion and
progression in glioblastoma [29, 30], while the tumor sup-
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pressor BIN1 was found to be regulated by HNRNPA2BI,
a putative proto-oncogene in GBM [31].

Given the numerical results and the links established
between the gene signatures extracted by our analysis and
previously reported GBM molecular features, as shown
above, we expect our findings to foster biological and
clinical validation studies on the molecular and network
features disclosed.

Conclusions

This work was designed to tackle GBM tumor heterogene-
ity through the identification of gene signatures across
multiple cell populations based on regularized classifi-
cation of transcriptomic data. Our analysis was able to
translate high-dimensional scRNA-Seq data into concise
and interpretable gene networks of putative molecular
drivers in GBM. The results obtained open the window to
a in depth evaluation on their role in GBM evolutionary
dynamics, and treatment resistance.

Methods

Glioblastoma scRNA-Seq data

The transcriptomic data on a cohort of four primary GBM
patients (IDH1-negative, grade IV) used in this work were
obtained from http://www.gbmseq.org/. The scRNA-Seq
data correspond to 3,589 cells sequenced over 23,368
genes, from both tumor core and peritumoral brain tissues
(Fig. 2), comprising neoplastic cells and representatives
from each of the major CNS cell types (vascular, immune,
neuronal, and glial). Cells were labeled regarding their tis-
sue of origin (tumor core vs. peritumoral) and cellular
type (neoplastic vs. non-neoplastic). Labels of cells were
obtained by combining multiple analysis encompassing
dimension reduction and clustering techniques, followed
by inspection of de-regulated genes with a established role
in GMBs and gliomas, and comparison with bulk RNA-
Seq data. For validation of the cells’ location (tumor core
or surrounding) hypoxic genes were investigated, which
were found to be significantly more expressed within the
tumor core cells.

Sparse logistic regression

Binary sparse logistic regression was chosen as a clas-
sification strategy to extract gene signatures from GBM
cell populations. Given a set of p independent variables
(genes) {X;}i=1, . for observation i, the expression has
been corrected in the comment immediately above and a
binary outcome vector Y = {Y;};=1,.», with classes ‘1’ and
‘0’ corresponding to different GBM clones, the parameters
of the sparse logistic model are estimated by maximizing
the log-likelihood function

n

1B) =) {rilog P(Y; = 1]X;) + (1 — i) log[1 — P(Y; = 1[X)]} + F(B),

i 1)
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where B = (B1, 82, ... Bp) are the regression coefficients
associated with the p independent variables, and P(Y; =
11X;) is the probability of belonging to class 1 for observa-
tion i, given by

exp (XIT B)

PY, = 1|X;) = —P 5 P)
( %) 1+ exp (X7 B)

2)

For the elastic net (EN), the regularization term F(f) in
Eq. 1 takes the form

F@) ={alBly+ 1 - w813}, 3)

with « controlling the balance between the /; (LASSO)
and / (Ridge) penalties, and the tuning parameter A
controlling the strength of the penalty.

Lopes et al. (2019) [17] proposed the twin networks
recovery (twiner) penalty, a regularizer based on the EN
penalty and the pairwise correlations between variables in
two different datasets, with the specific goal of weighting
the variables based on their similarities across two differ-
ent diseases. The twiner regularization term in Eq. 1
becomes

FB) =rfalwoBlli + 1 —a)llwo B3}, (4)

withw = (w1,.., W), .., wp), ] = 1,..p, representing the
weights that control the effect of A in each coefficient
B, and o representing the element wise (or Hadamard)
product.

The construction of w for the twiner regularizer is
based on the correlation matrices for classes A and B,
Yy = [0’{‘,..., aﬁ] and YXp =
where each column o; € R” represents the correlation
of each gene j = 1,...,p with the remaining genes in
the dataset. The weight for gene j, wj, to be used in the
twiner regularizer (Eq. 4), is given by the angle of the
resulting correlation vectors o/ and G/B , normalized by the
maximum value in w. The lower the weight for gene j, the
lower the penalty associated to that gene.

In the example of application provided in [17], a smaller
penalty was imposed for those genes with a similar corre-
lation pattern with the remaining ones across independent
breast and prostate RNA-Seq data matrices. The relevance
of these genes in the classification outcome was assessed
by sparse logistic regression based on the EN penalty,
where classes are tumor (breast and prostate) and normal
(breast and prostate) tissue samples. The final goal is to
assess whether genes exhibiting a similar behavior in the
two genes networks are putative biomarkers for the two
diseases.

[a?, veer ag], respectively,
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Classification of GBM scRNA-Seq data

Sparse logistic regression models using the EN and
twiner regularizers were built based on GBM scRNA-
Seq to identify gene signatures across GBM cell popula-
tions. The cells chosen for modeling were neoplastic and
normal astrocytes from the tumor periphery and neoplas-
tic astrocytes from the tumor core (Fig. 2), given their rep-
resentativeness across tumor locations. A 2D t-distributed
stochastic neighbor embedding (tSNE) representation of
cells can be found in Fig. 8, where it is clear that infiltrat-
ing neoplastic astrocytes from the tumor periphery stand
closer to the data cloud formed by tumor core neoplastic
astrocytes.

Three classification strategies were defined to model the
above cell populations with distinct goals. A schematic
representation of the classification models generated van
be found in Fig. 1. Model I takes as class 1 the neo-
plastic astrocytes from the tumor core (T-core), and as
class 0 the neoplastic astrocytes from the periphery (T-
periphery), with the goal of identifying genes that discrim-
inate between the two classes, e.g., those making tumor
cells capable to migrate beyond the tumor environment.
Model II looks only at tumor periphery cells, by consider-
ing as class 1 the neoplastic astrocytes (T-periphery) and
as class 0 the normal (non-neoplastic) ones (N-periphery),
aiming at disclosing cancer drivers that make astrocytes
from the periphery distinguishable in neoplastic and nor-
mal cells. Finally, Model III takes as class 1 the neoplastic
astrocytes irrespective of their tissue of origin (T-core and
T-periphery, i.e., both from the tumor core and periph-
ery), and as class 0 the normal (non-neoplastic) astrocytes
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(N-periphery), with the goal of extracting the relevant
genes in the classification of cells into neoplastic and
normal astrocytes.

Sparsity and gene selection were enforced by the EN
regularizer in the three models. Additionally, the twiner
regularizer was applied in Model III to extract the vari-
ables that are similarly correlated in the genes network
in neoplastic astrocytes from both the periphery and
tumor core, and that are found to play a role in the
discrimination between neoplastic (tumor and periph-
ery; class 1) and normal astrocytes (class 0), the later
only represented in the tumor periphery. With this
strategy we expect to unveil shared molecular signa-
tures between neoplastic astrocytes irrespective of their
tissue of origin.

For the three classification modeling strategies, the opti-
mization of the model parameters A and « (Eq. 4) based
on the mean squared error (MSE) was performed by 10-
fold cross-validation (CV) on the full dataset. Varying
a values (1 > « > 0) were tested, with the one yielding the
lowest MSE being selected for further analysis. Models I,
IT and III were generated 1000 times based on data parti-
tions accounting for three quarters of randomly selected
cell samples for model training and the remaining samples
for testing, while ensuring representativeness of both
classes in the two sets. The performance of the models was
assessed by the median MSE, area under the Precision-
Recall curve (AUC), and the number of misclassifications
in the training and test sets. The identity of the genes
selected in more that 75% of the runs was kept for further
biological interpretation in the context of GBM.
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Besides sparse logistic regression through the EN
penalty, a Naive Bayes (NB) classifier was used as a
benchmark method in Model III against sparse logistic
regression via EN and twiner. NB classifiers assume
conditionally independence of the features given the class,
which simplifies enormously the estimation of the proba-
bility density functions. This technique is thus especially
appropriate for high-dimensional problems and therefore
suitable to this type of data. Although NB assumptions
are not usually met, NB continues to outperform more
sophisticated classifiers, which makes it a good bench-
mark candidate for comparison purposes.

To compare the different models, the NB classifier
was applied (using a Gaussian approximation for the
probability density functions of each feature) to the sub-
sets of variables selected by EN, and twiner.

In order to further biologically validate the genes
selected as relevant in the disease, a survival analysis was
performed using the Cox regression model [32] based on
the genes selected in Model III by both EN and twiner.
The goal was to assess whether the genes selected are
significant in the discrimination of high- and low-risk
groups of patients, defined by the median of the fit-
ted relative risk, based on the Log-Rank test via the
Kaplan-Meier estimator [33]. This analysis was performed
based on 139 bulk GBM RNA-Seq samples available from
The Cancer Genome Atlas (TCGA) data portal (https://
cancergenome.nih.gov/).

Finally, a Gene Ontology (GO) hypergeometric enrich-
ment analysis [34] was performed to identify from the
genes selected those associated to GO biological process
terms.

Sparse logistic modeling and survival analysis was per-
formed using the glmnet R package [35] implemented
in the free R statistical software [36]. The w vector built
for the twiner regularizer was introduced as penalty fac-
tor in the glmnet function. The 1imma Bioconductor R
package [37] was used to identify differentially expressed
genes across the tumor tissues. The association between
the genes selected and GO biological terms was obtained
using the functional enrichment analysis provided by
STRING [34].
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