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Latitudinal diversity gradients are among the most striking patterns in
nature. Despite a large body of work investigating both geographic and
environmental drivers, biogeographical provinces have not been included
in statistical models of diversity patterns. Instead, spatial studies tend to
focus on species–area and local–regional relationships. Here, we investigate
correlates of a latitudinal diversity pattern in Australian coastal molluscs. We
use an online database of greater than 300 000 specimens and quantify diver-
sity using four methods to account for sampling variation. Additionally, we
present a biogeographic scheme using factor analysis that allows for both
gradients and sharp boundaries between clusters. The factors are defined
on the basis of species composition and are independent of diversity.
Regardless of the measure used, diversity is not directly explained by com-
binations of abiotic variables. Instead, transitions between regions better
explain the observed patterns. Biogeographic gradients can in turn be
explained by environmental variables, suggesting that environmental
controls on diversity may be indirect. Faunas within provinces are homo-
geneous regardless of environmental variability. Thus, transitions between
provinces explain most of the variation in diversity because small-scale fac-
tors are dampened. This explanation contrasts with the species-energy
hypothesis. Future work should more carefully consider biogeographic
gradients when investigating diversity patterns.
1. Introduction
Global patterns of species diversity are a central focus of ecological and biogeo-
graphic research. In particular, there has been substantial discussion of declines
in diversity from tropical to temperate latitudes, a pattern seen in most major
groups [1,2] and in the fossil record [3–6]. Many explanations for this pattern
focus on evolutionary drivers, with higher rates of speciation in the tropics
[4,7,8]. However, higher rates of speciation at the poles [9] and marginal effects
of latitude [10] have also been reported.

Latitudinal effects have also been found to control species richness in a
number of taxa. At continental scales, however, biogeographic boundaries do
affect species richness patterns. For example, in North America, richness pat-
terns of bivalves are stepwise and match provincial boundaries [11].
Additionally, biogeographic factors have been found to be a primary predictor
of richness in tropical fish [12,13]. Biogeographic boundaries have also acted as
a control on changes in diversity and species traits on long timescales [14].
A possible explanation is that within provinces, diversity is constant because
local faunal assemblages are homogeneous, overwriting fine-scale environ-
mental signals. This would explain why transitions between provinces drive
larger diversity patterns. That said, biogeographic boundaries themselves reflect
shifts in environmental regimes: for example, they can correspond with moving
from a sub-tropical to temperate realm [11]. Thus, geographic structures of
marine benthic faunas have in turn been linked strongly to environmental
variables [15].
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Despite these references to biogeographic controls, most
recent studies do not include provinces in models of global
biodiversity [16–20], despite the usefulness of province defi-
nitions for tracking species distributions and delineating
protected areas [21]. Instead, most references to geographic
structure in species communities are focused on local-
regional diversity patterns (e.g. [22–25]) and are not directly
concerned with controls on latitudinal gradients. Addition-
ally, historical biogeographic effects on richness have been
reported, but they have been interpreted as a function of pro-
ductivity and abiotic environmental variables [26]. Gradients
in modern biogeographic structure have largely been
overlooked.

Indeed, the majority of the literature focuses only on
environmental correlates, linking diversity to global variation
in climate and productivity [27–29]. Of particular interest is
the consistent link between diversity and temperature [30],
often used as a proxy for solar energy. This is suggested to
support higher diversification rates through fostering higher
metabolic rates and therefore mutation rates [7,28–30]. Cli-
mate seems to control fluctuations in species richness
through time, both in simulation [31] and in empirical data
[32]. Specifically, in the marine realm, temperature has been
found to be the primary control on richness for a variety of
marine groups [16,17,19,33–36], with nutrient levels also
acting as a correlate for macroinvertebrates [16] and benthic
species in general [34]. Depth also influences global marine
biodiversity in the open ocean [20,28,37].

Here, we test the hypothesis that transitions between bio-
geographic regions more directly govern molluscan richness
in coastal Australia than does spatial variation in abiotic con-
ditions. We ask whether homogeneity of faunal composition
overwrites the environmental signal within provinces, leav-
ing biogeographic transitions as the main driving factor of
continental-scale diversity patterns. We note that Australia
is included in many global analyses, but rarely features in
continental-scale biodiversity studies. We define provinciality
using multivariate methods, not only to illustrate relation-
ships but to showcase how diversity tracks province
boundaries. Using this approach, we demonstrate that we
areworking with indistinct boundaries. Using the new province
scheme for Australia identified, we then investigate whether
biogeography more directly controls diversity patterns than
abiotic variables.
2. Material and methods
(a) Data
All molluscan records were downloaded from the Ocean Biodi-
versity Information System (OBIS) on 15 January 2020 using
the robis package in R [38]. Nomenclatural validity was checked
by comparing taxa names to the World Register of Marine
Species using the R package worms, ensuring that any non-
marine species were excluded. Any record without a full species
name was omitted, along with any record that did not have a lati-
tude or longitude value resolved to at least two decimal places.
Data were pooled into 0.5° cells to match the spatial resolution
of the abiotic data (see below), and any cell containing fewer
than 10 species or fewer than 150 records (see Diversity Esti-
mation) was excluded from the analysis. The final dataset
drawn from OBIS numbered 300 210 specimens of 6323 species
located in 233 cells.
As OBIS data only record presence and absence, which is
only a proxy for absolute abundance, we used two datasets
from the Reef Life Survey (RLS: https://reeflifesurvey.com/) to
test our results. RLS is a global citizen science project, and it
uses data collected by trained divers who survey transects in
reef systems [39]. RLS has a particular concentration of data
from Australia. We downloaded the full dataset for fish and
mobile macroinvertebrates and calculated richness and diversity
in cells using the same methods as with the OBIS dataset. Results
based on these datasets mirror those based on the OBIS dataset:
all the resulting maps and regression coefficients are in the elec-
tronic supplementary material, with some comments on the
results included in the main body of text. Because the RLS data-
set focuses on reef environments and our goal is to examine the
entire coastline of Australia, we focus here on the OBIS dataset.

Eight abiotic variables for the coastline of Australia were
downloaded from the CSIRO Atlas of Regional Seas ([40]:
www.cmar.csiro.au/cars). These are mean annual sea surface
temperature, yearly temperature standard deviation, mean
annual salinity, yearly salinity standard deviation, mean annual
dissolved oxygen content and mean annual nitrate, silicate and
phosphate content. The data consist of ocean properties, gridded
on a 0.5° scale, generated from a variety of data sources. To com-
pute annual values, we took the overall means of the latest daily
environmental layers. As the majority of our data are coastal
records, and due to the large grid scale, we did not include
depth in our analyses. We also did not include coral reef area
or shelf-area, for similar reasons.

To eliminate collinearity, abiotic variables were translated
into loadings by varimax factor analysis [41,42] using the func-
tion fa in the R package psych [43]. We prefer a multivariate
method over a model selection approach as it preserves infor-
mation in the form of factor loadings, instead of potentially
excluding variables that are of biological interest. A three-factor
solution was favoured based on parallel analysis and inspection
of a scree plot (electronic supplementary material, figure S1).
Loading values for each abiotic factor are shown in the electronic
supplementary material, table S1.
(b) Diversity estimation
Despite good overall geographical coverage of coastal Australia
in this dataset, there is substantial variation in sample size
between degree cells (electronic supplementary material, figure
S2). To account for the spatial bias inherent in using raw species
counts as an estimate for species richness, we used a series of
diversity and richness estimators. We assessed sample size by
considering the number of presences for each species in each cell.

To guarantee that the results were robust, we used four differ-
ent measures of diversity. First, we used species richness
extrapolation. The Chao 1 estimator [44] is widely used for this
purpose. It yields similar results to the corrected jackknife (cJ1)
equation of [45]. However, cJ1 is more stable (electronic sup-
plementary material), so we emphasize it in the main body of
text. Second, we applied Fisher’s α [46], which is typically used
in studies of highly diverse systems [46,47] and generally stable
at increasing sample sizes. Third, we used Simpson’s D—a
common diversity estimator with no sample size influence [48–
50]. Finally, we used the analytical version [51] of shareholder
quorum subsampling (SQS—[52–54]) to further account for
sampling issues. We note that SQS is routinely referred to as
coverage-based rarefaction (CBR) in the ecological literature, but
not the palaeontological literature, and that the distinction
between SQS and CBR is not conceptual but operational, as with
the distinction between the original formulation of rarefaction
[55] and the analytical formulation [48] that is now widely used.

Each of these methods reduces the effect of sample size on
diversity estimates (electronic supplementary material, figure
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S3) relative to using simple counts of species, which are common
in large-scale studies of diversity. Estimates do increase with
sample size until around 150 individuals, even for Fisher’s α
(electronic supplementary material, figure S3), so any cells with
fewer than 150 individuals were removed from the analyses.
To ensure consistency with previous studies using similar data,
we also used face-value counts of species that are uncorrected
for sampling variation. Analyses based on these counts yielded
the same model results as with the corrected data, but they
showed no latitudinal pattern. They are detailed in electronic
supplementary material, figure S4 and table S2.

(c) Biogeographic assignment
Instead of using the constantly changing qualitative schemes of
Australian marine biogeography [56–59] objective bioregions
were defined from the ecological data using two approaches.
First, clusters were identified using partitioning around medoids
(PAM) clustering [60]. PAM clustering generates more consistent
clusters than k-means due to minimizing the influence of outliers
[61,62].

Second, loadings generated from a varimax factor analysis
were generated—cells which score highly on a similar factor
can be considered to represent the same ecological space, with
middling scores representing transition zones. Loadings gener-
ated are more intuitive and, unlike PAM, test for both sharp
ecological boundaries (such as those assumed in previous bio-
geographic studies (e.g. [11,12])) and smooth gradients. To
guarantee cluster integrity, a correspondence analysis [63] was
applied to the dataset and used to demonstrate the distinctive-
ness of clusters.

Optimal factor counts were likewise generated for each data-
set using parallel analysis, which compares the scree patterns of
factor eigenvalues with screes generated from random data
matrices of the same size [64]. These values were favoured over
manual inspection of a scree plot as they are not subjective,
although we include scree plots in the electronic supplementary
material for comparison. We implemented both factor analysis
and parallel analysis using the R package psych [43].

(d) Analysis
Spatial autoregressions were carried out to compare the gener-
ated richness values to both the abiotic variables and the
abiotic factor scores, allowing for spatial autocorrelation in the
abiotic scores using the R package spatialreg [65]. An additional
model was run that included the biogeographic loadings.
Using factor scores as variables allowed provinciality to be
included intuitively in the model because the resulting slopes
reflect the strength of provincial signals. This analysis was then
repeated with each richness metric, and for all cluster counts sup-
ported by the scree plot and parallel analysis. In addition to
spatial autoregressions, we carried out linear multiple
regressions that are numerically almost identical to the spatial
autoregressions. Results are included in the electronic
supplementary material.

To further test the relationships between abiotic variables,
biogeographic loadings and diversity, we ran several additional
multiple regressions that emulated a structural equation model.
The key abiotic variables were chosen by identifying the variable
with the highest loading on each of the three abiotic factor scores.
Abiotic factor scores with the highest uniqueness values were
also chosen because a high uniqueness indicates that the variance
of each variable was not explained by the factors. This narrowed
the set of key variables to seven: latitude, mean annual sea sur-
face temperature, yearly temperature standard deviation, mean
annual salinity, yearly salinity standard deviation, mean annual
dissolved oxygen content, and mean annual silicate content.
Each dependent variable was then run in a multiple regression
framework against each other variable in turn. Any significant
relationship between two variables was recorded. Factor scores
representing biological provinces were not run against each
other as they are mathematically related—a high score in one
province will generate a low score in other provinces.

To avoid circularity in the assignment of biogeographic pro-
vinces based purely on species distribution, a simulation was run
that deliberately removed geographical and habitat distribution
and focused on temperature. A temperature range for each
species was generated from the data using the minimum and
maximum annual temperature for each cell the species occupied.
A presence–absence matrix was then randomly generated, filling
each cell with species that overlapped in their temperature ranges
and then randomly sampled so that it contained the same
number of species per cell as the original matrix. This created a
simulated presence–absence matrix, where species presences
are only controlled by temperature and not directly by geogra-
phy. A factor analysis generated nominal biogeographical
provinces for the sampled matrix, using the same number of pro-
vinces found in the real data. A regression model identical to the
one used in the original analysis was then used to assess the
relationship between simulated biogeography, temperature and
richness. As this process is stochastic, we repeated the sub-
sampling process 10 000 times and recorded the variation in
model results across replications.
3. Results
(a) Species richness and biogeography
Australian molluscs exhibit a flattened diversity gradient,
with high diversity in the tropics and a shallow decline
southward (figure 1). Simpson’s D and SQS indicate a
slightly steeper decline in diversity along with the southern
coastline (figure 1). Overall, there was agreement across
methods used on the overall spatial diversity pattern.

Parallel analysis suggests there are five factors for the
OBIS dataset, six for the RLS fish dataset, and three for the
RLS invertebrate dataset. Scree plots of the OBIS data suggest
three factors are appropriate, so we have included this
number in electronic supplementary material, analyses.

These provinces are distinct from each other geographi-
cally (figure 2) and in ordination space (electronic
supplementary material, figure S8). Both the OBIS and RLS
datasets show a broad northern and southern province span-
ning the western to eastern coastlines, with smaller
subdivisions present along with the eastern and southeastern
coastlines seen when higher cluster counts are considered.
Factor analysis shows that although cluster cores are distinct,
there are broad transition zones on the southern and western
coastlines as provinces become less distinct (figure 2; elec-
tronic supplementary material, figure S9). The Great Barrier
Reef, northern Australia and eastern Australia provinces
have much sharper boundaries (figure 2; electronic sup-
plementary material, figure S9). In the northeast, coastal
and offshore reefal cells run in parallel over a large latitudinal
extent when five provinces are visualized across the region
(figure 2b).

(b) Regression and simulation analysis
When all abiotic variables were tested in one model, only
annual temperature variation significantly explained the
changes seen in species diversity for any dataset (p < 0.001).
When combined into abiotic factors, factor 1, with strong
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Figure 1. Spatial diversity patterns for Australian marine molluscs from the OBIS dataset, pooled into 0.5° cells. Four different methods are shown: Fisher’s α (a,b),
Simpson’s D (c,d ), the corrected first-order jackknife (cJ1—e and f ), and shareholder quorum subsampling, also known as CBR (SQS—g and h). Point size and
colour are scaled with diversity in (a), (c), (e) and (g). The y-axis in each scatter plot is on a log scale for clarity. (Online version in colour.)
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loadings of temperature variables and dissolved oxygen con-
tent, was the only factor that could explain the richness
pattern (table 1), and only for estimates generated using the
corrected jackknife equation. Variance explained by each
model was low, between 9% (cJ1) and 15.7% (Simpson’s D).

When the factor loadings for the biogeographic provinces
were added as explanatory variables, the abiotic variables
were no longer significant predictors of diversity patterns.
Instead, factor loadings relating to the eastern, northern and
Great Barrier Reef provinces were significantly and positively
related to diversity (p < 0.01: table 2; electronic supplementary
material, table S3). The combined analysis explained up to 46%
of variation across the dataset. These results are comparable to
those generated from the RLS for fish (electronic supplemen-
tary material, table S4). The analysis of the RLS marine
invertebrates (electronic supplementary material, table S5)
suggested that the same variables are significant predictors,
but they explained a much lower amount of variance.

When biogeographic factors were compared to abiotic factors
in several multiple regressions, strong relationships were found
for each province—but the important abiotic variables associated
differed (figure 3). Temperature and dissolved oxygen content
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Figure 2. Biogeographic factors for coastal Australia, based on molluscan data downloaded from OBIS. Each panel displays a different factor deriving from a
five-factor solution. Points are scaled so that factor loadings are reflected by their size. Provinces are as follows: (a) southeastern Australia, (b) northern Australia,
(c) eastern Australia, (d ) Great Barrier Reef and (e) southwestern Australia. For a map containing all provinces overlayed, see electronic supplementary material,
figure S9. (Online version in colour.)
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were significant for the western province and the southeastern
province, temperature and silica content were significant for
the northern Australia province, salinity variation was significant
for the southwestern Australia province, and mean annual sal-
inity was significant for the southeastern Australia province.
No environmental variable was significantly associated with
the Great Barrier Reef province.

When species ranges were simulated based on temperature
rather than geographic position, biogeographic provinces
formed east–west bands. The temperature became a significant
predictor across trials and biogeography remained significant
as in the initial analyses (electronic supplementary material,
figure S11).
4. Discussion
The latitudinal diversity pattern in Australia is strikingly
different to that observed across other continents and at the
global scale [11,36,66]. Rather than the stepwise declining



Table 1. Results of a series of general linear model analyses of marine mollusc diversity against abiotic variables. Abiotic variables were collapsed into factors
to avoid collinearity (for details of each factor see electronic supplementary material, table S1) and scaled so they are beta coefficients and therefore
comparable. Values shown are slope estimates generated from the model; italicized values are significant ( p < 0.001).

diversity estimate abiotic factor one abiotic factor two abiotic factor three adjusted R2

Fisher’s α 0.0824 0.0462 0.0415 0.008

Simpson’s D 0.1204 −0.0291 0.0013 0.000

corrected jackknife 0.1703 0.0640 0.0597 0.068

SQS 0.1310 −0.0272 0.0120 0.0069

Table 2. Results of a series of general linear model regressions of marine mollusc diversity against biogeographic factors and abiotic variables. Abiotic variables
were collapsed into factors to avoid collinearity (for details of each factor see electronic supplementary material, table S1) and scaled so they are comparable. A
five-factor biogeographic solution is shown; for a three-factor solution, see electronic supplementary material, table S3. Provinces are as follows: 1 =
southeastern Australia, 2 = northern Australia, 3 = eastern Australia, 4 = Great Barrier Reef, 5 = southwestern Australia (figure 2). Values shown are slope
estimates generated from the model; values in italics are significant ( p < 0.001).

diversity
estimate

province
one

province
two

province
three

province
four

province
five

abiotic
factor
one

abiotic
factor
two

abiotic
factor
three

adjusted
R2

Fisher’s α 0.106 1.538 1.661 1.979 0.498 0.068 −0.023 0.049 0.440

Simpson’s D −0.370 1.859 1.823 2.281 0.901 0.125 −0.100 0.021 0.317

corrected jackknife 1.183 2.412 2.101 2.266 0.782 0.116 −0.028 0.045 0.460

SQS 0.174 1.914 1.862 2.218 0.819 0.112 −0.048 0.013 0.366
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salinity SD
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Fisher’s a

Figure 3. Relationships between biogeographic provinces, diversity (based on
Fisher’s α) and environmental variables. Relationships were derived from a
series of multiple regressions; a red arrow shows a significant negative
relationship ( p < 0.01) and a grey arrow shows a significant positive relation-
ship. MAT = mean annual sea surface temperature, SD = annual standard
deviation, and provinces are as follows: 1 = southeastern Australia, 2 =
northern Australia, 3 = eastern Australia, 4 = Great Barrier Reef, 5 = south-
western Australia.
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pattern observed in similar taxa along with eastern and wes-
tern North America [11], we observed a gradual latitudinal
decline. Species diversity differed between the Australian
eastern and western coastlines, with much lower diversity
along with the western coastline. In contrast with global
studies, the gradient in this decline is very shallow, with
smaller differences between tropical and temperate areas.
This flattened gradient is apparent in models of other taxa
that include regional diversity and report relative richness
(e.g. [28]) but is vastly different to gradients observed in
global analyses [66]. The abiotic variables we used could
explain diversity patterns, but they explained a much lower
amount of variation than observed in other studies; for
example, Tittensor et al. [36] obtained a pseudo-R2 of 70 to
90 for multiple groups using global data.

The provinces we present here are generally similar to
existing schemes for marine Australia [57], with the Great
Barrier Reef as a separate province to coastal Australia, a
broad northern province and several smaller provinces in
the southeast. At a broader scale, the data support the
north–south divide observed in both global regionalization
studies [67] and local molluscan provincial definitions [68].
Our factor analysis approach reveals the relationship
between the provinces in greater detail with province
boundaries in coastal Australia reflected by transition
zones that cover a few degrees of latitude and are smaller
than the zones previously illustrated in continental maps
[56]. When only two factors are used, transition zones are
both smaller and farther north than suggested by local
studies on molluscs [68]. Studies on eastern Australian
corals also point to a broad transition zone around the
same latitude [69]. Cluster analysis reveals similar province
distributions to the factor analysis. However, the clusters are
rarely geographically consistent and fail to define sharp
boundaries at this scale accurately, as they are meant to
do. This effect is easily seen when three clusters are used:
cluster analysis cannot resolve the southern coastline as
belonging to either province.
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Although diversity has been related to biogeographic
boundaries before [11–13] and biogeographic boundaries
have been related to environmental variables [13], there
have been few studies resolving the relationships among
the three in an intuitive way. Defining provinces with a
factor analysis allowed provinces to be included in the
models used here in an intuitive way. Province loadings
were found to be the only significant explanatory variable,
with no environmental variable significantly explaining rich-
ness. We show that there is a unidirectional causal pathway
from environment to biogeography to diversity—although
the relationships are inconsistent and different environmental
variables correlate with different biogeographic factors.
Therefore, province boundaries reflect abiotic conditions
and richness in turn is controlled by major province bound-
aries. Diversity is instead largely homogeneous within
factors, regardless of environmental variability, and the aver-
age environmental differences between provinces driver
large-scale diversity changes. This is expected, as molluscan
distribution is controlled by environment and current
regimes [70–72] and abiotic stressors at range-edges [73]
that could be reflected in biogeographic transitions. The
mechanism may be that the same species pool is sampled
throughout each province, resulting in uniform richness
values. Note that biogeographic regions remain significant
predictors of diversity even under a simulation that removes
east–west biogeography.

Using two completely different datasets and groups of
organisms—reef fish and macroinvertebrates—the same pro-
vinces were observed. As biogeographic factors explain twice
as much variation in diversity as environmental factors, both
environmental ranges of individual species and historical
effects likely maintain the diversity pattern we see here.
Although we did not include depth and shelf-area, these
are important covariates in prior studies of marine richness
patterns [12,18,25,29]. It would be interesting to see higher
resolution future studies include them in similar analyses to
further test the relationships we uncover.

In sum, we show here that temperature, often cited as a
major control on species diversity gradients, does not directly
control species diversity at a continental scale and instead has
an indirect influence through the control of provinces. This
result highlights the need for diversity studies to more
often include biogeographical provinces in their models, as
the relationship between the environment and diversity
may be only indirect.
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