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Atmospheric fine particulate matter 2.5 (PM 2.5) may carry many toxic substances on its surface and this may pose a public
health threat. Epidemiological research indicates that cumulative ambient PM2.5 is correlated to morbidity and mortality due to
pulmonary and cardiovascular diseases and cancer. Mitigating the toxic effects of PM2.5 is therefore highly desired. Bufei Huoxue
(BFHX) capsules have been used in China to treat pulmonary heart disease (cor pulmonale).Thus, we assessed the effects of BFHX
capsules on PM2.5-induced pulmonary inflammation and the underlying mechanisms of action. Using Polysearch and Cytoscape
3.2.1 software, pharmacological targets of BFHX capsules in atmospheric PM2.5-related respiratory disorders were predicted
and found to be related to biological pathways of inflammation and immune function. In a mouse model of PM2.5-induced
inflammation established with intranasal instillation of PM2.5 suspension, BFHX significantly reduced pathological response and
inflammatorymediators including IL-4, IL-6, IL-10, IL-8, TNF-𝛼, and IL-1𝛽. BFHX also reduced keratinocyte growth factor (KGF),
secretory immunoglobulin A (sIgA), and collagen fibers deposition in lung and improved lung function. Thus, BFHX reduced
pathological responses induced by PM2.5, possibly via regulation of inflammatory mediators in mouse lungs.

1. Introduction

China has a substantial air pollution problem and of haze
episodes correlate to atmospheric particulate matter abun-
dance [1–3]. Fine particulatematter with nominalmean aero-
dynamic diameters of 2.5 𝜇m or less is defined as particulate

matter 2.5 (PM2.5). Although PM2.5 particles are small and
buoyant, they carry many toxic substances on their surface
and they can “hang” in the atmosphere for some time and
travel great distances [4].Much epidemiological data indicate
that cumulative ambient fine particulate matter correlates to
morbidity of and mortality from pulmonary, cardiovascular
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diseases, and cancer [5–12], and these problems represent a
significant social and economic burden.

Based on systems biology and pharmacology, network
pharmacology leverages network analysis and screens nodes
to identify proteins critical to a disease for drug design
[13, 14]. Network pharmacology can be used to investigate
synergism of multicomponent drugs to identify high efficacy
and low toxicity agents with multiple targets [15, 16]. Chinese
herbal formulas often have numerous targets and are com-
prised of many substances, so network pharmacologymay be
useful for studying traditional Chinese medicine [17, 18].

Bufei Huoxue (BFHX) capsules contain three common
Chinese herbal products, Astragalus, radix paeoniae rubra,
and Psoralea corylifolia, and have been approved by the China
Food and Drug Administration (Number Z20030063) for
the treatment of pulmonary heart disease. Clinical studies
suggest that these compounds improve pulmonary ventila-
tion function and reduce silicosis and lung inflammation
[19–21]. Thus, we studied BFHX capsules and PM2.5-related
respiratory disease using a network pharmacology platform.
The effects of BFHX capsules on PM2.5-induced pulmonary
inflammation were evaluated and the underlying mecha-
nisms of action were investigated in mice.

2. Materials and Methods

2.1. PM2.5-Related Diseases. PM2.5-related diseases were
identified using Polysearch System (http://wishart.biology
.ualberta.ca/polysearch/index.htm), a web-based text-min-
ing system for extracting relationships among human dis-
eases, genes, drugs, and metabolism. PM2.5-related dis-
eases were searched and extracted statements were manually
screened. According to 𝑍-values, the top 10 diseases were
selected for further study.

2.2. Prediction of Disease Pathways and BFHX Targets. All
target genes or proteins for each BFHX component (Astra-
galus, radix paeoniae rubra, and Psoralea corylifolia) were
obtained using Polysearch and diseases were selected from
predictions based on keywords. Targets were networked and
visualized using Cytoscape 3.2.1 software. Drug- and disease-
related targets were merged using Merge to screen key target
proteins.

2.3. PM2.5 Mouse Model and Drug Intervention

2.3.1. PM2.5 Sampling and Suspension Preparation. PM2.5
samples were collected from three sites in Beijing in the
summer and winter seasons of 2011 and 2012. The three sites
were a roadside site located 2m from the curb of the North
4th Ring Road, an urban site on the campus of Tsinghua Uni-
versity, and a rural site situated in the countryside of Miyun.
Sampling was conducted by Anderson particulate sampler
HBL-GUV (Thermo Fisher, Waltham, MA) equipped with
a PTFE membrane for two consecutive weeks [22]. At the
end of sample collection, the PTFE membrane carrying
PM2.5 was cut into 1 × 3 cm pieces and placed in ultrapure
water. Particles were eluted three times under ultrasonic

oscillation, 40min each. Liquid containing the particulate
matter was filtered through six layers of sterile gauze and
centrifuged at 12,000 rpm at 4∘C for 30min. The lower layer
of the suspension was collected and vacuum-freeze dried to
yield PM2.5 particles which were then stored at −20∘C. To
make a stock solution, PM2.5 particles were weighed and
suspended in saline at the desired concentrations after being
ultrasonicated for 15min and sterilized. Samples were stored
at 4∘C. Detailedmethods can be found in related papers by us
and other authors [23, 24].

2.3.2. Drugs. BFHX capsules were provided by Lei Yun Shang
Pharmaceutical Limited (Suzhou, Jiangsu, China). The dry
powder was taken from the capsules and suspended in
distilled water. The mixture was stored at 4∘C.

2.3.3. Animals. Adult female ICR mice (Beijing HFK
Biotechnology Co., Ltd., China; 22–26 g), were housed in
separate cages with food and water freely available under
standard laboratory conditions of 22–28∘C and relative
humidity of 50–60% with a 12 h light/12 h dark cycle. Animal
treatment and maintenance were performed in accordance
with requirements of and the study protocol was approved
by the institutional animal care and use committee at the
China-Japan Friendship Hospital in Beijing (Permit #:
150202). All efforts were made to minimize suffering.

Sixty ICR female mice were randomized into 3 groups:
normal controls, PM2.5 exposure, and BFHX intervention
groups (𝑁 = 20/group). Controls were given an intranasal
instillation of saline (20𝜇l/mouse) on days 1, 8, 15, and 22.The
PM2.5 exposure group was given an intranasal instillation of
PM2.5 suspension (40mg/kg, 20 𝜇l/mouse) on days 1, 8, 15,
and 22 and each received oral saline (0.2ml/mouse/day) from
days 1 to 22. The BFHX intervention group was treated as
was the PM2.5 exposure group except that BFHX (0.82 g/kg,
0.2ml/mouse/day) instead of saline was given daily. Animals
were sacrificed 48 h after the last treatment.

2.4. Lung Function. Mice were anesthetized with 2% pento-
barbital (0.4ml/40 g, ip) and secured in a supine position to
be orotracheally intubated. Then, mice were transferred to
a plethysmography platform and lung function analysis was
measured lung include inspiratory resistance (RL), expira-
tory resistance (RE), dynamic lung compliance (Cdyn), and
peak expiratory flow (PEF) using an AniRes2005 apparatus
(Beilanbo Science and Technology Co., Ltd., Beijing, China).

2.5. Lung Histology. Mice were sacrificed and subjected to
thoracotomy with lung resection.The left lung lobe was fixed
in 10% formalin for 24 h and then dehydrated, embedded
in paraffin and sectioned. Sections were stained with hema-
toxylin and eosin (H&E) according to the routine staining
method and observed under an optical microscope.The right
lung lobe was homogenized for molecular studies.

2.6. Masson Staining. Lung collagen content was quantified
with Masson trichrome staining. Paraffin sections were first
dewaxed, followed by washing with tap and then distilled
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water. Sections were then stained to identify nuclei with
Regaud or Weigert hematoxylin for 5–10min. After fully
washing with water, slides were washed with distilled water
and treated with Ponceau Masson Acid fuchsin solution
for 5–10min. Sections were then briefly immersed in a 2%
aqueous acetic acid solution and then treated with 1% phos-
phomolybdic acid for 3–5min, followed by direct staining
with aniline blue or light green liquid dye for 5min. After
a brief Immersion in 0.2% acetic acid, sections were treated
with 95% alcohol, ethanol, and transparent xylene and then
cemented with neutral gum. For each slice, six fields (under
200x magnification) were selected. Positive Masson staining
for collagen depositionwas analyzed using by Image-Pro Plus
multimedia color pathological image analysis software. The
ratio of collagen deposition to the viewed area was calculated
and averaged.

2.7. KGFandHMGB1Expression in LungTissue. Keratinocyte
growth factor (KGF) antibody was purchased from Biorbyt
(Cambridge, UK), and the immunohistochemistry kit was
from Gene Technology (Shanghai, China). High mobility
group box 1 protein (HMGB1) antibody was purchased
from Santa Cruz Biotechnology (Santa Cruz, CA), and
the immunohistochemistry kit was from Gene Technology
(Shanghai, China). Lung tissue sections were deparaffinized
according to kit instructions and then stained with hema-
toxylin and viewed with light microscopy. Images were
analyzed with Media Cybernetics Image-Pro Plus image
analysis software. Each slice was assessed using 6 fields of
integrated optical density (IOD) which represented protein
expression.

2.8. Measurement of Inflammatory Mediators and sIgA by
ELISA. The sacrificed mice were placed in a supine position
and perfused with two 0.75ml aliquots of ice-cold normal
saline (NS). Each animal was lavaged five times. Lavage fluid
was collected, and the cellular contents and bronchoalveolar
lavage (BAL) fluid were separated by centrifugation. Super-
natant was used to measure secretory immunoglobulin A
(sIgA) with enzyme-linked immunosorbent assay (ELISA)
kits (Abbexa, Cambridge, UK) according to the manufac-
turer’s instructions. Optical density at 450 nm was measured
with Microplate Reader 3 (MK3) (Lei Bo, Shanghai, China).

Lung tissue (0.1 g) was placed in a 1.5ml EP tube to
prepare 10% lung homogenate. Homogenate was centrifuged
at 12,000 rpm and 4∘C for 20min. Supernatant used to
measure inflammatory mediators from interleukin-4 (IL-
4), interleukin-6 (IL-6), interleukin-10 (IL-10), interleukin-
17 (IL-17), interleukin-1𝛽 (IL-1𝛽), and tumor necrosis factor
(TNF-𝛼) with enzyme-linked immunosorbent assay (ELISA)
kits (R & D, Minneapolis, MN) according to the manufac-
turer’s instructions. Optical density at 450 nm was measured
with Microplate Reader 3 (MK3) (Lei Bo, Shanghai, China).

2.9. Real-Time Reverse Transcriptase Polymerase Chain Reac-
tion (RT-PCR). RT-PCR was used to measure IL-8 and IgA
expression in mouse lung tissues. Total RNA was extracted
from 100mg lung tissuewithTrizol after a one-step extraction

Table 1: PM2.5-related diseases identified through Polysearch.

Number 𝑍 score Disease name
1 9 Respiratory disease
2 8.1 Asthma
3 7.7 Lung cancer
4 5.8 Cardiovascular disease
5 3.7 COPD
6 2.2 Atherosclerosis
7 1.2 Ischemic stroke
8 0.8 Pneumonia
9 0.7 Gestational diabetes mellitus
10 0.7 Pulmonary embolism

protocol. cDNA was synthesized by reverse transcription
with 2𝜇g RNA, 1 𝜇l oligo (dT), and DEPC water and 12 𝜇l
lung tissue. 𝛽-Actin primer sequence is as follows: forward
primer 5-GTGACGTTGACATCCGTAAAGA-3 and the
reverse primer 5-GTAACAGTCCGCCTAGAAGCAC-3;
IL-8 primer sequence is as follows: forward primer 5-
CATCTTCGTCCGTCCCTGTG-3 and reverse primer 5-
GCCAACAGTAGCCTTCACCCA-3; IgA primer sequence
is as follows: forward primer 5-GCTACAGTGTGTCCA-
GCGTCCT-3 and reverse primer 5-TGCCAGACTCAG-
GATGGGTAAC-3. Quantitative analysis was performed
using the 2−ΔΔCt method.

3. Statistics

Data are represented as means ± standard deviation. Sta-
tistical analysis was conducted with SPSS 17.0 software.
Comparisons among multiple groups were analyzed with
one-way ANOVA with a Tukey-Kramer post hoc correction.
Single comparisons were made with an unpaired two-tailed
Student’s 𝑡-test. Differences were considered statistically sig-
nificant if 𝑝 < 0.05.

4. Results

4.1. PM2.5-Related Disease Prioritization and Predicted Tar-
gets. Polysearch platform analysis yielded a list of PM2.5
related diseases (Table 1), which were prioritized based on
a relevancy score and expressed as a 𝑍 score, which refers
to the number of standard deviations of the relevancy score
above the mean value. A higher 𝑍 score denotes a lesser
likelihood that the outcome is due to chance. Polysearch
platform queries confirmed that 98, 10, and 9 target proteins
were associated with Astragalus, radix paeoniae rubra, and
Psoralea corylifolia, respectively (Figures 1–5).

4.2. Effect of BFHX on Mouse Pulmonary Function. Com-
pared with controls, lung inspiratory and expiratory resis-
tances were significantly greater (𝑝 < 0.01, 𝑝 < 0.05)
in PM2.5 mice. Airway compliance and maximum forced
expiratory flow were less in PM2.5 mice. BFHX intervention
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Figure 1: Potential targets of BFHX in asthma. Blue triangle represents Astragalus, radix paeoniae rubra, and Psoralea corylifolia; yellow
diamond represents asthma; round blue nodes represent drug targets; red nodes represent drug targets of disease.
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Figure 2: Potential targets of BFHX in lung cancer. Blue triangle represents Astragalus, radix paeoniae rubra, and Psoralea corylifolia; yellow
diamond represents lung cancer; round blue nodes represent drug targets; red nodes represent drug targets of disease.

significantly decreased inspiratory (𝑝 < 0.01) and expiratory
resistance (𝑝 < 0.05) and increased dynamic lung compliance
and maximum forced expiratory flow (𝑝 < 0.01) in PM2.5
mice. Thus, BFHX intervention significantly improved lung
function and reduced airway resistance and increased airway
compliance (Figure 6) in PM2.5 mice.

4.3. Effect of BFHX on PM2.5-Induced Pulmonary Histopa-
thology in Mice. In the normal group and the BFHX group,
bronchial mucosa and bronchial wall structures were intact
and alveolar structural integrity was intact. Some inflam-
matory cells had infiltrated alveolar spaces, but there was
little interstitial inflammation and lung capillary structures

were intact with no bleeding. Figure 7 shows that com-
pared with the normal group and the BFHX group, PM2.5
exposure caused histological injury such as widened alveolar
septa, capillary congestion, and minor hemorrhages of small
airways. BFHX treatment significantly reduced histological
injury and reduced congestion and hemorrhage of small
airways and recruitment.

4.4. Effect of BFHX on Lung Collagen Deposition in Mice.
Controls had collagen deposition in many small airways and
fibrosis was noted around the vascular wall. PM2.5-exposed
lung tissues had thickened airways with obvious collagen
deposition, smaller alveoli with wider septa, and obvious
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fibrosis. Compared with PM2.5 lungs, BFHX-treated tissue
had less tracheal and lung interstitial fibrosis (Figure 8).Thus,
BFHX significantly alleviated collagen deposition in PM2.5
mice.

4.5. Effect of BFHX on HMGB1 and KGF Expression in
Mouse Lung Tissues. HMGB1 expression in alveolar tissue

was significantly greater in PM2.5 tissues compared with
controls (𝑝 < 0.01) and the BFHX intervention group (𝑝 <
0.01; Figures 9(a) and 9(c)), suggesting reduced inflammation
was due to BFHX. Also, in lung tissue of PM2.5-exposed
animals, KGF expression in tracheal mucosa and alveolar
tissue was significantly greater than in normal mice and the
BFHX intervention group (𝑝 < 0.05; Figures 9(b) and 9(d)).
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Figure 6: Effect of BFHX onmouse pulmonary function. Compared with PM2.5-exposedmice, themean of lung inspiratory (a) and expiratory
resistance (b) decreased significantly after BFHX intervention. Dynamic lung compliance (c) and peak expiratory flow rate (d) significantly
improved. Inhale and exhale resistance, airway compliance, and peak expiratory flow data are means ± SD; ∗𝑝 < 0.05 and ∗∗𝑝 < 0.01
compared with the PM2.5 exposure group, 𝑛 ≥ 8.
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Normal (200x) BFHX (200x) Model (200x) 
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Normal (400x) BFHX (400x) Model (400x) 
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Figure 7: Effect of BFHX on PM2.5-induced pulmonary histopathology in mice. Pulmonary tissue of trachea and pulmonary interstitial
inflammatory infiltration in PM2.5 model mice and BFHX groups. Inflammatory infiltration with BFHX was less compared with the PM2.5
exposure group. (a) 200x and (b) 400x.

4.6. Effect of BFHX on Inflammatory Mediator Expression in
Mouse Lung Tissues. Compared with normal groups, IL-4,
IL-6, IL-10, IL-1𝛽, IL-17, and TNF-𝛼was greater in lung tissue
of PM2.5modelmice andBFHXgroups. After treatmentwith
BFHX, cytokines were reduced compared with model groups
(Figure 10).

4.7. Effect of BFHX on IL-8, IgA, and sIgA Expression across
Treatment Groups. Control lung tissue homogenates had less
IL-8 and IgA mRNA than those measured in PM2.5-exposed
mouse tissue (𝑝 < 0.01 for both). sIgA expression in the BAL
fluid is less than thatmeasured in PM2.5-exposedmouse BAL
fluid (𝑝 < 0.01 for both). BFHX treatment reduced IL-8, IgA,
and sIgA significantly (𝑝 < 0.01 for both) compared with
mouse from the PM2.5 exposure group (Figure 11).

5. Discussion

Leveraging bioinformatics and computer science, network
pharmacology offers an effective approach to studying drug
and disease interactions by constructing a “molecular-target-
disease” relationship [17]. Using a network pharmacology
platform, we confirmed that PM2.5 exposure contributed to
respiratory and heart disease. The respiratory system was
initially injured but the circulatory and neural systems could
be subsequently involved via multipathological pathways.

Data show that BFHX targets many genes related to PM2.5
respiratory diseases, such as asthma, lung cancer, COPD,
pneumonia, and pulmonary embolism in complicated and
diverse ways. BFHX regulates expression of inflammatory
factors (TNF-𝛼, IL-1𝛽, IL-4, IL-6, and IL-10) and immune
regulation (CD4+ and CD8+ cells) and may be involved in
adjusting related signaling pathways (BCL2, STAT3, and P38)
in regulating cell proliferation, chemotaxis, and apoptosis
(Figures 1–5).

Different sized particles can damage different parts of
the respiratory system. Fine particulate matter (1–2.5 𝜇m
diameter; PM1–2.5) can enter bronchi and the deeper res-
piratory tract. Those of 0.1–1𝜇m diameter (PM0.1–1) can
deeply penetrate the lung and ultrafine particles (PM0.1)
can penetrate alveoli and enter the circulation [25]. PM2.5
can reduce lung function and induce asthma episodes,
bronchitis, lung cancer, and other respiratory diseases [26].
Animal models of lung injury can be established by nasally
instilling PM2.5 suspensions and in mice this manifests as
lung tissue and small airway damage as well as alveolar
and pulmonary interstitial inflammation. BFHX repaired
airway damage and improved lung function in these models
and decreased airway resistance and increased lung com-
pliance. Data show that BFHX can improve lung function
reducing PM2.5-induced lung injury and promoting heal-
ing. BFHX also significantly reduced collagen deposition
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Figure 8: Effect of BFHX on lung collagen deposition in mice. (a) Light microscopy (200x). Blue represents collagen fibers and mucus; red
represents cartilage, cytoplasm, muscle, cellulose, and glia and dark blue represents nuclei. (b) Percent of fibrotic lung tissue in the entire
field. ∗∗𝑝 < 0.01 compared with tissue from the PM2.5 exposure group, 𝑛 = 9.

which may improve fibrosis and improve lung function
(Figure 6).

TNF-𝛼 and IL-1𝛽 are important proinflammatory
cytokines that activate and recruit inflammatory cells,
enhance inflammatory response [27, 28], and stimulate
proliferative response of smooth muscle cells and fibroblast
in the airway, resulting in remodeling [29, 30]. IL-4 is a
growth factor secreted by T cells and IL-6, produced by
responses of mononuclear macrophages, endothelial cells,
fibroblasts, and other cells to IL-1 and TNF-𝛼 [31–33],
contributes to immune defenses and can enhance airway
inflammation. IL-10 is an immunomodulatory cytokine and
is made mainly by activated monocytes, lymphocytes, and
epithelial cells. A high level of IL-10 was produced after
damage [34, 35] and IL-8 was significantly increased in local
inflammation, serum and body fluid because of infection,
and some autoimmune diseases [36, 37]. BFHX significantly
decreased TNF-𝛼, IL-1𝛽, IL-6, IL-10, IL-4, and IL-8 in lung
of PM2.5 mode mice (Figures 10 and 11).

HMGB1 is widely distributed in the lymph, brain, liver,
lung, heart, kidney, and other tissues. Under stimulation of
IL-1 and TNF-𝛼, HMGB1 can be secreted into the extra-
cellular space to promote cytokine production and extend

inflammation [38]. Recent studies indicate that activation
of HMGB1 signaling is associated with acute lung injury,
asthma, pulmonary fibrosis, and other respiratory diseases
and HMGB1 expression is correlated with respiratory disease
severity [39]. BFHX alleviated inflammation and decreased
subsequent injury to lung tissue of PM2.5 model mice
(Figure 9).

KGF is a cytokine synthesized by 𝛾𝛿T cells and stimulates
epithelial cell proliferation, differentiation, andmigration and
promotes mucosal repair maintenance of mucosal integrity.
KGF stimulates synthesis, storage, and secretion of pul-
monary surfactant in type II alveolar epithelial cells (AEC
II), reduces alveolar surface gas-liquid surface tension, and
prevents excessive expiratory alveolar collapse and over-
inspiratory expansion to maintain alveolar shape. KGF secre-
tion is increased, promoting tissue repair, but KGF is reported
to be associated with early growth of mesothelial cells
after asbestos exposure, which contributes to lung fibrosis
[40]. IL-17, a powerful proinflammatory factor, is a major
cytokines synthesized by 𝛾𝛿Tcells and reflects their biological
activity to a certain extent [41]. 𝛾𝛿T cells are important
during the transition from innate immune cells to acquired
immune cells. So BFHX may control 𝛾𝛿T cell activity to
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Figure 9: Effect of BFHX on HMGB1 and KGF expression in PM2.5 mouse lung tissues. (a) HMGB1 expression in alveolar tissues was
significantly greater in PM2.5 tissues compared with controls and the BFHX intervention group (200x). (b) KGF expression in tracheal
mucosa and alveolar tissues was significantly greater than in normal mice (200x). (c) HMGB1 expression quantified. (d) KGF expression
quantified. Values are means ± SD; ∗𝑝 < 0.05, 𝑛 = 9.

reduce lung injury of in PM2.5 model mice and reduce
expression of KGF to reduce PM2.5-induced lung fibrosis
(Figures 9 and 10).

sIgA is a human IgA exocrine antibody found in the
mucosa of respiratory, gastrointestinal, and urogenital tracts
and is a first line of defense against bacterial and viral
adsorption and colonization on epithelial cell surfaces [6].
Respiratory tract infections, pathogenic microbial invasion,
and adhesion to the epithelium stimulate a local mucosal
immune response by increasing synthesis and secretion
of sIgA. Data show that in PM2.5 mice, BFHX reduced
sIgA secretion and reduced airway damage, suggesting that

BFHXameliorated localmucosal inflammation (Figure 11). In
summary, our data suggest that BFHX reduced pathological
responses induced by PM2.5 via regulation of inflammatory
mediators in mouse lungs.

6. Conclusion

We noted that PM2.5 could stimulate lung tissue inflamma-
tory factors, promote generation of secretory immunoglob-
ulin and KGF, and cause collagen fiber deposition in lung
tissue. BFHXmodified the respiratory tract mucosal immune
response and inhibited secretion of immunoglobulin to
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Figure 10: Effect of BFHX on expression of inflammatory mediators. BFHX-treatedmice had less inflammation than untreated PM2.5-exposed
mice. IL-4, IL-6, IL-10, IL-17, 1L-1𝛽, andTNF-𝛼 expression inmice (means± SD). ∗𝑝 < 0.05 and ∗∗𝑝 < 0.01 comparedwith the PM2.5 exposure
group, 𝑛 ≥ 6.
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Figure 11: IL-8, IgA, and sIgA expression in different mouse groups. Control lung tissue homogenates had less IL-8 and IgA mRNA than
PM2.5-exposed mouse tissue. sIgA expression in BAL fluid is less than PM2.5-exposed mouse BAL fluid; ∗∗𝑝 < 0.01, 𝑛 ≥ 7.

reduce release of inflammatory cytokines and collagen fiber
deposition. It also improved lung function and alleviated
injury in a PM2.5 mouse model.
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